Úvod do studia materiálů Sklo
|
|
- Květoslava Beranová
- před 6 lety
- Počet zobrazení:
Transkript
1 NTI/USM Úvod do studia materiálů Úvod do studia materiálů Sklo Karel Žídek TOPTEC ÚFP Akademie Věd ČR, v.v.i. Turnov Připraveno s využitím skript Úvod do studia materiálů, Prof. RNDr. Bohumil Kratochvíl, DSc., Prof. Ing. Václav Švorčík, DrSc., Doc. Dr. Ing. Dalibor Vojtěch, VŠCHT, Praha 2005
2 Co je dobré si (za)pamatovat Sklo: roztavený materiál je rychle zchlazený pod teplotu skelného přechodu amorfní materiál Když budu chladnout pomalu krystalky Když později pomalu natavím sklo krystalky Složení skla: základ skla (síťotvorná část): SiO 2 /B 2 O 3 + aditiva (ladí vlastnosti skla) Výroba skla: smíchá se materiál (sklářský kmen), roztaví se, vyčeří, vytvaruje, zchladí Tvarování skla: foukání, lisování, lití, broušení, leštění
3 Druhy skel 1. Plochá a obalová skla 2. Křišťálová skla 3. Tepelně a chemicky odolná skla 4. Chalkogenidová a halogenidová skla 5. Bioskla 6. Sklokeramika 7. Optická skla 8. Vláknová optika
4 Plochá a obalová skla Plochá skla okenní tabule, zrcadla (pokryté Ag/Al/Cr) Obalová skla barevná (viz barvení skla minule), zakalená (kaliva Na3AlF6) Křemičitano-sodné sklo má velkou rozpínavost s teplotou (snadno praskne při zahřátí) to ale nevadí Tvrzená skla výměna iontů na povrchu skla napětí v povrchové vrstvě - 10x vyšší pevnost
5 Čiré sklo Křemičitano-sodné sklo Vidíme jen tuto oblast, ostatní záření přenáší energii (teplo) bez osvětlovacího účinku
6 Stavební skla Determální skla FeCO 3 + Zn, Si a cukr (redukce) 80% IČ záření pohltí Vícevrstvená skla tepelná izolace uprostřed (Ar,Xe tepelná izolace, SF 6 zvuková i Skelná vata Mirkovláknové filtry Sklolaminát Tepelná izolační vata běžné sklo + struska z vysokých pecí mikrovlákna (d<0.1mm)
7 Barvení obalů Odstranění UV (znehodnocení vitamínů, změna chuti piva, stárnutí oleje) Hnědá barva (absorbuje hlavně modrou část), barvení ionty Mn+Fe
8 Optická filtrová skla Fotografie, věda, průmysl (sváření) Barvená nejrůznějšími prvky UV selekce (NiO-CoO) IČ selekce (MnO 2 -K 2 Cr 2 O 7 ) Návěstní skla: Červená Se rubín Žlutá uhlíková žluť Zelená CuO-K 2 Cr 2 O 2 Modrá Cu-CoO 1. Bioskla
9 Druhy skel 1. Plochá a obalová skla 2. Křišťálová skla 3. Tepelně a chemicky odolná skla 4. Chalkogenidová a halogenidová skla 5. Bioskla 6. Sklokeramika 7. Optická skla 8. Vláknová optika
10 Křišťálová skla Umělecká výroba + (z malé části) užitkové sklo Český křišťál SiO 2 - CaO (BaO)-K 2 O + Na 2 O+B 2 O 3 Anglický (olovnatý) křišťál SiO 2 - PbO K 2 O Na 2 O ZnO - lead glass Kvůli přídavku olova je křišťál těžký 2.4 g/cm 3 běžné sklo, 3-6 g/cm 3 křišťál Bižuterie: Dříve domácí výroba mačkáním kleštěmi z předehřáté tyče V 50. letech přechod na průmyslovou výrobu
11 Třpytivé sklo V hlavní roli: index lomu Běžné sklo n = 1.5 Křišťálové sklo n = Diamant n = 2.4 Efekt odrazů na povrchu + totální odraz na vnitřní straně třpytivost Obojí se zvýrazňuje pro vyšší index lomu
12 Druhy skel 1. Plochá a obalová skla 2. Křišťálová skla 3. Tepelně a chemicky odolná skla 4. Chalkogenidová a halogenidová skla 5. Bioskla 6. Sklokeramika 7. Optická skla 8. Vláknová optika
13 Tepelně a chemicky odolná skla Požadavky: malá tepelná roztažnost Nejodolnější čistý tavený křemen Špatně se vyrábí používají se jiné typy skel: Pyrex, Simax, Vycor Teplotní roztažnost: Pyrex: / C Běžné sklo: / C 3x menší roztažnost pyrexu chemické nádobí, varné nádobí, žárovková skla, teploměrová skla,. Pyrex: silica 81% + boric oxide (B 2 O 3 ) 12% + soda (Na 2 O) 4.5% + alumina (Al 2 O 3 ) 2.0%.
14 Druhy skel 1. Plochá a obalová skla 2. Křišťálová skla 3. Tepelně a chemicky odolná skla 4. Chalkogenidová a halogenidová skla 5. Bioskla 6. Sklokeramika 7. Optická skla 8. Vláknová optika
15 Chalkogenidová skla Propustné v IČ (podle složení mezi 900 nm-25um) běžné sklo končí někde okolo 3 um Konkurence: Ge (70% se používá na čočky do IČ) Zapouzdření mikroelektroniky (nízká teplota skelného přechodu) Xerografický proces (objeven 1942) - nabití fotovodivého filmu (selenové sklo) elektrostatickým nábojem - film se vybíjí osvětlením (kopie prosvětlením originálu) - opačně nabitý toner se přichytí z válce na nabité části
16 Druhy skel 1. Plochá a obalová skla 2. Křišťálová skla 3. Tepelně a chemicky odolná skla 4. Chalkogenidová a halogenidová skla 5. Bioskla 6. Sklokeramika 7. Optická skla 8. Vláknová optika
17 Bioskla 1) Skla, které umožní srůst s tkání obsahují fosfor ve formě oxidů Kde je používají: vyplnění dutin po zhoubných nádorech 2) Skla, které jsou v těle inertní (nedráždí tělo, neničí se v biologickém prostředí) Náhrady za čočku v lidském oku při operaci šedého zákalu
18 Druhy skel 1. Plochá a obalová skla 2. Křišťálová skla 3. Tepelně a chemicky odolná skla 4. Chalkogenidová a halogenidová skla 5. Bioskla 6. Sklokeramika 7. Optická skla 8. Vláknová optika
19 Sklokeramika Neporézní materiál se zbytkovou skelnou fází - na půl cesty cesty mezi sklem a krystalovou fází Sklářké techniky + přídavek nukleátorů Nulová tepelná roztažnost + mechanická pevnost varné nádoby, desky sporáků, jaderná energetika SiO 2 - Al 2 O 3 - Li 2 O, s přídavkem nukleátorů TiO 2, ZrO 2 nebo P 2 O 5. Vznikajícími krystalickými fázemi jsou eukryptit (LiAlSiO 4 ) a spodumen (LiAlSi 2 O 6 ).
20 Druhy skel 1. Plochá a obalová skla 2. Křišťálová skla 3. Tepelně a chemicky odolná skla 4. Chalkogenidová a halogenidová skla 5. Bioskla 6. Sklokeramika 7. Optická skla 8. Vláknová optika
21 Brýlová skla - fotochromismus Ve skle-objeveno firmou Corning v 60. letech UV světlo vytváří barevná centra a ty se bez ozáření vracejí zpět Halogenidy stříbra/mědi (AgCl, AgBr, CuCl), europium, cer Organické látky okolo 100 um tlustá vrstva u povrchu čočky Skla Transitions Brýle: dosahuje se ztmavnutí z 90% na cca 20% transmise Problém reakce výrazně tepelně závislé v teple nemohou být úplně tmavé v zimě naopak extrémně tmavnou, pomalá zpětná reakce
22 Optická skla
23 Proč tolik optických skel Každé má jiné vlastnosti: - Propustnost - Index lomu - Disperzi - Chemickou odolnost SCHOTT N-FK58: Sklo s vysokou disperzí
24 Výroba optických skel
25 Od kusu skla k čočce I Hrubé broušení (přesnost okolo 5 um) Jemné broušení (přesnost okolo 1 um)
26 Od kusu skla k čočce II Leštění skla např. oxidy ceru kontrola pomocí interferometrie Centrování optická a mechanická osa v jednom
27 Od kusu skla k čočce III Čištění čočky Anti-reflexní pokrytí
28 Proč se vyplatí mít anti-reflexní pokrytí SLR = Single-lens reflex camera (zrcadlovka) 18 rozhraní: na každém ztráta 5% 39% projde skrz Na každém ztráta 1% 83% projde skrz
29 Druhy skel 1. Plochá a obalová skla 2. Křišťálová skla 3. Tepelně a chemicky odolná skla 4. Chalkogenidová a halogenidová skla 5. Bioskla 6. Sklokeramika 7. Optická skla 8. Vláknová optika
30 Sklo v optickém přenosu dat První komerční systém 1970, fa. Corning Glass Works Kombinace dvou objevů: - Nízkoztrátové sklo - GaAs polovodičové lasery (800 nm) Později: 1.3 µm InGaAsP lasery Ještě později: 1.55 µm InGaAs lasery r : 250,000 km podmořských kabelů
31 Vláknová skla Extrémně vysoká čistota Al 2 O 3 (90%) + GeO 2 (10%) ztráta 5% světla na 1km vlnovodu Je potřeba velký kontrast indexů lomů, n 1 >n 2 : - jádro: křemenné/fluoridové sklo - plášť: olovnaté/borokřemičité sklo/plastové sklo
32 Optický kabel Teorie: Praxe: Průřez podmořským optickým kabelem: 1 Polyethylene 2 Mylar tape 3 Stranded steel wires 4 Aluminium water barrier 5 Polycarbonate 6 Copper or aluminium tube 7 Petroleum jelly 8 Optical fibers
33 Velké shrnutí skla Bez skla: Nepodívali byste se ven z okna Neposílali GB dat optickými kabely Pořizovali samé rozmazané fotky (plastové čočky) Optika by byla nějakých let zpátky Pili pivo pouze z plastu a další a další věci.
34 Témata pro semestrální práci Katastrofický scénář: vláda ČR vydala regulaci zákazující používání skla kvůli vysokým emisím při jeho výrobě. Které materiály a proč mohou nahradit sklo v: Optice Vláknovém přenosu dat atd. Je někde sklo nenahraditelné? Takové to domácí posílání dat jak by fungoval optický kabel z běžného skla (třeba sodnovápenátého skla okenní tabule?). Je optický kabel o tolik výhodnější než přenos drátem? Proč? Tečení skla: okna v katedrálách jsou často dole tlustší oproti horní části údajně vliv tečení skla. Je to možné? Jak velký může být takový efekt?
Sklo chemické složení, vlastnosti, druhy skel a jejich použití
Sklo chemické složení, vlastnosti, druhy skel a jejich použití Jak je definováno sklo? ztuhlá tavenina průhledných křemičitanů (pevný roztok) homogenní amorfní látka (bez pravidelné vnitřní struktury,
Glass temperature history
Glass Glass temperature history Crystallization and nucleation Nucleation on temperature Crystallization on temperature New Applications of Glass Anorganické nanomateriály se skelnou matricí Martin Míka
Sklo definice, vlastnosti, výroba. LF MU Brno Brýlová technologie
Sklo definice, vlastnosti, výroba LF MU Brno Brýlová technologie Definice skla Sklo je tvrdý, křehký, špatně vodivý materiál, který praská, jestliže je vystaven prudkým teplotním změnám (např. ochlazení)
Keramická technologie
Keramika Slovo označuje rozmanité výrobky vzniklé vypalováním z vhodných přírodních surovin jílů, hlíny, křemene aj. První nálezy keramických nádob pocházejí podle archeologů už ze 7. tisíciletí př.n.l.
Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice
5. KERAMIKA, SKLO, SKLOKERAMIKA STRUKTURA, ZÁKLADNÍ DRUHY, VLASTNOSTI, POUŽITÍ Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento
Kysličníková skla. Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. K. Daďourek 2008
Kysličníková skla Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. K. Daďourek 2008 Druhy amorfních látek Přírodní skla Vulkanická skla : zásaditá 45 až 50 % SiO 2 sideromelan kyselá
Druhy vláken. Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008
Druhy vláken Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008 Druhy různých vláken Přírodní vlákna Skleněná vlákna Uhlíková a grafitová vlákna Aramidová a silonová
TECHNOLOGIE OPTICKÝCH VLÁKEN A KABELŮ
TECHNOLOGIE OPTICKÝCH VLÁKEN A KABELŮ Výhody optického přenosu signálu: Vysoká přenosová rychlost Velká kapacita a šířka přenosových pásem Nízká výkonová úroveň Odolnost proti rušivým vlivům necitlivost
KRYSTALY PRO VĚDU, VÝZKUM A ŠPIČKOVÉ TECHNOLOGIE
KRYSTALY PRO VĚDU, VÝZKUM A ŠPIČKOVÉ TECHNOLOGIE MONOKRYSTALICKÉ LUMINOFORY Řešení vyvinuté za podpory TAČR Projekt: TA04010135 LED SVĚTELNÉ ZDROJE Světlo v barvě přirozené pro lidské oko Luminofor Modré
VAKUOVÁ TECHNIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Semestrální projekt FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VAKUOVÁ TECHNIKA Semestrální projekt Téma: Aplikace vakuového napařovaní v optice Vypracoval:
optické vlastnosti polymerů
optické vlastnosti polymerů V.Švorčík, vaclav.svorcik@vscht.cz Definice světelného paprsku světlo se šíří ze zdroje podél přímek (paprsky) Maxwell: světlo se šířív módech (videch) = = jediná možná cesta
Uhlíkové struktury vázající ionty těžkých kovů
Uhlíkové struktury vázající ionty těžkých kovů 7. června/june 2013 9:30 h 17:30 h Laboratoř metalomiky a nanotechnologií, Mendelova univerzita v Brně a Středoevropský technologický institut Budova D, Zemědělská
Zařazení polokovů v periodické tabulce [1]
Polokovy Zařazení polokovů v periodické tabulce [1] Obecné vlastnosti polokovů tvoří přechod mezi kovy a nekovy vlastnosti kovů: pevnost a lesk ( B, Si, Ge, Se, As) jsou křehké a nejsou kujné malá elektrická
Nauka o materiálu. Přednáška č.12 Keramické materiály a anorganická nekovová skla
Nauka o materiálu Přednáška č.12 Keramické materiály a anorganická nekovová skla Úvod Keramika a nekovová skla jsou ve srovnání s kovy velmi křehké. Jejich pevnost v tahu je nízká a finálnímu lomu nepředchází
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.20 Stavebně truhlářské výrobky a jejich
3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické).
PŘEDMĚTY KE STÁTNÍM ZÁVĚREČNÝM ZKOUŠKÁM V BAKALÁŘSKÉM STUDIU SP: CHEMIE A TECHNOLOGIE MATERIÁLŮ SO: MATERIÁLOVÉ INŽENÝRSTVÍ POVINNÝ PŘEDMĚT: NAUKA O MATERIÁLECH Ing. Alena Macháčková, CSc. 1. Souvislost
Číslo a název klíčové aktivity: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT
Zlepšení podmínek pro vzdělávání na středních školách Operačního programu Vzdělávání pro konkurenceschopnost Název a adresa školy: Integrovaná střední škola Cheb, Obrněné brigády 6, 350 11 Cheb Číslo projektu:
Lasery optické rezonátory
Lasery optické rezonátory Optické rezonátory Optickým rezonátorem se rozumí dutina obklopená odrazovými plochami, v níž je pasivní dielektrické prostředí. Rezonátor je nezbytnou součástí laseru, protože
Optická vlákna srdce vláknových laserů. I. Kašík Ústav fotoniky a elektroniky, AVČR, v.v.i.,
Optická vlákna srdce vláknových laserů I. Kašík Ústav fotoniky a elektroniky, AVČR, v.v.i., www.ufe.cz Vláknový LASER Optické vlákno & LASER & => vláknový laser [fastcompany.com] [Wiki.cz] LASER - stimulovaná
Keramika. Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. K. Daďourek 2008
Keramika Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. K. Daďourek 2008 Tuhost a váha materiálů Keramika má největší tuhost z technických materiálů Keramika je lehčí než kovy, ale
Mgr. Ladislav Blahuta
Mgr. Ladislav Blahuta Střední škola, Havířov-Šumbark, Sýkorova 1/613, příspěvková organizace Tento výukový materiál byl zpracován v rámci akce EU peníze středním školám - OP VK 1.5. Výuková sada ZÁKLADNÍ
Sklářské a bižuterní materiály 2005/06
Sklářské a bižuterní materiály 005/06 Cvičení 4 Výpočet parametru Y z hmotnostních a molárních % Vlastnosti skla a skloviny Viskozita. Viskozitní křivka. Výpočet pomocí Vogel-Fulcher-Tammannovy rovnice.
Digitální tisk - princip a vývoj
Semestrální práce z předmětu Kartografická polygrafie a reprografie Digitální tisk - princip a vývoj Autor: Stelšovský,Těhle,Neprašová,Procházka Editor: Kratinohová Zuzana Praha, květen 2010 Katedra mapování
Semestrální práce z předmětu Kartografická polygrafie a reprografie
Semestrální práce z předmětu Kartografická polygrafie a reprografie Digitální tisk princip a vývoj Pavel Stelšovský a Miroslav Těhle 2009 Obsah Jehličkové tiskárny Inkoustové tiskárny Tepelné tiskárny
Netradiční světelné zdroje
Ing. Jiří Kubín, Ph.D. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247, který je spolufinancován
Laserové technologie v praxi I. Přednáška č.4. Pevnolátkové lasery. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011
Laserové technologie v praxi I. Přednáška č.4 Pevnolátkové lasery Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Dělení pevnolátkových laserů podle druhu matrice a dopantu Matrice (nosič): Dopant: Alexandrit
Laserové technologie v praxi I. Přednáška č.8. Laserové zpracování materiálu. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011
Laserové technologie v praxi I. Přednáška č.8 Laserové zpracování materiálu Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Lasery pro průmyslové zpracování materiálu E (ev) 0,12 1,17 1,17 1,2 1,5 4,17
P2 prvky - IV.A skupina - otázka z chemie
Otázka: P 2 prvky - IV.A skupina Předmět: Chemie Přidal(a): Johana IV.A skupina = p 2 prvky Prvky s valenčními elektrony v orbitalech s a p Elektronová konfigurace ns 2 np 2 4 valenční elektrony A skupina,
Výroba tepelné energie v Centrální výtopně na spalování biomasy ve Žluticích
Výroba tepelné energie v Centrální výtopně na spalování biomasy ve Žluticích P. Volákov ková 1,M. MíkaM 2, B. Klápště 2, V. Verner 3 1 Žlutická teplárenská, a.s. 2 Ústav skla a keramiky, VŠCHT Praha 3
CMC kompozity s keramickou matricí
CMC kompozity s keramickou matricí Základní požadavky Zvýšení houževnatosti - hlavně vlákna Zpevnění - vyrovnání pevnosti v tahu a tlaku - vlákna, především whiskery Zvýšení otěruvzdornosti v extremních
Typy světelných mikroskopů
Typy světelných mikroskopů Johann a Zacharias Jansenové (16. stol.) Systém dvou čoček délka 1,2 m 17. stol. Typy světelných mikroskopů Jednočočkový mikroskop 17. stol. Typy světelných mikroskopů Italský
PROJEKT ŘEMESLO - TRADICE A BUDOUCNOST Číslo projektu: CZ.1.07/1.1.38/ PŘEDMĚT MATERIÁLY
PROJEKT ŘEMESLO - TRADICE A BUDOUCNOST Číslo projektu: CZ.1.07/1.1.38/02.0010 PŘEDMĚT MATERIÁLY Obor: Zedník Ročník: Druhý Zpracoval: Ing. Ďuriš Tomáš TENTO PROJEKT JE SPOLUFINANCOVÁN Z EVROPSKÉHO SOCIÁLNÍHO
Kontakt: Ing.Václav Mlnářík, Otevřená 25, 641 00 Brno, fax. 546 21 73 84, mobil: 732 58 44 89, e-mail: info@polycarbonate.cz
MULTICLEARTM je řada vysoce kvalitních etrudovaných dutinkových polycarbonátových desek. Výrobní zařízení řady MULTICLEAR má tu nejnovější techologii vybudovu se zaměřením na vysokou kvalitu výroby a pružné
Druhy vláken. Nanokompozity
Druhy vláken Nanokompozity Pro 5. ročník nanomateriály Fakulta mechatroniky Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010 Druhy různých vláken Přírodní
REAKTIVNÍ MAGNETRONOVÉ NAPRAŠOV. Jan VALTER HVM Plasma s.r.o. www.hvm.cz
REAKTIVNÍ MAGNETRONOVÉ NAPRAŠOV OVÁNÍ Jan VALTER SCHEMA REAKTIVNÍHO NAPRAŠOV OVÁNÍ zdroj výboje katoda odprašovaný terč plasma inertní napouštění plynů reaktivní zdroj předpětí p o v l a k o v a n é s
Obloukové svařování wolframovou elektrodou v inertním plynu WIG (TIG) - 141
Obloukové svařování wolframovou elektrodou v inertním plynu WIG (TIG) - 141 Při svařování metodou 141 hoří oblouk mezi netavící se elektrodou a základním matriálem. Ochranu elektrody i tavné lázně před
2.3 Elektrický proud v polovodičích
2.3 Elektrický proud v polovodičích ( 6 10 8 10 ) Ωm látky rozdělujeme na vodiče polovodiče izolanty ρ ρ ( 10 4 10 8 ) Ωm odpor s rostoucí teplotou roste odpor nezávisí na osvětlení nebo ozáření odpor
Laserové technologie v praxi I. Přednáška č.2. Základní konstrukční součásti laserů. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011
Laserové technologie v praxi I. Přednáška č.2 Základní konstrukční součásti laserů Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Konstrukce laseru 1 - Aktivní prostředí 2 - Čerpací zařízení 3 - Optický
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky
Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky. 1 Rozdělení optických vláken Jak funguje optické vlákno Základní parametry Výhody použití optických vláken
Výroba skla. Historie výroby skla. Suroviny pro výrobu skla
Výroba skla Sklo je amorfní (beztvará) průhledná nebo průsvitná látka s širokým uplatněním ve stavebnictví, průmyslu i umění. Je odolné vůči povětrnostním a chemickým vlivům (kromě kyseliny fluorovodíkové,
JŠÍ NEJRYCHLE ØEŠENÍ
NEJRYCHLEJŠÍ ØEŠENÍ BRONZE 20, EXTERIOR, sr. RAZANTNÍ OCHRANA PŘED PŘENOSEM TEPLA DO INTERIÉRU - Dostatečná ochrana proti oslnění - Vysoká reflexe, výrazný zrcadlový vzhled - Unikátní vrstva proti poškrábání
J. Kubíček FSI Brno 2018
J. Kubíček FSI Brno 2018 Fosfátování je povrchová úprava, kdy se na povrch povlakovaného kovu vylučují nerozpustné fosforečnany. Povlak vzniká reakcí iontů z pracovní lázně s ionty rozpuštěnými z povrchu
Historie výroby skla na našem území sklo bylo objeveno v polovině 3. tisíciletí př. n. l. v Mezopotámii (teorií objevu skla je více)
SKLO Historie výroby skla na našem území sklo bylo objeveno v polovině 3. tisíciletí př. n. l. v Mezopotámii (teorií objevu skla je více) první písemná zmínka o skle na našem území pochází až z roku 1162
Fotokatalytická oxidace acetonu
Fotokatalytická oxidace acetonu Hana Žabová 5. ročník Doc. Ing. Bohumír Dvořák, CSc Osnova 1. ÚVOD 2. CÍL PRÁCE 3. FOTOKATALYTICKÁ OXIDACE Mechanismus Katalyzátor Nosič-typy Aparatura 4. VÝSLEDKY 5. ZÁVĚR
ztuhnutím pyrosolu taveniny, v níž je dispergován plyn, kapalina nebo tuhá látka fotochemickým rozkladem krystalů některých solí
a pevným kapalným plynným disperzním podílem chovají se jako pevné látky i když přítomnost částic disperzního podílu v pevné látce obvykle značně mění její vlastnosti, zvláště mechanické a optické Stabilita
Výroba skla, včetně skleněných vláken
ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE Výroba skla, včetně skleněných vláken Ing. Renata Beranová Co se možná dozvíte Historie technologie Charakteristika
Kontakt: Ing.Václav Mlnářík, Otevřená 25, 641 00 Brno, fax. 546 21 73 84, mobil: 732 58 44 89, e-mail: info@polycarbonate.cz
MULTICLEARTM je řada vysoce kvalitních etrudovaných dutinkových polycarbonátových desek. Výrobní zařízení řady MULTICLEAR má tu nejnovější techologii vybudovu se zaměřením na vysokou kvalitu výroby a pružné
Lasery ve výpočetní technice
Lasery ve výpočetní technice Laser je obdivuhodné a neobyčejně univerzální zařízení - je schopen měnit prakticky jakýkoli druh energie na energii koherentního elektromagnetického záření. Volbou vhodného
IAM SMART F7.notebook. March 01, : : : :23 FYZIKÁLNÍ VELIČINY A JEJICH JEDNOTKY. tuna metr
FYZIKÁLNÍ VELIČINY A JEJICH JEDNOTKY Sada interaktivních materiálů pro 7. ročník Fyzika CZ.1.07/1.1.16/02.0079 plocha čas délka hmotnost objem teplota Interaktivní materiály slouží k procvičování, upevňování
Anorganická pojiva, cementy, malty
Anorganická pojiva, cementy, malty Ing. Alexander Trinner Technický a zkušební ústav stavební Praha, s.p. pobočka Plzeň Zahradní 15, 326 00 Plzeň trinner@tzus.cz; www.tzus.cz 1 Anorganická pojiva Definice:
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Prvky IV. A skupiny Uhlík (chemická značka C, latinsky Carboneum) je chemický prvek, který je základem všech
2. kapitola: Přenosová cesta optická (rozšířená osnova)
Punčochář, J: AEO; 2. kapitola 1 2. kapitola: Přenosová cesta optická (rozšířená osnova) Čas ke studiu: 4 hodiny Cíl: Po prostudování této kapitoly budete umět identifikovat prvky optického přenosového
TECHNICKÁ CHARAKTERISTIKA SENDVIČOVÝCH PANELŮ - BOPAL:
TECHNICKÁ CHARAKTERISTIKA SENDVIČOVÝCH PANELŮ - BOPAL: 1) SENDVIČOVÝ PANEL VE SLOŽENÍ (PVC / XPS / PVC) Rozměr panelu (šířka x výška): 3000 mm x 2000 mm Síla samotné PVC desky: 1,3 mm RAL9016 nebo RAL9003
PSK1-10. Komunikace pomocí optických vláken I. Úvodem... SiO 2. Název školy:
Název školy: Autor: Anotace: Vzdělávací oblast: Předmět: Tematická oblast: PSK1-10 Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Ukázka fyzikálních principů, na kterých
Úpravy brýlových čoček. LF MU Brno Brýlová technologie
Úpravy brýlových čoček LF MU Brno Brýlová technologie Struktura prezentace Rozdělení úprav brýlových čoček Tenké vrstvy Antireflexní vrstva Reflexní vrstva Hydrofobní vrstva Absorpční vrstva Tvrzení Fototropní
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.3 Polovodiče a jejich využití Kapitola
12. Struktura a vlastnosti pevných látek
12. Struktura a vlastnosti pevných látek Osnova: 1. Látky krystalické a amorfní 2. Krystalová mřížka, příklady krystalových mřížek 3. Poruchy krystalových mřížek 4. Druhy vazeb mezi atomy 5. Deformace
Moderní metody rozpoznávání a zpracování obrazových informací 15
Moderní metody rozpoznávání a zpracování obrazových informací 15 Hodnocení transparentních materiálů pomocí vizualizační techniky Vlastimil Hotař, Ondřej Matúšek Katedra sklářských strojů a robotiky Fakulta
Plasty. Základy materiálového inženýrství. Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010
Plasty Základy materiálového inženýrství Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010 Základní vlastnosti plastů Výroba z levných surovin. Jsou to sloučeniny
Příprava vrstev metodou sol - gel
VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ Ústav skla a keramiky Příprava vrstev metodou sol - gel Základní pojmy Sol - koloidní suspenze, ve které jsou homogenně dispergované pevné částice s koloidními rozměry
Název odpadu. 010307 N Jiné odpady z fyzikálního a chemického zpracování rudných nerostů obsahující nebezpečné látky x
3. S NO CELIO a.s. Název odpadu 010304 N Hlušina ze zpracování sulfidické rudy obsahující kyseliny nebo kyselinotvorné látky x 010305 N Jiná hlušina obsahující nebezpečné látky x 010307 N Jiné odpady z
Fotonické nanostruktury (nanofotonika)
Základy nanotechnologií KEF/ZANAN Fotonické nanostruktury (nanofotonika) Jan Soubusta 4.11. 2015 Obsah 1. ÚVOD 2. POHLED DO MIKROSVĚTA 3. OD ELEKTRONIKY K FOTONICE 4. FYZIKA PRO NANOFOTONIKU 5. PERIODICKÉ
REKLAMAČNÍ PODMÍNKY A SPOLUODPOVĚDNOST
REKLAMAČNÍ PODMÍNKY A SPOLUODPOVĚDNOST - případné reklamace mohou být uznány pouze při dodržení uvedených skladovacích a manipulačních podmínek - vady vzniklé nesprávným užitím výrobku nelze uznat - každý
Elektronová mikroskopie a mikroanalýza-2
Elektronová mikroskopie a mikroanalýza-2 elektronové dělo elektronové dělo je zařízení, které produkuje elektrony uspořádané do svazku (paprsku) elektrony opustí svůj zdroj katodu- po dodání určité množství
Svítidla a jejich části. rozdělení svítidel. světelné vlastnosti svítidel. Světelně technické parametry svítidel
Svítidla a jejich části rozdělení svítidel světelné vlastnosti svítidel Svítidla - zařízení, která rozdělují, filtrují nebo mění světlo vyzařované jedním nebo více světelnými zdroji. Obsahují - světelné
EU peníze středním školám digitální učební materiál
EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky
PÍSEMNÁ ZPRÁVA ZADAVATELE
PÍSEMNÁ ZPRÁVA ZADAVATELE Identifikační údaje zadávacího řízení Název zakázky Druh zakázky Název projektu Číslo projektu Dodávka pomůcek pro výuku fyziky a biologie Dodávky Inovace ve výuce fyziky a biologie
STAVEBNÍ HMOTY. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 26. 4. 2013. Ročník: devátý
STAVEBNÍ HMOTY Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 26. 4. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Chemie a společnost 1 Anotace: Žáci se seznámí s historickými
Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku V tomto článku uvádíme shrnutí poznatků učiva II. ročníku
KAPITOLA 10: SKLO Vysoká škola technická a ekonomická v Českých Budějovicích
KAPITOLA 10: SKLO Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora
Studentská vědecká konference 2004
Studentská vědecká konference 2004 Sekce: ANORGANICKÉ NEKOVOVÉ MATERIÁLY I, 26.11.2004 Zahájení v 9:00 hodin, budova A, posluchárna A02 Komise (ústav 107): Prof.Ing. Josef Matoušek, DrSc. - předseda Ing.
FTTX - pasivní infrastruktura. František Tejkl 17.09.2014
FTTX - pasivní infrastruktura František Tejkl 17.09.2014 Náplň prezentace Optické vlákno - teorie, struktura a druhy vláken (SM,MM), šíření světla vláknem, přenos opt. signálů Vložný útlum a zpětný odraz
Pracovní diagram vláken
Druhy vláken Rozdělení přednášky Základní vlastnosti vláken a nanovláken Přírodní vlákna Skleněná vlákna Uhlíková a grafitová vlákna Aramidová a silonová vlákna Keramická vlákna Kovová vlákna Whiskery
Optická vlákna a vláknové sensory. I. Kašík Ústav fotoniky a elektroniky, AVČR, v.v.i.
Optická vlákna a vláknové sensory I. Kašík Ústav fotoniky a elektroniky, AVČR, v.v.i. www.ufe.cz/dpt240 Fotonika Věda zabývající se vlastnostmi a využitím fotonů => SVĚTLO c = 299 792 458 m/s λ f = c /λ
Kompozitní materiály. přehled
Kompozitní materiály přehled Porovnání vlastností Porovnání vlastností (2) dřevo nemá konkurenci jako lehká tuhá konstrukce Porovnání vlastností (3) dobře tlumí slitiny Mg Cu a vlákny zpevněné plasty Definice
ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ
ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ (c) -2008, ACH/IM BLOKOVÉ SCHÉMA: (a) emisní metody (b) absorpční metody (c) luminiscenční metody U (b) monochromátor často umístěn před kyvetou se vzorkem. Části
Regionální centrum speciální optiky a optoelektronických systémů TOPTEC
Ústav fyziky plazmatu AV ČR, v. v. i. Regionální centrum speciální optiky a optoelektronických systémů TOPTEC 1/15 ředitelství ÚFP TOPTEC Ústí n. Labem Praha Liberec Turnov Ostrava Plzeň České Budějovice
3M Jednorázové ochranné oděvy. Ochrana a pohodlí... bez kompromisu
3M Jednorázové ochranné oděvy 3M Ochrana a pohodlí...... bez kompromisu Evropské standardy 3M Jednorázové ochranné oděvy Společnost 3M, která celosvětově zastává přední postavení v oboru osobních ochranných
Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO
1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu
MĚŘENÍ TEPLOTY. Přehled technických teploměrů. Teploměry kapalinové. Teploměry tenzní. Rozdělení snímačů teploty: Ukázky aplikace termochromních barev
MĚŘENÍ TEPLOTY teplota je jednou z nejdůležitějších veličin ovlivňujících téměř všechny stavy a procesy v přírodě při měření teploty se měří obecně jiná veličina A, která je na teplotě závislá podle určitého
akustika zvuk, zdroj zvuku šíření zvuku odraz zvuku tón, výška tónu kmitočet tónu hlasitost zvuku světlo, zdroj světla přímočaré šíření světla
- určí, co je v jeho okolí zdrojem zvuku, pozná, že k šíření zvuku je nezbytnou podmínkou látkové prostředí - chápe odraz zvuku jako odraz zvukového vzruchu od překážky a dovede objasnit vznik ozvěny -
PSK1-11. Komunikace pomocí optických vláken II. Mnohavidová optická vlákna a vidová disperze. 60μm 80μm. ϕ = 250μm
PSK1-11 Název školy: Autor: Anotace: Vzdělávací oblast: Předmět: Tematická oblast: Výsledky vzdělávání: Klíčová slova: Druh učebního materiálu: Typ vzdělávání: Ověřeno: Zdroj: Vyšší odborná škola a Střední
Refraktometrie, interferometrie, polarimetrie, nefelometrie, turbidimetrie
Refraktometrie, interferometrie, polarimetrie, nefelometrie, turbidimetrie Refraktometrie Metoda založená na měření indexu lomu Při dopadu paprsku světla na fázové rozhraní mohou nastat dva jevy: Reflexe
má největší úběr z LAPI řady. Vhodný na odstraňování švů po lisovacích formách, hrubé práce v různých radiusech atp.
Kotouče nástroje se zabudovaným abrazivem Nástroje LAPI a POLI Nástroje jsou pojeny polyuretanovou pěnou Nástroje se chladí vodou (není nutné přimazávat brusivo) Minimalizují zápraskovou vrstvu, a tím
ALARIS UMBRA. ALARIS Czech Republic, s. r. o. Chmelník Zlín - Malenovice IČ: , DIČ: CZ
ALARIS UMBRA Tyto lamely se používají jako pevné protisluneční clony a to zejména jako zastínění prosklených fasád, oken a světlíků. V současné moderní architektuře se tyto lamely začínají stále více používat
FIBERGLASS CABLE TRAYS FIBERTRAV EFVL, EFVS a EFVR
ZÁKLADNÍ POPIS Polyester vyztužený skelným vláknem je nejlepší izolační materiál na trhu. Díky svým vlastnostem a prodloužené životnosti je velmi vhodný pro venkovní aplikace, i za těch nejnepříznivějších
kapitola 70 - tabulková část
7000 00 00 00/80 SKLO A SKLENĚNÉ VÝROBKY 7001 00 00 00/80 Skleněné střepy a jiné skleněné odpady; masivní sklo v kusech 7001 00 10 00/80 - Skleněné střepy a jiné skleněné odpady - 0 N2 7001 00 91 00/10
Stavební hmoty. -skupiny podle chemické podstaty hlavní složky, nikoliv podle použití:
-skupiny podle chemické podstaty hlavní složky, nikoliv podle použití: Stavební hmoty Horniny a výrobky z kamene Keramické výrobky Cihlářské výrobky Obkladové materiály Kamenina Žárovzdorné výrobky Sklo
STÍNĚNÉ KABELY 1-CYKFY
STÍNĚNÉ KABELY 1-CYKFY EGE Trading, s.r.o. byla založena v roce 1997 jako dceřiná společnost EGE, spol. s r.o. České Budějovice. Společnost se specializuje na obchodní, konzultační a poradenskou činnost
Inovace výuky prostřednictvím šablon pro SŠ
Název projektu Číslo projektu Název školy Autor Název šablony Název DUMu Stupeň a typ vzdělávání Vzdělávací oblast Vzdělávací obor Tematický okruh Inovace výuky prostřednictvím šablon pro SŠ CZ.1.07/1.5.00/34.0748
Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti"
Střední škola umělecká a řemeslná Projekt Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Fyzika Obory nástavbového studia
Historie vláknové optiky
Historie vláknové optiky datuje se zpět 200 let, kde postupně: 1790 - franc. inženýr Claude Chappe vynalezl optický telegraf 1840 - Daniel Collodon a Jacque Babinet prokázali, že světlo může být vedeno
Díly forem. Vložky forem Jádra Vtokové dílce Trysky Vyhazovače (nitridované) tlakové písty, tlakové komory (normálně nitridované) V 0,4
1 VIDAR SUPREME 2 Charakteristika VIDAR SUPREME je Cr-Mo-V legovaná ocel pro práci za tepla, pro kterou jsou charakteristické tyto vlastnosti: Velmi dobrá odolnost proti náhlým změnám teploty a tvoření
Výroba skla a keramiky
Výroba skla a keramiky 1.Výskyt křemíku v přírodě Křemík se v přírodě vyskytuje ve sloučeninách, nejčastěji jako oxid křemičitý SiO 2. Existují tři různé krystalické modifikace křemen, tridymit a cristobalit.
Nauka o materiálu. Přednáška č.14 Kompozity
Nauka o materiálu Úvod Technické materiály, které jsou určeny k dalšímu technologickému zpracování zahrnují širokou škálu možného chemického složení, různou vnitřní stavbu a různé vlastnosti. Je nutno
www.zlinskedumy.cz Střední odborná škola Luhačovice Bc. Magda Sudková III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_TECHKE_0802
Suroviny pro výrobu glazur Název školy Číslo projektu Autor Název šablony Název DUMu Stupeň a typ vzdělání Vzdělávací obor Tematický okruh Druh učebního materiálu Cílová skupina Anotace Klíčová slova Střední
Fyzika. 8. ročník. LÁTKY A TĚLESA měřené veličiny. značky a jednotky fyzikálních veličin
list 1 / 7 F časová dotace: 2 hod / týden Fyzika 8. ročník (F 9 1 01.1) F 9 1 01.1 (F 9 1 01.3) prakticky změří vhodně vybranými měřidly fyzikální veličiny a určí jejich změny elektrické napětí prakticky
Přenosová média KIV/PD Přenos dat Martin Šimek
Přenosová média KIV/PD Přenos dat Martin Šimek O čem přednáška je? 2 Frekvence, připomenutí skutečností 3 Úvodní přehled 4 Úvodní přehled 5 6 Frekvenční spektrum elektromagnetických kanálů Základní klasifikace