K čemu slouží urychlovače a reaktory



Podobné dokumenty
Urychlovače částic principy standardních urychlovačů částic

Studium produkce neutronů v tříštivých reakcích a jejich využití pro transmutaci jaderného odpadu

Elektroenergetika 1. Jaderné elektrárny

Elektroenergetika 1. Jaderné elektrárny

Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE

Příklady Kosmické záření

Atom jeho složení a struktura Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje

Urychlovače nabitých částic

JADERNÁ FYZIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník

Lineární urychlovače. Jan Pipek Dostupné na

A Large Ion Collider Experiment

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

ŠTĚPNÁ REAKCE (JADERNÁ ENERGIE)

Theory Česky (Czech Republic)

Radioaktivita a radionuklidy - pozitivní i negativní účinky a využití. Jméno: Ondřej Lukas Třída: 9. C

8.STAVBA ATOMU ELEKTRONOVÝ OBAL

STŘEDOČESKÝ KRAJ ANTIHMOTA

Urychlovačem řízené transmutační systémy (ADS - Accelerator driven systems)

Atomová a jaderná fyzika

ATOMOVÁ FYZIKA JADERNÁ FYZIKA

Radioaktivita,radioaktivní rozpad

Identifikace typu záření

Vyhořelé jaderné palivo

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno

Jaroslav Reichl. Střední průmyslová škola sdělovací techniky Panská 3 Praha 1 Jaroslav Reichl, 2017

Relativistická dynamika

Jana Nováková Proč jet do CERNu? MFF UK

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD.

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření

Test z radiační ochrany

VY_52_INOVACE_VK64. Datum (období), ve kterém byl VM vytvořen červen 2013 Ročník, pro který je VM určen

2. ATOM. Dualismus částic: - elektron se chová jako hmotná částice, ale také jako vlnění

Aplikace jaderné fyziky (několik příkladů)

Pozitron teoretická předpověď

A) Štěpná reakce obecně

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Výukový materiál zpracován v rámci projektu EU peníze školám

Standardní model a kvark-gluonové plazma

Jaderná fyzika. Zápisy do sešitu

LEPTONY. Elektrony a pozitrony a elektronová neutrina. Miony a mionová neutrina. Lepton τ a neutrino τ

Za hranice současné fyziky

Jaderné reaktory blízké i vzdálené budoucnosti, vyhořelé jaderné palivo - současné trendy a moznosti

29. Atomové jádro a jaderné reakce

rezonanční neutrony (0,5-1 kev) (pojem rezonanční souvisí s výskytem rezonančních maxim) A Z

Experiment ATLAS. Shluky protiběžných částic se srážejí každých 25 ns. tj. s frekvencí. Počet kanálů detektoru je 150 mil.

Jaderná elektrárna. Martin Šturc

Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích z bublinové komory.

Zdroje částic Supravodivé magnety Aplikace urychlovačů. Mgr. Jan Pipek Dostupné na

FYZIKA ATOMOVÉHO JÁDRA

4.4.6 Jádro atomu. Předpoklady: Pomůcky:

Letní škola RADIOAKTIVNÍ LÁTKY a možnosti detoxikace

Jaderné reakce a radioaktivita

Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou?

Rozměr a složení atomových jader

JADERNÁ ENERGIE. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: Ročník: devátý

JADERNÁ ENERGIE. Jaderné reakce, které slouží k uvolňování jaderné energie, jsou jaderná syntéza a jaderné štěpení.

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

Jaderná energetika (JE)

Jaderná energetika Je odvětví energetiky a průmyslu, které se zabývá především výrobou energie v jaderných elektrárnách, v širším smyslu může jít i o

Monitorovací indikátor: Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 19

Prvek, nuklid, izotop, izobar

Hmotnostní spektrometrie

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky

FYZIKA MIKROSVĚTA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník

2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru

Mezony π, mezony K, mezony η, η, bosony 1

Centrum výzkumu Řež s.r.o. Úvod do problematiky výzkumných jaderných reaktorů. e-learningový kurz

Radiační patofyziologie. Zdroje záření. Typy ionizujícího záření: Jednotky pro měření radiace:

Nebezpečí ionizujícího záření

Chemické složení vesmíru

Lineární urychlovače. Jan Pipek Dostupné na

VY_32_INOVACE_06_III./7._STAVBA ATOMOVÉHO JÁDRA

Centrum výzkumu Řež s.r.o. Centrum výzkumu Řež se představuje

Úvod do moderní fyziky. lekce 4 jaderná fyzika

Jihočeská universita v Českých Budějovicích Pedagogická fakulta. Urychlovače nabitých částic

Co všechno umí urychlovač TANDETRON a jak vlastně funguje?

212 a. 5. Vyzáří-li radioaktivní nuklid aktinia částici α, přemění se na atom: a) radia b) thoria c) francia d) protaktinia e) zůstane aktinium

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

6.3.5 Radioaktivita. Předpoklady: Graf závislosti vazebné energie na počtu částic v jádře pro částice z minulé hodiny

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Jaderná energie Jaderné elektrárny. Vojtěch Motyčka Centrum výzkumu Řež s.r.o.

Fotoelektrický jev je uvolňování elektronů z látky vlivem dopadu světelného záření.

vysokoteplotního plazmatu na tokamaku GOLEM

Jaká je budoucnost jaderné energetiky?

Radiologická klinika FN Brno Lékařská fakulta MU Brno 2010/2011

Jaká je budoucnost jaderné energetiky?

DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj

Prvek, nuklid, izotop, izobar, izoton

IONTOVÉ ZDROJE. Účel. Požadavky. Elektronové zdroje. Iontové zdroje. Princip:

Kateřina Fišerová - Seminární práce k předmětu Didaktika fyziky

ATOMOVÉ JÁDRO A JEHO STRUKTURA. Aleš Lacina Přírodovědecká fakulta MU, Brno

Potřebné pomůcky Sešit, učebnice, pero

Princip metody Transport částic Monte Carlo v praxi. Metoda Monte Carlo. pro transport částic. Václav Hanus. Koncepce informatické fyziky, FJFI ČVUT

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika

Interakce záření s hmotou

Zajímavosti z konference. Ing. Petr Paluska, Klinika onkologie a radioterapie, FN Hradec Králové

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu

Transkript:

K čemu slouží urychlovače a reaktory Rozbili jsme atom! Rozbili jsme atom! křičel jinak málomluvný John Cocroft, když vyběhl na ulici poté, co s Ernstem Waltonenem provedli první umělé jaderné reakce pomocí tzv. Cockroftova-Waltonenova urychlovač (Nobelova cena 1951) Vladimír Wagner Ústav jaderné fyziky AVČR, 250 68 Řež E_mail: WAGNER@UJF.CAS.CZ WWW: hp.ujf.cas.cz/~wagner/ 1) Úvod 2) Jak se urychlují částice? 2.1 Fyzikální principy urychlování částic 2.2 Z čeho se urychlovač skládá? 2.3 Jak urychlovač pracuje 2.4 Různé typy urychlovačů 3) Urychlovače ve výzkumu 3.1 Komplikované sestavy urychlovačů 3.2 Stále větší energie proč? 4) Urychlovače nám slouží 5.1 Urychlovače v lékařství 5.2 Výzkum a příprava materiálů 5) Reaktory zdroje neutronů i energie 6.1 Klasické reaktory 6.2 Rychlé (množivé) reaktory 7) Reaktory nám slouží 7.1 Zdroj energie 7.2 Urychlovačem řízené transmutace 7.3 Zdroj neutronů materiálový výzkum, medicína 8) Závěr

Úvod Potřeba urychlovat částice na vyšší energie produkce a hledání nových částic Existence kosmického záření jeho doplnění umělým zdrojem První urychlovač E.O. Lawrence v roce 1930 typ cyklotron Nobelova cena za fyziku 1939 nyní více než 10 000 urychlovačů různých typů Princip urychlovače typu cyklotron zdroj částic magnetické pole kruhová dráha částice elektrické VF pole pro urychlení Historické stránky Americké fyzikální společnosti (AIP) http://www.aip.org/history/lawrence/larger-image-page/epa-20.htm

Původní patentový nákres a model prvního urychlovače (průměr okolo 11 cm, V = 1800 V) Současné urychlovače obrovské množství různých typů. Od malých produkčních pro medicínu (japonský R = 1 m) až po giganty v CERNu (R = 4 km)

Iontový zdroj produkce nabitých částic Z čeho se urychlovač skládá Elektrostatické nebo proměnné elektrické pole urychlení částice urychlovací systém Magnetické pole určuje dráhu částice, provádí fokusaci svazku magnetické čočky vedou svazek a snaží se co nejvíce jej zúžit Vakuový systém částice se při urychlování musí pohybovat ve vysokém vakuu nutný systém vývěv Chlazení supravodivé magnety potřebují heliové teploty Radiační ochrana zajištění bezpečnosti pomoci stínění Řídící systém ovládání, řízení a kontrola práce urychlovače Zdroj plazmy elektrický výboj Kryogenní systém pro LHC Řídící centrum urychlovačů v CERNu Vedení svazku magnetickými čočkami

Různé typy urychlovačů Rozdělení: A) Podle typu urychlovaných částic: 1) Urychlovače elektronů 2) Urychlovače protonů a lehkých iontů 3) Urychlovače těžkých iontů B) Podle tvaru dráhy 1) lineární 2) kruhové Starší část LINACu ve Fermilabu Lineární urychlovače: Vysokofrekvenční tvořeny urychlovací trubicí s řadou válcových elektrod připojených ke zdroji VF napětí Největší lineární urychlovač (3 km) je Linac ve SLACu (USA) urychluje elektrony na 50 GeV. Zdroj částic Válcové elektrody Lineární urychlovač v CERNu

Van de Graaffův urychlovač přenášení náboje izolačním pásem na vysokonapěťovou elektrodu spojenou s urychlovací trubicí. Maximální energie 10 MeV. Tandemový urychlovač 20 30 MeV. Speciální protonový tandem až 60 MeV. Napětí až miliony voltů kovová kulová elektroda sběrací hřeben Účinek vysokého potenciálu malého Van de Graffu pásový dopravník Robert J. Van de Graaff předvádí své zařízení K. Comptonovi Napětí nabíjecí hřeben Schéma Van de Graaffova urychlovače Urychlovač Van de Graaffova typu (25URC Pelletron v Oak Ridge USA)

Kruhové urychlovače: 1) Betatron indukční urychlovač elektronů. Elektrony na dráze s konstantním poloměrem jsou urychlovány silou elektromagnetické indukce. Největší betatron energie elektronů ~ 340 MeV, běžné do 50 MeV. Často jako zdroje brzdného záření pro technické a lékařské účely. 2) Cyklotron časově neproměnné magnetické pole drží částice na kruhové dráze. VF pole urychluje částice při průchodu štěrbinou mezi duantami. Průchod štěrbinou 2 během jednoho oběhu, při průletu protilehlou částí štěrbiny opačná polarita elektrického pole. Frekvence přepínání elektrického pole konstantní. Schéma funkce cyklotronu Supravodivý cyklotron K500 v laboratoři v Michiganu Mikrotron urychluje elektrony brzy relativistická změna hmotnosti. Jedno urychlení dodá energii m 0 c 2 zachová se sfázování. Energie elektronu až 20 MeV.

3) Synchrotron velikost magnetického pole se mění. Poloměr dráhy zůstává konstantní. Práce v pulsním režimu. A) Elektronový synchrotron pro elektrony v c frekvence synchrotronu se nemění B) Protonový synchrotron rychlost se mění v širokém rozmezí frekvence synchrotronu se mění. U synchrotronu se střídají urychlovací trubice a fokusující magnety: Urychlovací trubice Kvadrupólový magnet Synchrotrony největší urychlovače, průměry až desítky km. Schéma synchrotronu se silnou fokusací v CERNu Starý synchrofázotron v SÚJV Dubna elektronový synchrotron LEP v CERNu protonový synchrotron v CERNu

Produkce částic a výzkum struktury hmoty Produkce co nejtěžších částic nutnost dosažení co nejvyšší energie neboť E = mc 2 Nutné - soustavy urychlovačů Dosahování stále vyšších energií budování soustav urychlovačů a akumulačních prstenců Soustava urychlovačů v CERNu (Švýcarsko) Pohled na rozmístění urychlovačového komplexu v CERNu Vstřícné svazky v těžišti je maximální hodnota využitelné energie. Pro svazek s energií 450 GeV: 1) pevný terč 29 GeV 2) vstřícné svazky 900 GeV

Největší v současnosti budovaný urychlovač - LHC Instalace supravodivých magnetů Sekundární svazky mezonové továrny, interakce primárních částic na terči. Sekundární částice jsou fokusovány, formovány a případně dále urychlovány (nabité). Produkce i neutrálních (neutrony, neutrina) Luminosita: Charakterizuje intenzitu svazku urychlovače. Jednotky [cm -2 s -1 ]. Maximální současné hodnoty ~ 10 33 cm -2 s -1.

Větší detaily, energie a teploty, produkce těžších částic Experimentální pozorování je rozhodujícím kritériem pro uznání platnosti hypotézy a její přeměnu v teorii Stěžejní nástroj srážka urychlených částic Nárůst energie větší detaily Zatím největší urychlovače E ~ 100 GeV 10-18 m Produkce částic s vyšší klidovou energií (hmotností) Klidová hmotnost protonu: ~ 1 GeV LHC srážka protonů s energiemi 7000 GeV Jádra olova (208 nukleonů) na každý 2700 GeV Energie už přímo makroskopické pád 0,02 g z výšky 1 m nebo větších komárů Stejná energie Rozdíl rozměrů 10 14 1 123 200 GeV = 1,8 10-4 J 1 ev = 1,602 10-19 J srážka dvou menších much V současné době se připravují ke startu Hmotnost 1 g se stejnou rychlostí 5 10 17 J (10 000 hirošimských bomb)

První relativistický BEVALAC v roce 1980 GSI Darmstadt (SRN) RHIC Brookhaven Urychlovače těžkých iontů Radioaktivní svazky produkce radioaktivních jader a jejich následné urychlení

Využití urychlovačů V roce 1994 okolo 10 000 urychlovačů ve světě, z toho jen méně než 1000 výzkumných zbytek hlavně medicína (ozařování, produkce radiofarmak) a průmysl (implantace iontů, modifikace povrchů Pracoviště pro nanotechnologický výzkum využívající 1,7 MeV tandetron na Rutgers University Ozařování pomocí protonů v Ústavu Paula Scherrera ve Villiganu (Švýcarsko)

Využití v medicíně Produkce radiofarmak (zvláště pozitronová emisní tomografie) radioaktivní izotopy jsou produkovány ozařováním vhodného terče na urychlovači Radioaktivní izotopy s pozitronovým rozpadem anihilace pozitronu v klidu vznik dvou fotonů (kvant záření gama) letících v opačném směru jejich zachycením určení polohy Využívané radioizotopy: 11 C, 13 N, 15 O, 18 F Vložení radioaktivního izotopu do sloučeniny usazující se ve studovaném orgánu (přesná diagnostika a medicínský výzkum): Srdce zasažené infarktem Zdravé srdce Velmi dobré prostorové rozlišení ( 2 mm ), stále nové sloučeniny pro PET kamery (systémy Pozitronové Emisní Tomografie) Typická PET kamera a komerční cyklotron IBA cyklone 10/3

Příprava diagnostických radiofarmak

Ozařování těžkými ionty Využití závislosti ionizačních ztrát energie nabité částice na její rychlosti. Větší náboj (těžší iont) větší maximum na konci dráhy Možnost umístění destrukční energie do místa nádoru bez poškození okolní tkáně Urychlovač těžkých iontů Testovací systém s využitím urychlovače SIS v GSI Darmstadt (100 MeV - 1 GeV) Část urychlovače těžkých iontů SIS v GSI Darmstadt

Testování biologických i jiných účinků záření γ Z=1 Z > 4 Příprava biologických vzorků v našem ústavu Testování odolnosti elektroniky vůči radiaci (kosmickému záření BEVALAC Záblesky v očích vlivem průletu těžkého iontu vysokoenergetického záření Předpověď 1952 Cornelius Tobias Pozorování: poprvé kosmonauti Apolla 11 Ověření na Zemi (1974: BEVALAC (první urychlovač těžkých iontů) svazek - C. Tobias Běžná součást pobytu ve vesmíru

Materiálový výzkum a produkce speciálních materiálů 1) Iontová implantace úprava složení materiálu, tvorba jeho struktury po jednotlivých atomových vrstvách nástroje pro nanotechnologii 2) Změny povrchů úprava povrchů, hlavně třeba pro biomedicínu 1) Urychlovače jako zdroje neutronů Urychlovač produkuje relativistické protony neutrony produkovány v tříštivých reakcích v terči z těžkého kovu Stačí urychlovač různých iontů i jen na velmi malé energie Pracoviště The William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) v USA Tříštivý zdroj v LANL 2) Zdroje synchrotronového záření Relativisticky urychlené částice produkují brzdné záření vysokoenergetické gama záření využívají se urychlovače elektronů na vysoké energie

Reaktory První reaktor prosinec 1942, tým pod vedením Enrica Fermiho V současnosti stovky energetických i výzkumných reaktorů Nákres a model prvního reaktoru Enrica Fermiho a moderní jaderná elektrárna v Olkiluoto ve Finsku

Klasické jaderné reaktory Štěpná reakce - štěpení jádra samovolné nebo po získání energie - obvykle se dodá energie záchytem neutronu - doprovázena vznikem neutronů s energiemi v oblasti jednotek MeV ( 2-3 neutrony na štěpení) (část hned část zpožděná) Řetězová štěpná reakce: Štěpení nuklidů 235 U, 239 Pu... záchytem neutronu 235 U + n 236 U* : 85 % - štěpení 15 % - emise fotonu Velmi vysoké hodnoty účinných průřezů záchytu neutronů pro malé energie neutronů (10-2 ev) Nutnost zpomalování neutronů - moderátor Štěpení - vznik štěpných produktů Záchyt emise fotonu rozpad beta - vznik transuranů Multiplikační faktor k - počet neutronů následující generace neutronů produkovaných na jeden neutron předchozí generace k < 1 podkritický systém k = 1 kritický systém k > 1 nadkritický systém Jaderná elektrárna Indian point (USA)

Dukovany reaktorový sál Jaderný reaktor Palivo: 1) přírodní uran - složen z 238 U a jen 0,72 % 235 U 2) obohacený uran - zvýšení obsahu 235 U na 3-4% (klas.re.) T 1/2 ( 238 U) = 4,51 10 9 r, T 1/2 ( 235 U) = 7,13 10 8 r Vnitřek reaktoru při výměně paliva Regulační, kompenzační a bezpečnostní tyče většinou ve formě UO 2 Důležitý odvod tepla (voda) V roce 2006 (podle MAAE): 435 energetických reaktorů výkon 370 GW e produkce 16 % elektřiny celková provozní zkušenost: > 10 000 reaktorroků Elektrárna Diablo Canyon USA

Množivé (rychlé) reaktory Nemoderované neutrony nutnost vysokého obohacení uranu 20-50 % 235 U (ekvivalentně 239 Pu) Produkce 239 Pu: 238 U + n 239 U(β-) + γ 239 Ne (β-) 239 Pu Z 239 Pu více neutronů (3 na jedno štěpení) produkce více plutonia než se spotřebuje (plodivá zóna) Vysoké obohacení vysoká produkce tepla nutnost výkonného chlazení roztavený sodík (teplota 550 o C) Doba života generace rychlých neutronů velmi krátká větší role zpožděných neutronů při regulaci Elektrárny: Phenix - 250 MWe a Superphenix 1200 MWe ten už je zastaven (Francie) Rychlý množivý reaktor v Monju (Japonsko) 280 MWe v současnosti stojí znovuspuštění 2008 BN600 Beloyarská jaderná elektrárna v Rusku

Jaderný odpad - vyhořelé palivo klasický reaktor Složení: 96 % uran (~1% 235 U) 1 % transurany 3 % štěpné produkty (stabilní, krátkodobé, dlouhodobé) Některé dlouhodobé radioaktivní štěpné produkty: 99 Tc (2.1 10 5 let), 129 I (1.57 10 7 let), 135 Cs (2.3 10 6 let) Dlouhodobé transurany: 237 Np (2.3 10 6 let), 239 Pu (2.3 10 6 let), 240 Pu (6.6 10 3 let), 244 Pu (7.6 10 7 let), 243 Am (7.95 10 3 let) Roční produkce jaderného odpadu ve Francii (75% energie): Vysoce aktivní (1000 Mbq/g) : 100 m 3 Středně aktivní (1 Mbq/g) : 10000 m 3 Přechodné uložení - důležitý odvod tepla při počáteční fázi (vodní bazény) Přepracování vyhořelého paliva Zpracování a uložení jaderného odpadu Vnitřek reaktoru při výměně paliva Výměna paliva v reaktorů (USA) Testy vyhořelého paliva (Monju

Jaderné reaktory čtvrté generace Studie šesti různých nových typů reaktorů, čtyři jsou množivé a jen dva jsou klasické Hlavní úkoly: 1) Využít veškerý potenciál jaderného paliva ( 238 U, 232 Th) 2) Snížit množství jaderného odpadu na minimum 3) Zvýšit bezpečnost na maximum

Urychlovačem řízený jaderný transmutor Z čeho se skládá: 1) Urychlovač protonů - energie 100-1000 MeV 2) Terč - olovo, wolfram 3) Nádoba obsahující systém jaderného odpadu, moderátoru Nutnost separace stabilních a krátkodobých izotopů Základní vlastnosti: 1) Využívá tříštivých reakcí 2) Velmi vysoká hustota neutronů efektivní transmutace 3) Podkritický režim provozu 4) Produkce neutronů ve velmi širokém rozmezí energií Výstavba demonstrační jednotky ADTT v LANL (USA) (využití 800 MeV protonů I = 1 ma pro H+ a 100 ma pro H-) Jaderná elektrárna North Anna ve Virginii Schéma koncepce urychlovačem řízeného jaderného transmutoru

Konkrétní projekt jaderného transmutoru Urychlovač protonů: E = 100 MeV - 2 GeV I = 20-100 ma Problémy: nutnost stabilního bezporuchového provozu po velmi dlouhou dobu. Terč: wolfram? tekuté olovo? urany a transurany? Hustota neutronů: ~10 20 m -2 s -1 (reaktor ~10 17-10 18 m -2 s -1 ) Problémy: odvod velkého množství tepla Podkritický reaktor: Problémy: řešení průběžné separace, efektivního transportu a moderace neutronů Budování tříštivého (spalačního) zdroje neutronu v Oak Ridgi Návrh na konkrétní urychlovačem řízené transmutační zařízení Výroba energie jako v klasické jaderné elektrárně, část z ní napájí urychlovač

PSI cyklotron 1,8 ma protonový svazek E = 580 MeV, P = 1MW 10 16 protonů/s 10 17 neutronů/s, 4 měsíce práce, celkově 2,8 Ah, 8000 přerušení Terč (délka 5 m) PbBi (920 kg) cyklotron testovací zařízení

Využití neutronů v materiálovém výzkumu a medicíně Zkoumání materiálů třeba s tvarovou pamětí K čemu je aktivační analýza? Bórová záchytová terapie

Závěr 1) Další možný zdroj nových částic urychlovač (E.O. Lawrence, J. Cocroft, E. Waltonen počátek 30. let) 2) Funguje jen pro nabité částice 3) Složení: zdroj částic, urychlovací systém (elektrické pole), vedení částice magnetickým polem. vakuový systém, kryogenní systém, řídící systém, radiační ochrana Experiment ATLAS 4) Typy urychlovačů: 1) lineární (vysokofrekvenční, van de Graff) 2) cyklické (cyklotron, synchrotron) 5) Produkce stále těžších částic, pohled hlouběji do struktury hmoty, získání stále hustější a teplejší jaderné hmoty 6) Dalším jaderným zařízením je reaktor využívá řízenou štěpnou reakci 7) Urychlovače i reaktory jsou velmi užitečná zařízení: nyní a) Využití při výzkumu a výrobě materiálů b) Využití v medicíně v budoucnu c) Urychlovačem řízené transmutace jaderného odpadu 8) V Česku se za urychlovači a reaktory můžete přijet podívat do Ústavu jaderné fyziky AVČR Budování LHC

Ústav jaderné fyziky AVČR

Nový tandetrom v ÚJF AVČR