PRAKTICKÉ ZKUŠENOSTI S NÁVRHEM A PROVOZEM KOMPENZAČNÍCH ZAŘÍZENÍ



Podobné dokumenty
Nové pohledy na kompenzaci účiníku a eliminaci energetického rušení

Hrozba nebezpečných rezonancí v elektrických sítích. Ing. Jaroslav Pawlas ELCOM, a.s. Divize Realizace a inženýrink

6. ÚČINKY A MEZE HARMONICKÝCH

8. MOŽNOSTI PRO OMEZOVÁNÍ HARMONICKÝCH Úvod. Míra vlivu zařízení na napájecí síť Je dána zkratovým poměrem (zkratovým číslem)

Otázky EMC při napájení zabezpečovacích zařízení a rozvodů železničních stanic ČD

Analýza z měření elektrických veličin sportovní haly.

Snižování harmonického zkreslení pomocí Aktivních filtrů Danfoss AAF

Zařízení pro řízení jalového výkonu fotovoltaických elektráren

VÝHODY TECHNICKY SPRÁVNĚ ŘEŠENÉ KOMPENZACE

B. Technická zpráva technika prostředí staveb, zařízení silnoproudé elektrotechniky

Účinky měničů na elektrickou síť

9/10/2012. Výkonový polovodičový měnič. Výkonový polovodičový měnič obsah prezentace. Výkonový polovodičový měnič. Konstrukce polovodičových měničů

Kvalita elektřiny po změnách technologie teplárenských provozů. Jaroslav Pawlas ELCOM, a.s. Divize Realizace a inženýrink

Základní ceník. pro koncové zákazníky. od

Detektory poruchového elektrického oblouku v sítích NN. Doc. Ing. Pavel Mindl, CSc. ČVUT FEL v Praze

Pavel Kraják

Finální zpráva MĚŘENÍ PARAMETRŮ KOMPRESOROVÉ JEDNOTKY NAPÁJENÉ Z REGULÁTORU FA ERAM SPOL S R.O. doc. Ing. Stanislav Mišák, Ph.D. Strana 1 (celkem 15)

Semiconductor convertors. General requirements and line commutated convertors. Part 1-2: Application guide

Statický regulátor jalového výkonu STELCOM projekční podklady

PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY. ProEnerga s.r.o.

C L ~ 5. ZDROJE A ŠÍŘENÍ HARMONICKÝCH. 5.1 Vznik neharmonického napětí. Vznik harmonického signálu Oscilátor příklad jednoduchého LC obvodu:

FN PLZEŇ BORY TS 22/0,4kV VOJENSKÁ NEMOCNICE DOS A. Průvodní zpráva A. PRŮVODNÍ ZPRÁVA OBSAH: A.1\ Identifikační údaje...2

Náhradní zdroj pro DPS Elišky Purkyňové, Thákurova 8 12, Praha 6 TECHNICKÁ ZPRÁVA

Bezkontaktní spínací moduly typu CTU Úvod: spínací rychlost až 50x za sekundu nedochází k rušení ostatních elektronických zařízení

LEC. Řídící jednotky pro napájení světel. Řešení pro úsporu Vaší energie

TECHNICKÁ ZPRÁVA. Bilance nároků na příkon el. energie připojovaného objektu:

Měřená veličina. Rušení vyzařováním: magnetická složka (9kHz 150kHz), magnetická a elektrická složka (150kHz 30MHz) Rušivé elektromagnetické pole

1. ÚVOD Základní elektrotechnické údaje stavby Zásuvkové okruhy Kabelové rozvody... 6

Zajištění kvality elektřiny podmínky připojení a možnost odběratele je splnit. Ing. Jaroslav Pawlas ELCOM, a.s. Divize Realizace a inženýrink

NÁLEŽITOSTI ŽÁDOSTI O PŘIPOJENÍ VÝROBNY ELEKTŘINY K PŘENOSOVÉ NEBO DISTRIBUČNÍ SOUSTAVĚ

První paralelní připojení. Pavel Kraják (ČENES)

1 Schválené a zavedené KO s EFCP

Teplárna MosTeploEnergo ve čtvrti Lublino v Moskvě. VN měnič kmitočtu v teplárně Lublino, Moskva

ELEKTROINSTALACE TECHNICKÁ ZPRÁVA. ÚP ČR - Kladno - rekonstrukce okapů a klempířských prvků

PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY. DALKIA INDUSTRY CZ, a.s. PŘÍLOHA 3. Parametry kvality elektrické energie

Elektrické stanice a vedení (MESV)

Plán rozvoje Lokální distribuční soustavy LDS Parada Česká Lípa

PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY. Forum Liberec s.r.o.

Technologie pro elektrárny a teplárny na tuhá paliva MEDLOV TESPO engineering s.r.o.

Nové výzvy pro spolehlivý provoz přenosové soustavy Ing. Ivo Ullman, Ph.D.

Míra vjemu flikru: flikr (blikání): pocit nestálého zrakového vnímání vyvolaný světelným podnětem, jehož jas nebo spektrální rozložení kolísá v čase

Vliv přenosu jalového výkonu na ztráty v distribučních sítích. František Žák AMPÉR 21. březen 2018

1. Obecná struktura pohonu s napěťovým střídačem

Monitoring, měření a analýza kvality a množství elektrické energie podklad pro přípravu certifikace ISO Měřením k úsporám energie

TECHNICKÁ ZPRÁVA : OPLOCENÍ NTM CHOMUTOV : DOKUMENTACE PRO PROVEDENÍ STAVBY STUPEŇ E - ELEKTROINSTALACE PŘÍLOHA E - 1

PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY ProEnerga s.r.o.

9. Harmonické proudy pulzních usměrňovačů

NÁLEŽITOSTI ŽÁDOSTI O PŘIPOJENÍ VÝROBNY ELEKTŘINY K PŘENOSOVÉ SOUSTAVĚ NEBO DISTRIBUČNÍ SOUSTAVĚ

I. Všeobecné podmínky

I. Všeobecné podmínky

VDV Vysoké Chvojno, ÚV rekonstrukce, PS 01.2 elektrotechnologická část Technická zpráva 1. ČLENĚNÍ PŘÍLOH PŘEDMĚT PROJEKTOVÉ DOKUMENTACE...

PARTNER V OBLASTI VODNÍHO HOSPODÁŘSTVÍ

TECHNICKÁ ZPRÁVA - ELEKTRO

Novar 314RS. Regulátor jalového výkonu. Vlastnosti. pro kompenzaci rychlých změn účiníku (rozběh motorů atd.)

Spínací technika a speciální aplikace UFES, DS1

INTEGRACE DECENTRÁLNÍCH ZDROJŮ DO DISTRIBUČNÍ SOUSTAVY

OCHRANA CHRÁNĚNÝ OBJEKT

IN-EL, spol. s r. o., Gorkého 2573, Pardubice. ČÁST I: JIŠTĚNÍ ELEKTRICKÝCH ZAŘÍZENÍ 15 Úvod 15

PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY ProEnerga s.r.o.

FEROREZONANCE. Jev, který vzniká při přesycení jádra induktoru v RLC obvodu s nelineární indukčností (induktor s feromagnetickým jádrem).

České vysoké učení technické v Praze Fakulta elektrotechnická Katedra elektroenergetiky. Energetická rušení v distribučních a průmyslových sítích

Vladislavova 335, Kutná Hora GSM: IČ: TEXTOVÁ ČÁST. Akce: Stavební úpravy bytu č. 1 v objektu Masarykova 302, Kutná Hora

PRAVIDLA PROVOZOVÁNÍ

Vývoj Elektronický měnič napětí EM 50/250

Ochrany v distribučním systému

STAVEBNÍ ÚPRAVA OBJEKTU S PRODEJNOU POTRAVIN, parc. č ŽADATEL: OÚ Voznice Voznice Dobříš ZPRACOVATEL DOKUMENTACE :

F.4.6. OBSAH DOKUMENTACE

Spínání zátěže v režimu ZELENÝ BONUS : : :

UPS (Uninterruptible Power Supply)

Protokol o měření J. MĚŘÍNSKÝ, M. CUPÁK

Větrné elektrárny s asynchronními generátory v sítích VN

PŘÍLOHA 4 PODMÍNKY PŘIPOJENÍ A PROVOZU VÝROBNY ELEKTŘINY K LDS DT-Energo

Kvality energie a úspory

SILNOPROUDÁ ELEKTROTECHNIKA A ELEKTROENERGETIKA.

PŘÍLOHA 4 PRAVIDLA PRO PARALELNÍ PROVOZ ZDROJŮ SE SÍTÍ PROVOZOVATELE LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY

PROJEKTOVÁ DOKUMENTACE DOKUMENTACE PRO PROVÁDĚNÍ STAVBY

AŽD Praha s.r.o. K aktuálním problémům zabezpečovací techniky v dopravě IX ZČU Plzeň. LED svítilna LLA-2

investor: OÚ Světlá pod Ještědem

PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY TEDOM, a.s. PŘÍLOHA 4

Dílčí parametry transformátorů převzaté z tabulek. Impedance transformátoru 1T1. Dílčí parametry a výpočty vedení od transformátoru do rozváděče RH.

Metodika napěťové nedestruktivní zkoušky elektrických zařízení VN

TECHNICKÉ POŽADAVKY A POPIS OVLÁDÁNÍ OSVĚTLENÍ HRACÍ PLOCHY

PŘIPOJOVACÍ PODMÍNKY PRO VÝROBNY ELEKTŘINY - PŘIPOJENÍ NA SÍŤ ČEZ DISTRIBUCE, a.s.

Sundaram KS. Vysoce účinný sinusový měnič a nabíječ. Uživatelská konfigurace provozu. Snadná montáž. Detailní displej.

Obrázek č. 1 : Operační zesilovač v zapojení jako neinvertující zesilovač

PŘÍLOHA 3 KVALITA NAPĚTÍ V LOKÁLNÍ DISTRIBUČNÍ SOUSTAVĚ, ZPŮSOBY JEJÍHO ZJIŠŤOVÁNÍ A HODNOCENÍ

Ztráty v napájecí soustavě

D Elektroinstalace

Základní charakteristika

STATICKÁ KOMPENZACE MERUS SVC. Efektivní a spolehlivé řešení kvality el. energie pro těžký průmysl a služby.

ROZVOJ FVE A AKUMULACE Z POHLEDU DISTRIBUČNÍ SPOLEČNOSTI

KOMPENZAČNÍ ROZVÁDĚČE

Karlovy Vary, Základní škola Školní 9A, Modernizace hlavních rozvodů silnoproudé elektroinstalace ZŠ Školní 9A, Karlovy Vary TECHNICKÁ ZPRÁVA

A B C. 3-F TRAFO dává z každé fáze stejný výkon, takže každá cívka je dimenzovaná na P sv = 630/3 = 210 kva = VA

PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY DOTAZNÍKY PRO REGISTROVANÉ ÚDAJE

Osnova kurzu. Rozvod elektrické energie. Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 3

Důležitý prvek v mozaice přístrojů pro průmysl

Určeno pro posluchače bakalářských studijních programů FS

Zadané hodnoty: R L L = 0,1 H. U = 24 V f = 50 Hz

2. STŘÍDAVÉ JEDNOFÁZOVÉ OBVODY

Transkript:

PRAKTICKÉ ZKUŠENOSTI S NÁVRHE A PROVOZE KOPENZAČNÍCH ZAŘÍZENÍ Ing. Jiří Hanzlík, iloš Doubek, ECOS s.r.o. Na konkrétním případu je dokumentován význam důsledné analýzy rozvodné soustavy při návrhu kompenzačních prostředků v prostředí s vysokým obsahem nelineárních spotřebičů a při nebezpečí výskytu rezonančních jevů. 1. ÚVOD V tomto případě se jedná o poměrně rozsáhlou rozvodnou soustavu s hlavním napájecím transformátorem 6,3VA 22/6kV (obrázek 1). Tuto soustavu je možno napájet ze dvou různých linek 22kV s rozdílnými parametry. Součástí sítě je poměrně rozsáhlý rozvod 6kV, spotřebiče 6kV a více než 20 transformátorů 22/0,4kV. Největší potíže ovšem způsobují technologické linky na tažení vodičů a výrobu kabelů osazené stejnosměrnými pohony, které tvoří převážnou část spotřeby. Centrální kompenzace je řešena manuálně (časově) spínanými kondenzátorovými bateriemi 1+1var v nechráněném provedení. Dále byla v posledních letech provedena výměna hlavního napájecího transformátoru (v souvislosti s přechodem z napěťové hladiny 10kV na 22kV) a většina starých kompenzačních zařízení na straně NN byla vyměněna za chráněné kompenzační rozváděče s obvyklým rezonančním kmitočtem fo=189hz. Celkem tedy bylo v praxi možno dosáhnout různých kombinací přívodního vedení, kompenzační baterie 6kV (2var, 1var, 0var) a různých provozních stavů velkých stejnosměrných pohonů. SCHÉA ROZVODU Tuchlovice 400 VA 22kV Kladno - Západ 500 VA 22kV vedení AlFe 3x120 l=2407 m kabel CXEKVCEY 3x240 l=196 m vedení AlFe 3x185/31 l=10 352 m vedení AlFe 3x185/31 l=7146 m kabel AXEKVCEY 3x240 l=193 m 22 kv T1 22/ 6,3 VA T2 22/ 6,3 VA 2 x Al 3x240 l=300 m Q1 1 var Q2 1 var 2 x l=300 m T3 6/0,5 kv 0,63 VA Pk=11,87 kw 2 x Al 3x240 l=700 m T4 0,16 VA uk=4,2% Pk=4,8 kw HORNÍK 0,5 kv 0,5 kv TH-1 1,6 VA Pk=22,5 kw TH-2 6/0,5 kv 1,0 VA u k=6 % P k=16,8 kw 0,5 kv TH-3 1,0 VA u k=6 % P k=16,8 kw TH-4 1,6 VA Pk=25,2 kw TH-5 1,0 VA u k=6 % P k=16,8 kw TH-6 1,6 VA Pk=25,2 kw T-PVC 1,6 VA Pk=25,2 kw -T3 Al 3x185 l=100 m R-PLECH -T4 20 kw IH-1 H-1 80 kw RC1 H-2 IH-3 H-3 RC3 IH-4 H4 50 kw RC4 IH-5 H-5 RC5 IH-6 H-6 RC6 100 kvar I-PVC -PVC 320 kw RC PVC 352 kvar T-PLECH 2,52 VA u k=6% Pk=47,5 kw STARÁ TRAFOSTANICE 6kV T1-T5 6 VA Pk=121 kw GUÁRNA Al 3x240 -PLECH 1 -PLECH 2 ZKUŠEBNA T1 1 VA uk=6 % P k=8,51 kw -TS1 -TS2 1 2 3 4 5 G1 320 kw G2 736 kw G3 736 kw -T1 RC1 300 kvar obrázek 1 ERU 2004 1

2. VÝCHOZÍ STAV DEFINICE PROBLÉU Postupem času se začaly objevovat náhodně se vyskytující poruchy na kompenzačních rozváděčích NN, osvětlovacích tělesech i na provozované technologii. Protože největší potíže se projevovaly na straně NN, soustředila se pozornost provozovatele pouze na sledování napěťové hladiny 400V. ěřením byly prokázány zvýšené hodnoty harmonických složek napětí: THDu špičkově až 10%, 5. harmonická až 14% (obrázek 2). Zároveň byla potvrzena sací schopnost instalované chráněné kompenzace - při vypnuté kompenzaci došlo ke zvýšení harmonického zkreslení a THDu dosahovalo až 15%. I přes časově náročné sledování sítě NN poruchovým analyzátorem (PEGY) se nepodařilo zaznamenat očekávaný rezonanční jev a nebylo tak možno přesněji definovat vlastní příčinu. Teprve v r 2003 byla provedena komplexnější studie, kdy byl sledován vliv přívodního vedení a dále také působení kompenzace VN na kvalitu napětí na straně NN. Z této studie vyplynulo několik základních poznatků: - Zdroj harmonického rušení je uvnitř sledované rozvodné soustavy, neproniká tedy z vnější sítě ale je generováno vlastními spotřebiči. - Na úroveň harmonických složek napětí má vliv také směr napájení VN. V závislosti na parametrech přívodního vedení se při ustáleném odběru změnil obsah harmonických při přepínání z jednoho směru na druhý. - Byl dokumentován negativní vliv nechráněné kompenzační baterie 6kV na obsah harmonických složek na straně NN. - Nebezpečně vysoký obsah harmonických byl naměřen na 6kV a částečně také na napěťové hladině 22kV. obrázek 2 ERU 2004 2

Provozovateli bylo na základě výsledků této analýzy doporučeno maximálně omezit provoz VN kompenzačních baterií a instalovat chráněný kompenzační rozváděč s automatickou regulací účiníku. Zároveň byl doporučen směr napájení, který díky svým parametrům vedení v kombinaci s parametry vstupního transformátoru minimalizuje vznik harmonických napětí. Protože výměna VN kompenzace (v chráněném spínaném provedení) představuje poměrně velkou investici, váhal provozovatel s její realizací až do počátku roku 2004, kdy jsme byli požádáni o předložení komplexní nabídky na technické řešení. Podmínkou investora bylo dosahování předepsaného účiníku v každém okamžiku a zároveň odstranění poruchových jevů v celé rozvodné soustavě. Samozřejmostí byly vysoké požadavky na záruku a spolehlivost zařízení. Jelikož jsme situaci sledovaného provozu dobře znali, bylo zřejmé, že navrhnout optimální funkční řešení nebude jednoduché. V první řadě bylo nutné zvolit nejvhodnější bod připojení, rezonanční kmitočet a kompenzační výkon s optimální jemností regulace. 3. STUDIE Bylo zřejmé, že bude nutno řešit výše uvedenou problematiku v první řadě na teoretické úrovni. Proto jsme přizvali ke spolupráci odborníky ze Západočeské Univerzity Plzeň (ZČU) -, Ing. Tomáše Salona, Ing. Zdeňka Peroutku, Ph.D. a prof. Ing. Václava Kůse CSc. S pomocí provozovatele a příslušného rozvodného závodu byla shromážděna všechna dostupná data o způsobu napájení a o rozvodu dotčeného průmyslového podniku a to zejména: informace o napájecích linkách, délce a průřezu přívodního vedení při napájení z možných směrů, zkratový výkon v bodě připojení, informace o signálu HDO, informace o napájecích transformátorech 22kV, způsobu kompenzace účiníku a ostatní dostupné informace o interním rozvodu závodu. Údaje o provozovaných (instalovaných) polovodičových zařízeních se zjišťovali velmi obtížně (prakticky nebylo možné získat žádné konkrétní informace). Proto musely být pro výpočet harmonických proudů vyšších řádů parametry F měničů odhadnuty na základě zkušeností. Po vyhodnocení všech dostupných dat vypracovali pracovníci ZČU matematický model sledované sítě [2]. Na tomto modelu byly analyzovány frekvenční charakteristiky impedance sítě při různých provozních režimech. Z výsledků matematické analýzy a výpočtu impedancí sítě vyplynulo několik důležitých bodů: Vliv přívodního vedení vzhledem k jeho délce a parametrům vstupního transformátoru je jeho impedanční vliv podstatný a značně ovlivňuje vznik rezonancí na frekvencích 250Hz, resp. 350Hz. Situace se mění při napájení závodu z rozvodny Tuchlovice (situace je horší), případně z rozvodny Kladno západ (situace je příznivější). Vliv nechráněné kompenzace 2var/6kV protože se jedná o nechráněnou kompenzaci, je její vliv značný a podstatný. Vliv chráněné kompenzace NN vlivem charakteru zařízení (laděno na 189Hz) dochází k ovlivňování frekvence rezonance sítě. Z frekvenční charakteristiky impedance jsou patrné sériové rezonance. V dílčích závěrech z výpočtů impedance pracovníci ZČU konstatovali, že v důsledku připojení nechráněné kompenzace (2var/6kV) dochází ke vzniku rezonance v okolí frekvence 250Hz. Velmi výraznou roli hraje přívodní vedení (s ohledem na jeho délku, parametry transformátoru a zkratový výkon rozvodny). Nejhorší situace nastává při napájení z rozvodny Tuchlovice. Ve spolupráci s pracovníky ZČU Ing. Salonem a Ing. Peroutkou, bylo následně provedeno pomocí dvou analyzátorů sítě typu BK550 synchronní měření v předávacím bodě (PCC) 22kV a v hlavním napájecím bodě 6kV. ěření probíhalo současně na obou napěťových hladinách se synchronizovaným nastavením času na obou analyzátorech. Vzhledem k záměru zdokumentovat ERU 2004 3

předpokládaný negativní vliv provozované nechráněné kompenzace 2var/6kV na síť bylo měření prováděno se zapnuto i vypnutou kompenzací. Provedené měření plně potvrdilo předpoklad negativního působení kompenzačního zařízení na síť. Na obrázku 3 je záznam celkového harmonického zkreslení napětí a 5. harmonické na hladině 6kV a 22kV. Zároveň je tak dokumentována správnost úvahy, že k rezonanci dochází vlivem připojení kompenzačního zařízení 2var/6kV. VN kompenzace VYPNUTA VN kompenzace ZAPNUTA Obrázek 3. Při porovnání vypočtených a naměřených dat bylo konstatováno, že naměřené hodnoty harmonických složek, zvláště pak 5. a 7. harmonické napětí, jsou vyšší než vypočtené hodnoty. Příčinou rozdílných hodnot bylo záměrné poddimenzování výkonu F měničů při výpočtu (nedostatečná vstupní data). Pro kvalitativní posouzení kontroly dosažených výsledků jsou však podstatné poměry mezi jednotlivými vypočtenými harmonickými napětími. Tyto poměry odpovídaly naměřeným datům a potvrdily tak správnost výpočtů. Bylo tak potvrzeno, že při připojení kompenzace 2var/6kV dochází k výraznému vzniku 5. harmonické napětí (rezonanční frekvence je při 2var v blízkosti 250Hz). Při připojení pouze části kompenzačního výkonu 1var, na hladině 6kV, je rezonanční kmitočet v blízkosti 7. harmonické a dochází tak k nárůstu velikosti 7. harmonické napětí. Na základě zpracovaného matematického modelu a provedeného měření bylo jako opatření ke snížení obsahu vyšších harmonických doporučeno instalovat automatické chráněné kompenzační zařízení, se stupni laděnými na kmitočet 189Hz. Jedná se o standardní prověřené řešení, které spolehlivě odstraní nebezpečné rezonance sítě a zároveň u tohoto zařízení nemůže dojít k nežádoucí interakci se signálem HDO (216 2/3Hz). ERU 2004 4

Provozovateli tak bylo doporučeno odstranit stávající nechráněnou kompenzaci 2 x 1var/6kV a instalovat nové chráněné kompenzační zařízení o výkonu 2,3var, s automatickou regulací. 4. REALIZACE Po odsouhlasení navrhovaného řešení ze strany provozovatele bylo vyrobeno a instalováno kompenzační zařízení ECOS typ EF6-2300/5. Kompenzační zařízení bylo v souladu s dohodnutým harmonogramem ve dnech 7-8.7. 2004 namontováno a 9.7. 2004 uvedeno do provozu. Zároveň byla demontována původní kompenzace 1var/6kV. Na přání zákazníka byla ponechána část původní nechráněné baterie 1var/6kV jako záložní kompenzace. Zákazníkovi bylo zdůrazněno, že záložní kompenzace nesmí být provozována zároveň s novou chráněnou kompenzací. Dne 15.7. 2004 bylo provedeno kontrolní měření provozu chráněné kompenzační jednotky. ěření probíhalo synchronně na vstupním napájecím bodě 22kV a na napěťové hladině 6kV, a to opět za spoluúčasti pracovníků ZČU Plzeň Ing. Salona a Ing. Peroutky. Původní nechráněná kompenzace 1var byla odpojena. Při měření kvality napětí a úrovně harmonických v rozvodné soustavě byly simulovány všechny tři stavy: odběr bez kompenzace, stará kompenzace a nová chráněná kompenzace. Obrázek 4 dokumentuje vliv kompenzačního zařízení na obsah harmonických složek napětí na hladině 6kV. Při funkci nové kompenzační jednotky se celkové zkreslení napětí pohybovalo okolo 1,5%, bez kompenzace je zkreslení 2,5 3,5% a při zapnutí původní kondenzátorové baterie 1var přesáhlo zkreslení napětí THD U 4%. Obdobně se chovala i křivka průběhu 7. harmonické napětí. A B C obrázek 4. A-chráněná kompenzace, B-bez kompenzace, C-původní kompenzace ERU 2004 5

Dále je na obrázku 5. provedeno srovnání harmonického spektra napěťové hladiny 6kV při provozu chráněné kompenzace a při zapnutí původní kompenzace. Spektrum je doplněno o průběh 7. harmonické. Zlepšení je patrné především pro 5. harmonickou (pokles z 2,5% na 1,5%) a pro 7. harmonickou (pokles z 1,8% na 0,88%). obrázek 5. chráněná kompenzace původní kompenzace 5. ZÁVĚR Obecně lze konstatovat, že chráněná kompenzační jednotka splňuje očekávané technické parametry a zajišťuje kompenzaci odběru na předepsanou hodnotu. Celkové vyhodnocení funkce kompenzační jednotky a jejího vlivu na rozvodnou soustavu bude možné provést až v delším časovém horizontu, kdy bude funkce kompenzace prověřena všemi provozními stavy závodu nkt cables. Zároveň byly potvrzeny výsledky matematického modelu, podle kterých měla dominantní vliv na vznik rezonancí v oblasti 5. harmonické interakce nechráněné kondenzátorové baterie 2var/6kV se vstupním transformátorem 22/6kV. Dříve zaznamenané hodnoty THDu až 3,5% na hladině 22kV se již nepodařilo naměřit a při provozu chráněné kompenzace se pohybují okolo TH- Du = 1,6% Seznam použité literatury [1] Technická zpráva 02-2278-00 20.2. 2003 Ing. Jiří Hanzlík, ECOS s.r.o. [2] Harmonické v rozvodné síti 29.4. 2004 Ing. Tomáš Salon, Ing. Zdeněk Peroutka, Ph.D., prof. Ing. Václav Kůs, CSc [3] Technická zpráva 69-3042-00 20.7. 2004 Ing. Jiří Hanzlík, ECOS s.r.o. ERU 2004 6