S T R U C T U R A

Podobné dokumenty
The Over-Head Cam (OHC) Valve Train Computer Model

CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA

Litosil - application

WORKSHEET 1: LINEAR EQUATION 1

ANALYSIS OF RAIL FASTENING SYSTEM DELTA LAGER I FAILURE ANALÝZA PŘÍČINY PORUŠENÍ UPEVŇOVACÍHO SYSTÉMU KOLEJNIC TYPU DELTA LAGER I

Klepnutím lze upravit styl předlohy. nadpisů. nadpisů.

CHAIN TRANSMISSIONS AND WHEELS

Ventil zpětný Z15.1 DN 10 50, PN Piston check valve Z15.1 DN 10 50, PN

20 ka / 1 s (dle typu cívky) přirozené

GENERAL INFORMATION RUČNÍ POHON MANUAL DRIVE MECHANISM

THE PREDICTION PHYSICAL AND MECHANICAL BEHAVIOR OF FLOWING LIQUID IN THE TECHNICAL ELEMENT

SYSTEM OF ROAD SURFACE MEASUREMENT AND EVALUATION IN THE CZECH REPUBLIC, NEW TRENDS IN THIS FIELD

UNIVERZITA PARDUBICE DOPRAVNÍ FAKULTA JANA PERNERA BAKALÁŘSKÁ PRÁCE Tomáš Vojtek

Dynamic Signals. Ananda V. Mysore SJSU

Biosensors and Medical Devices Development at VSB Technical University of Ostrava

MODELOVÁNÍ A MĚŘENÍ DEFORMACE V TAHOKOVU

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

Měření vibrací generovaných budičem vibrací TIRAVib Budič Vibrací TIRAVib

Vliv metody vyšetřování tvaru brusného kotouče na výslednou přesnost obrobku

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2006, ročník LII, řada strojní článek č.

Použití. Application. Field of application. Rozsah použití A.1.1

ACOUSTIC EMISSION SIGNAL USED FOR EVALUATION OF FAILURES FROM SCRATCH INDENTATION

BUILDING PREPARATIONS SWIMMING POOL ENCLOSURES LNE / REVIZE: AFNOR NF P NF P NF P TESTED BY LNE

Návrh a implementace algoritmů pro adaptivní řízení průmyslových robotů

DC circuits with a single source

POŽÁRNÍ ODOLNOST DŘEVOBETONOVÉHO STROPU

Parametrická studie změny napětí v pánevní kosti po implantaci cerkvikokapitální endoprotézy

Examples of prefabricated columnal a) Beams columnal systems (1. transversal, 2. longitudinal, 3. duplex (bilateral) system, 4. transversal system

Právní formy podnikání v ČR

Dynamic Development of Vocabulary Richness of Text. Miroslav Kubát & Radek Čech University of Ostrava Czech Republic

TechoLED H A N D B O O K

A Note on Generation of Sequences of Pseudorandom Numbers with Prescribed Autocorrelation Coefficients

KRAJSKÁ KNIHOVNA V HAVLÍČKOVĚ BRODĚ

INFLUENCE OF CONSTRUCTION OF TRANSMISSION ON ECONOMIC PARAMETERS OF TRACTOR SET TRANSPORT

POČET ROČNÍKŮ JEHLIC POPULACÍ BOROVICE LESNÍ. Needle year classes of Scots pine progenies. Jarmila Nárovcová. Abstract

Together H A N D B O O K

T E S T R E P O R T No. 18/440/P124

Transactions of the VŠB Technical University of Ostrava, Mechanical Series No. 2, 2009, vol. LV, article No. 1688

ELEKTROMOTORY SÉRIE CHT CHT ELECTRIC MOTORS

Effect of temperature. transport properties J. FOŘT, Z. PAVLÍK, J. ŽUMÁR,, M. PAVLÍKOVA & R. ČERNÝ Č CTU PRAGUE, CZECH REPUBLIC

2010 FUNKČNÍ VZOREK. Obrázek 1 Budič vibrací s napěťovým zesilovačem

SUBSTRUCTURES underground structures

KULOVÝ STEREOTEPLOMĚR NOVÝ přístroj pro měření a hodnocení NEROVNOMĚRNÉ TEPELNÉ ZÁTĚŽE

Gymnázium, Brno, Slovanské nám. 7 WORKBOOK. Mathematics. Teacher: Student:

Comparison of Two Designs for the Spiral Casing of the Fan Grinding Mill. Porovnání dvou konstrukčních variant spirálové skříně ventilátorového mlýna

A Průvodní dokument VŠKP

EUROKÓDY: SEZNAM PLATNÝCH EUROKÓDŮ K (včetně změn, oprav, příloh NA ed. A, zrušených a nahrazených norem)

USER'S MANUAL FAN MOTOR DRIVER FMD-02

STUDY EDITS FOR BETTER TRANSPORT IN THE CENTRE OF NÁCHOD

Compression of a Dictionary

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

The tension belt serves as a tension unit. After emptying the belt is cleaned with a scraper.

Číslo projektu: CZ.1.07/1.5.00/ Název projektu: Inovace a individualizace výuky

COMPETENT AUTHORITY responsible for ensuring compliance with Regulation (EC) No 21/2004:

technický list TRANSIL TM 1.5KE6V8A/440A 1.5KE6V8CA/440CA str 1

TELEGYNEKOLOGIE TELEGYNECOLOGY

STLAČITELNOST. σ σ. během zatížení

DATA SHEET. BC516 PNP Darlington transistor. technický list DISCRETE SEMICONDUCTORS Apr 23. Product specification Supersedes data of 1997 Apr 16

Next line show use of paragraf symbol. It should be kept with the following number. Jak může státní zástupce věc odložit zmiňuje 159a.

Gymnázium, Brno, Slovanské nám. 7, SCHEME OF WORK Mathematics SCHEME OF WORK. cz

SLEDOVÁNÍ AKTIVITY KYSLÍKU PŘI VÝROBĚ LITINY S KULIČKOVÝM GRAFITEM

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2006, ročník LII, řada strojní článek č.

Friction drives have constant or variable drives (it means variators). Friction drives are used for the transfer of smaller outputs.

Problematika ozvučování zohledňuje tyto disciplíny:

FIRE INVESTIGATION. Střední průmyslová škola Hranice. Mgr. Radka Vorlová. 19_Fire investigation CZ.1.07/1.5.00/

Petr Bednář managing director

2N LiftIP. IO Extender. Communicator for Lifts. Version

Obrábění robotem se zpětnovazební tuhostí

These connections are divided into: a) with a form-contact b) with a force-contact

Summary. Mr. Andreas Molin

4 TABULKY ZÁKLADNÍCH STATISTICKÝCH CHARAKTE- RISTIK TÌLESNÝCH ROZMÌRÙ TABLES OF BASIC STATISTICAL CHARACTERISTICS OF BODY PARAMETERS

DYNAMICS - Power, input power, efficiency

Název školy STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

PC/104, PC/104-Plus. 196 ept GmbH I Tel. +49 (0) / I Fax +49 (0) / I I

VY_32_INOVACE_06_Předpřítomný čas_03. Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace

Transportation Problem

Introduction to MS Dynamics NAV

VŠEOBECNÁ TÉMATA PRO SOU Mgr. Dita Hejlová

VÝZKUM REOLOGICKÝCH VLASTNOSTÍ HORNIN A GEOKOMPOZITŮ PŘI CYKLICKÉM NAMÁHÁNÍ

HOTEL ZLI!ÍN A NEW PROJECT FOR SALE IN PRAGUE 5 ZLI!ÍN, CZECH REPUBLIC. ARCHITECT: ALFAVILLE, spol. s r.o. Ing.arch. Marek Todl

TKGA3. Pera a klíny. Projekt "Podpora výuky v cizích jazycích na SPŠT"

Czech Technical University in Prague DOCTORAL THESIS

Why PRIME? 20 years of Erasmus Programme Over 2 million students in total Annually

The Military Technical Institute

SIMATIC S7-1500(T) SIMOTION konfigurace systému Motion Control. Engineered with TIA Portal. Unrestricted Siemens AG 2017

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

USING VIDEO IN PRE-SET AND IN-SET TEACHER TRAINING

INŽENÝRSKÁ MECHANIKA 2002

DYNAMICS - Force effect in time and in space - Work and energy

Moderní technologie dokončování velmi přesných děr vystržováním a její vliv na užitné vlastnosti výrobků

RESPONSE ANALYSIS OF BUILDING UNDER SEISMIC EFFECTS OF RAILWAY TRANSPORT

Kancelářský systém ICE

FACULTY OF CIVIL ENGINEERING INSTITUTE OF METAL AND TIMBER STRUCTURES BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS. prof. Ing. MARCELA KARMAZÍNOVÁ, CSc.

VÚTS, a.s. Liberec CENTRE OF ENGINEERING RESEARCH AND DEVELOPMENT

Návrh ideální struktury a funkce krajské knihovny Bakalářská práce

CZECH REPUBLIC. Dřevěné obrázkové kostky Wooden picture blocks.

NOSNÁ KONSTRUKCE ZASTŘEŠENÍ FOTBALOVÉ TRIBUNY STEEL STRUCTURE OF FOOTBAL GRANDSTAND

Izolační manipulační tyče typ IMT IMT Type Insulated Handling Rod

Energy vstupuje na trh veterinárních produktů Energy enters the market of veterinary products

CZ.1.07/2.3.00/

Transkript:

Piotr Bobra, ul. Akacjowa 13, 46-6 Prószków, POLAND, e-mail: p.bobra@po.opole.pl EXPERIENTAL TESTING OF A WOODEN FRAE UNDER SEISIC EXCITATION Abstract Seismic experiments of wooden, three story frame are described in detail. Preliminary results of dynamic tests are shown. Differences between numerical FE (Finite Element ethod) model and experimental natural frequencies are indicated. 1. INTRODUCTION Wooden structures are widely used in civil engineering. Their low weight and high strength properties make them particularly resistant against dynamic loads. On the other hand their static and dynamic properties are often scattered and random. That is why field and laboratory tests are particularly needed for these structures (see e.g. [1], [2]). In December 29 a European project High performance composite-reinforced earthquake resistant buildings with self-aligning capabilities was initiated under the FP7-INFRASTRUCTURES-28-1 program (SP4-Capacities). This project is within soul called SERIES action (seismic engineering research) coordinated by University of Patras, Greece. Three institutions are involved in these particular project: 1) Institute of Theoretical and Applied echanics, Czech Republic, 2) Technical University Dresden, Germany, 3) Faculty of Civil Engineering, Opole University of Technology, Poland. The project lasts two years and its main purpose is to test two models of wooden structures on shaking table. The models are designed to withstand seismic actions by the application of specially designed joints and composite timber. The purpose of these paper is to present preliminary results of dynamic analysis just after tests of the second model. It covers comparison of dynamic properties of the tested model as computed by FE code and measured on the intact structure, before the main series of damaging tests. 2. DESCRIPTION OF ANALYZED ODEL OF WOODEN FRAE The investigated frame is made of four symmetric spaced columns, connected to each other by beams. It has a three stories, each stiffened by a 5mm thick plywoods slab (fig. 1). oreover four cantilever beams (two on the first and two on the second floor) are attached to column no. 1 (see detail E in fig. 1). The columns and the beams are made of glulam - class GL24, spruce. The slab is made of spruce, double plywood LVL (thickness 2x25mm=5mm). To obtain the appropriate dynamic behavior of the structure under seismic excitations, the frame was loaded by additional masses. In the vicinity of column no. 1 on the first floor there were five lead masses fasten (total weight of 125kg). In vicinity of the column no. 3, at each floor, four additional masses of total weight 1kg, were fasten. Third additional mass (25kg) was placed on two brackets of the first floor (see detail in fig. 1). The purpose of these brackets was to generate additional bending moment, simulating existence of further frame bays. In fig. 1 the tested model placed on shaking table is presented in detail. Strana 56

D3 F G2 G1 E E D2 C2 C1 G2 G1 D1 F B E B C3 C4 z z y x A y x A Fig. 1 View of the tested, three story frame. A shaking table, B supporting structure for linear position sensors, C1-C4 numbers of columns, D1-D3 slabs, E bracket, F target for high-speed camera, G1 linear position sensor, G2 end of linear position sensor, additional mass. 3. INSTRUENTATION The frame was subjected to a series of dynamic excitations on the shaking table. Its dynamic response was analyzed using the following measurement systems. The linear position sensors were attached to the support structure (see detail B in fig. 1) and used to measure the relative displacements of two, perpendicular beams of the first floor. These sensors were also used to measure change of an angle between column 1, shaking table plane and each adjoining beam. The main, structural displacements were measured along the diagonals of faces of the 1 st and 2 nd floor (see details G1 & G2 in fig 1). In addition 18 linear position sensors were used to measure remaining structural displacements. Accelerometers were attached to two perpendicular beams, on each floor. Their purpose was to measure horizontal accelerations. In the middle of each slab, additional systems of three sensors measuring acceleration along three, orthogonal directions were installed. Additional accelerometers were controlling the motion of shaking table. Total number of 24 accelerometers was applied. To analyze strains and stresses during vibrations column no. 1 was chosen, where 2 strain gauges were glued. Similar strain gauges were placed to the adjoining beams. Two high-speed cameras were applied to trace motion of 6 targets (see detail F in fig. 1) attached to three joints of column no. 2. Strana 57

The independent three-axial accelerometer was attached to the highest joint on column no. 3. This sensor was used to make a quick identification of modal properties of the frame, right after its erection (SEQUOIA FastTracer system). 4. DESCRIPTION OF DYNAIC EXPERIENTS After mounting and instrumenting the frame, a series of free vibration tests were performed. These included an impact test and snapback pullover experiment. During these tests the shaking table was locked so the frame could not interact with the mechanical structure of the shaking table. It allowed preliminary evaluation of dynamic properties of model, correcting position of additional masses and further planning of the experiment. Additional low level tests included a sweep sine and white noise excitations. After the initial tests, the actual damaging series of tests started. They were carried out using artificially generated seismic signal with increasing, intensities during each phase of the experiment. After each damaging phase low level, white noise tests were carried out to capture the changes to dynamic parameters induced by the damages. Detailed information on the sequence of the experiment is shown in table 1. Table 1. Sequence of the shaking table experiment. No. excitation type excitation direction of level excitation 1 impact - X 2 impact - Y 3 snapback pullover 25kg (force) Y 4 white noise.1g X 5 white noise.1g Y 6 white noise.1g X, Y 7 sweep sine.3g X 8 sweep sine.3g Y 9 seismic.1g /.2g* X, Y, Z* 1 white noise.1g X, Y 11 seismic.3g /.6g* X, Y, Z* 12 white noise.1g X, Y 13 seismic.5g /.1g* X, Y, Z* 14 white noise.1g X, Y 15 seismic 1.g /.2g* X, Y, Z* 16 white noise.1g X, Y 17 seismic 2.g X, Y Strana 58

5. RESULTS OF FE CALCULATION AND EXPERIENTAL TESTS. Initial dynamic analysis was done using SAP2 v.14.4.2. FE code. Two types of finite elements were applied: FRAE elements (to model beams and columns) and SHELL elements (to model the slabs). The number of dynamic degrees of freedom equaled 8362. The finite element mesh of the frame is shown in fig. 2. Fig. 2 FE mesh of the wooden frame. First the eigenproblem was solved. The resulting, first three vibration modes (along Y, along X and torsion) are listed and described in table 2 as well as in figs. 3-5. At the early stages of the experiment impact tests and low level, white noise seismic tests were carried out. In figs. 6-7 decaying accelerations of the third floor of the frame are shown together with respective power spectral densities (Fourier transforms). Clearly first natural frequency (4.75 Hz along Y axis) and second one (5.75 Hz along X axis) can be observed. The torsional, third natural frequency (16.5 Hz) can hardly be noticed. In fig. 8 the translational modes are difficult to observe, however the torsional mode with some coupled disturbances are displayed. Table 2. Description of selected natural modes of vibrations. Description mode number FE model The first cantilever mode of frame The second cantilever mode of frame The torsional mode of vibration natural frequency f natural period T measured natural frequency f 1 4.35 Hz.23 s 4.75 Hz 2 4.94 Hz.2 s 5.75 Hz 3 6.19 Hz.16 s 16.5 Hz Strana 59

Fig. 3 The first mode of vibration (un-deformed shape shown in dark). f=4.35 Hz, T=.23 s Fig. 4 The second mode of vibration (un-deformed shape shown in dark). f=4.94 Hz, T=.2 s Fig. 5 The third mode of vibration (un-deformed shape shown in dark). f=6.19 Hz, T=.16 s Strana 6

[(m/s 2 ) 2 /Hz].6 5.75 Hz.5.4.3 1s 4m/s 2.2 4.75 Hz.1 16.5 Hz 2 4 6 8 1 12 Fig. 6 Power spectral density of the accelerations of the third floor under impact load (time history in the in-set picture). Both, impact and acceleration sensor along X axis. 14 16 18 2 22 [Hz] [(m/s 2 ) 2 /Hz].14.12 4.75 Hz.1.8 1s 2m/s 2.6.4 5.75 Hz.2 16.5 Hz 2 4 6 8 1 12 Fig. 7 Power spectral density of the accelerations of the third floor under impact load (time history in the in-set picture). Both, impact and acceleration sensor along Y axis. 14 16 18 2 22 [Hz] Strana 61

[(m/s 2 ) 2 /Hz].7.6 16.5 Hz.5.4 1s 2m/s 2.3.2.1 2 Fig. 8 Power spectral density of the accelerations of the third floor under white noise, seismic excitations (time history in the in-set picture). Seismic excitations and acceleration sensor along X axis. 6. CONCLUSIONS 4 6 8 1 12 Early results of experimental seismic tests of three story wooden frame are presented. At this stage only simple isotropic FE model was applied to model dynamic behavior of the frame. The results of low level dynamic tests show substantial differences between numerical evaluations and experimental natural frequencies (see table 2). This is due to actual complicated structure of the wood and specially constructed joints which shall be modeled by nonlinear constitutive material law with orthogonal properties. Further analyses are planned by applying various nonlinear models and appropriate finite element codes (e.g. Abaqus, ANSYS). 14 16 18 2 22 [Hz] LITERATURE [1] Kasal, B., Pospíšil, S., Jirovsky, I., Drdacky,., Heiduschke, A., and Haller, P.: Seismic performance of laminated timber frames with fiber-reinforced joints. Earthquake Engineering and Structural Dynamics. John Wiley & Sons Ltd. London, K, Vol. 33. (5): 633-646, 24. [2] Heiduschke A, Kasal B, Haller P. Performance and Drift Levels of Tall Timber Frame Buildings under Seismic and Wind Loads. Structural Engineering International, Vol. 18, Nr. 2, pp. 186-191, 28. Strana 62