Sborník výukových prací z automatizačních prvků a čidel pro předmět Odborný výcvik

Rozměr: px
Začít zobrazení ze stránky:

Download "Sborník výukových prací z automatizačních prvků a čidel pro předmět Odborný výcvik"

Transkript

1 Registrační číslo projektu Název projektu CZ.1.07/1.1.16/ Automatizace názorně Produkt č.7 Sborník výukových prací z automatizačních prvků a čidel pro předmět Odborný výcvik Kolektiv autorů 2014

2 Obsah 1. Úvod Rozdělení snímaných veličin Rozdělení snímačů podle Vlastnosti a parametry Fyzikální jevy použité u čidel a snímačů na bázi křemíku Fyzikální jevy využívané v senzorice Fotorezistor v soumrakovém spínači Úvod Kusovník součástek Návrh desky plošných spojů Technologický postup zhotovení výrobku Kapacitní senzor Úvod Schéma Seznam součástek Varianta rozložení součástek Deska oboustranného plošného spoje (pro výše navržené rozložení součástek) Dotykový senzor Popis Schéma Seznam součástek Varianta rozložení součástek Deska oboustranného plošného spoje (pro výše navržené rozložení součástek) Termistor senzor regulátoru Úvod Schéma Seznam součástek Varianta rozložení součástek Deska jednostranného plošného spoje (pro výše navržené rozložení součástek) Popis mechanických a montážních prací Oživení Pyroelektrický snímač pohybu Popis Infračervené pohybové čidlo LX 14 v silnoproudém zapojení Str. 2

3 6.3 Zadání Schéma Praktické provedení na panelu DIAMETRAL Závěr Seznam použité literatury: Zpracoval kolektiv autorů SŠ TEGA Blansko Str. 3

4 1. Úvod Čidlo (senzor, detektor, receptor) je převodníkem jedné fyzikální veličiny na jinou fyzikální veličinu. Snímač (senzor + obvod pro zpracování signálu) je to člen pro sběr informací. V praxi existuje mnoho hledisek pro dělení senzorů do skupin a kategorií. Nejčastěji používané odpovídá skutečnosti, kdy senzor považujeme za prvek převádějící vstupní podnět-snímanou nebo měřenou veličinu na výstupní naměřenou veličinu a posílanou k dalšímu zpracování do automatizačního obvodu. 1.1 Rozdělení snímaných veličin Typ veličiny Elektrické Skupina veličin Napětí, proud, odpor, kapacita, indukčnost,... Magnetické Indukce, intenzita, magnetický tok, magnetický odpor,... Mechanické Délka, dráha, rychlost, zrychlení, hmotnost, síla, mechanické napětí, otáčky, výška hladiny,... Optické Zářivá energie, intenzita, jas,... Tepelné Teplo, teplota, tepelný tok, tepelný odpor, tepelná kapacita, Pneu hydraulické tlak, tlaková diference, prùtok,... Akustické hlučnost, akustický tlak, akustický odpor,... Nukleární intenzita záření,... Chemické koncentrace, ph,... Biologické Energetický obsah, teplota, mozková aktivita 1.2 Rozdělení snímačů podle principu funkce aktivní (generátorové) pasivní (parametrické) fyzikálních jevů fyzikálně chemické termoelektrické magnetoelektrické piezoelektrické radiační, vstupní veličiny elektrické, magnetické, mechanické, termické, optické, akustické, hydraulické, jaderné, chemické, biologické,.. styku s měřeným objektem bezdotykové (proximitní) dotykové ( kontakní nitrotělní (invazní tvaru výstupního signálu analogový (spojitý) digitální (číslicový, diskrétní) periodický (kmitočtový) Str. 4

5 1.3 Vlastnosti a parametry Statická charakteristika popisuje chování v ustáleném stavu. Dynamická charakteristika popisuje chování při rychlých změnách měřené veličiny. Linearita je odchylka skutečné charakteristiky od ideální (přímkové). Přesnost vlastnost charakterizující přesnost konverze snímaného signálu. 1.4 Fyzikální jevy použité u čidel a snímačů na bázi křemíku Neelektrický signál Fyzikální jev Realizace mechanický Piezoelektrický jev piezorezistor,... tepelný SEEBECKÙV jev termorezistor, termoelektrický článek zářivý fotoefekt fotorezistor, fotodioda,... magnetický Hallův jev, Gaussův jev magnetorezistor, magnetotranzistor chemický Galvanoelektrický jev ISFET k měření koncentrace 1.5 Fyzikální jevy využívané v senzorice Termoelektrické jevy teplotní závislost odporu polovodiče teplotní závislost PN přechodu v propustném směru teplotní závislost odporu tenkých vrstev pyroelektrický jev termoelektrický jev bolometrický jev Piezoelektrické jevy piezoodporový jev piezoelektrický jev akustickoelektrický jev Magnetoelektrické jevy Hallův jev magnetoodporový jev magnetodiodový jev magnetotranzistorový jev nábojový doménový jev Str. 5

6 Radiační jevy neionizující elektromagnetické záření fotovodivost fotonapěťový jev laterární fotojev obrazové snímání s prvky CCD ( s přenosem el. náboje) Fyzikálně chemické jevy adsorpce vyvolané generací elektrochemického potenciálu sorpce vyvolaná změnou výstupní práce sorpce vyvolaná změnou vlastností dielektrik Mechanické jevy mechanická deformace (tenzometry) vibrační rezonance (akcelerometry) V současné době se již využívají snímače 3. generace, vyvinuté na aktuální technologické úrovni mikroelektroniky. 2. Fotorezistor v soumrakovém spínači 2.1 Úvod Spínač pracuje na principu Schmittova klopného obvodu. Jako světelné čidlo je použit fotorezistor, který je součástí napěťového děliče v bázi tranzistoru T1. Zde je rovněž zařazen integrační člen R2, C1, který zpožďuje o několik sekund překlopení obvodu při náhlé změně osvětlení. Tranzistory T1 a T2 tvoří klopný obvod, který je ovládán změnou napětí na bázi T1. Po setmění se zvětší odpor fotorezistoru LDR, T1 se uzavře a T2 otevře. Zvětšováním úbytku napětí na rezistoru R4, který je společný pro oba tranzistory, se celý proces lavinovitě urychlí, takže zavření T1 je skokové. Skokem se zmenší i napětí na kolektoru T2. Tento pokles otevře T3 a relé v jeho kolektoru sepne. Po rozednění se zmenší odpor LDR, na bázi T1 se zvětší napětí. T1 se otevře, T2 a T3 se zavřou, relé odpadne a odpojí spotřebič od napájecího napětí. Paralelně k cívce relé je zapojena dioda, která omezuje napěťové špičky na T3, které vznikají při zapínání a vypínání indukční zátěže. Člen R6, D1 stabilizuje napětí pro Schmidtův klopný obvod asi na 8V, aby se v případě změny napájecího napětí neposouval okamžik překlopení obvodu. Napájecí napětí obvodu může být v rozsahu asi 11 až 15V. Odběr proudu se pohybuje nejvýše okolo 50 ma. Obr. 2.1 Schéma zapojení soumrakového spínače Str. 6

7 2.2 Kusovník součástek Označení Hodnota Součástka Pouzdro Knihovna C1 470mikroF CPOL-EUE5-6 E5-6 rcl D1 1N4007 1N4007 DO41-10 diode D2 BZX85 BZX85 DO41Z10 diode K1 12V15A RAS1215 RT-N/O12A3.5 relay LDR1 VT93NN2 0207/10 rcl P1 1M R-TRIMM3339P RTRIM3339P rcl R1 3k3 R-EU_0207/ /10 rcl R2 12k R-EU_0207/ /10 rcl R3 2k2 R-EU_0207/ /10 rcl R4 150 R-EU_0207/ /10 rcl R5 3k3 R-EU_0207/ /10 rcl R6 680 R-EU_0207/ /10 rcl R7 1k8 R-EU_0207/ /10 rcl R8 330 R-EU_0207/ /10 rcl T1 BC546B BC546B TO92-EBC transistor-npn T2 BC546B BC546B TO92-EBC transistor-npn T3 BC327 BC327 TO92-EBC transistor-pnp 2.3 Návrh desky plošných spojů Obr. 2.2 DPS pohled ze strany součástek Str. 7

8 2.4 Technologický postup zhotovení výrobku Seznámení se součástkovou základnou - proveďte fyzickou kontrolu součástek. - vyhledejte potřebné informace v katalogu - hodnoty součástek změřte, vypracujte tabulku naměřených hodnot - porovnejte s katalogovými údaji - vypracujte náčrtky pouzder Popis mechanických a montážních prací Vyrobte DPS ve smyslu technologického předpisu pro výrobu DPS - DPS upravte na daný rozměr a vyvrtejte upevňovací otvory - podle zadané technologie vyvrtejte otvory pro vývodovou montáž - laminát očistěte od mechanických otřepů - zvolte technologii kreslení spojů a proveďte kresbu návrhu DPS - proveďte leptání DPS - laminát očistěte a zkontrolujte jednotlivé spoje (celistvost propojovacích cest) - zkontrolujte součástky, změřte jejich hodnoty - DPS osaďte - vhodnou technologií součástky zapájejte - výrobek očistěte od zbytků tavidla - proveďte kontrolu vyrobené DPS Oživení Použité měřící přístroje a přípravky : Metex, osciloskop, zdroj - na svorky PAD1, PAD2 připojte napájecí napětí - změřte proud odporovým děličem P1, R1 a LDR1 - proud v děliči nastavíme tak, aby při neosvětleném čidle LDR1 spínač T3 rozepnul Re K1 - čidlo osvětlete a změřte proud děličem P1,R1 a LDR1. Relé K1 bude sepnuté - případné závady odstraňte Str. 8

9 3. Kapacitní senzor 3.1 Úvod Schéma zapojení kapacitního senzoru je na obr Základem obvodu je tří tranzistorový zesilovač velkou impedancí s T1 až T3. Na vstup zesilovače je přivedeno střídavé napětí, které se indukuje do vodivé desky (snímače) o ploše asi pohlednice, přilepené např. na sklo. Tento signál je zesílen a při dostatečné úrovni sepne relé RE1. Jeho kontakty zajišťují galvanické oddělení obvodu od spínaného spotřebiče. Pro správnou funkci obvodu je ale zapotřebí propojit zem obvodu s fází síťového napětí malým kondenzátorem (asi 470pF, dimenzovaným na síťové napětí). Kapacitní senzor může být zhotoven na dvoustranné desce s plošnými spoji o rozměrech 28 x 46mm. Rozložení součástek na desce s plošnými spoji je na obr. xx, obrazec desky spojů ze strany součástek (TOP) je na obr. xx. a ze strany spojů (BOTTOM) je na obr. xx. Senzor na skle připojíme k obvodu stíněným kablíkem. Pouze si musíme dát pozor při instalaci, neboť k obvodu je připojeno i síťové napětí (byť přes miniaturní kondenzátor). 3.2 Schéma Obr. 3.1 Schéma zapojení kapacitního senzoru 3.3 Seznam součástek Rezistory Kondenzátory Polovodiče Ostatní R1 R3 R2 R4 1MΩ 1MΩ 47kΩ 47kΩ C1 C2 10µF/25V 470pF D1 T1 T2 T3 D2 D3 1N4007 BC548 BC548 BC639 1N4007 1N4007 K1 K2 K3 K4 Re1 PSH02-VERT PSH02-VERT ARK210/2 PIN4-13MM RELE-EMZPA92 Str. 9

10 3.4 Varianta rozložení součástek Obr. 3.2 DPS pohled ze strany součástek 3.5 Deska oboustranného plošného spoje (pro výše navržené rozložení součástek) Obr.3.3 DPS pohled ze strany součástek Obr. 3.4 DPS pohled ze strany spojů Poznámka : Technologický postup zhotovení výrobku a popis mechanických a montážních prací viz. Fotorezistor v soumrakovém spínači. Str. 10

11 4. Dotykový senzor 4.1 Popis Ve výrobním procesu i v běžném životě potřebujeme zaznamenávat průchod součásti, ignalizovat přístup do nějakého prostoru nebo dotyk exponátu apod. Pokud se jedná o díl z kovu (je tudíž vodivý) nebo je vstupní prostor opatřen kovovou dotykovou ploškou, můžeme použít následující jednoduché zapojení. Schéma zapojení dotykového senzoru je na obr. xx. V obvodu jsou použity CMOS IO a rezistory s relativně vysokými hodnotami pro dosažení co nejnižší spotřeby obvodu. Klopný obvod IC1A MOS 4013 je zapojen jako generátor impulzů s délkou přibližně 50µs s opakovacím kmitočtem 20Hz. Výstup Q (vývod 1) je přiveden na gate tranzistoru T1, který vybíjí kondenzátor C1. Současně je výstup z IC1A přiveden na dvojici RC členů, první tvořenou R4/C3 a druhou s P1, R5/C4. Ke kondenzátoru C4 je paralelně připojena přes kondenzátor C5 kovová plocha, jejíž dotyk má být signalizován. Ta tvoří po dotyku další kapacitu, která se přičítá ke kondenzátoru C4. Obvod pracuje tak, že v klidovém stavu je trimr P1 nastaven tak, aby signál na vstupu DATA (vývod 9) IC1B předcházel hodinový impulz na vstupu 11. Pokud se dotykem zvýší kapacita, paralelně připojená k C4, signál na vstupu data se opozdí za hodinami a překlopí se výstup Q IC1B. Tím se otevře tranzistor T2, který sepne napájení připojeného piezoměniče. Ten je spolu s napájením a dotykovým kontaktem vyveden na připojovací konektor K1. Vzhledem k použitým součástkám by se spotřeba měla pohybovat okolo 10µA. Samozřejmě při aktivaci piezoměniče je spotřeba výrazně vyšší. 4.2 Schéma Obr. 4.1 Schéma zapojení dotykového senzoru 4.3 Seznam součástek Rezistory Kondenzátory Polovodiče R1 R2 R3 R4 R5 R6 P1 4,7MΩ 12kΩ 2,2MΩ 470kΩ 330kΩ 10kΩ PT6-H/250kΩ C1 C2 C3 C4 C5 C6 4,7nF 22nF 15pF 12pF 470pF 47µF/10V IC1 T1 T2 Ostatní K1 CD4013 BS170 BS170 PHDR-5 Str. 11

12 4.4 Varianta rozložení součástek Obr. 4.2 DPS - pohled ze strany součástek 4.5 Deska oboustranného plošného spoje (pro výše navržené rozložení součástek) Obr. 4.3 DPS pohled ze strany součástek Obr. 4.4 DPS pohled ze strany spojů Poznámka : Technologický postup zhotovení výrobku a popis mechanických a montážních prací viz. jako u Fotorezistor v soumrakovém spínači. Str. 12

13 5. Termistor senzor regulátoru 5.1 Úvod Termistor je součástka, která mění svůj odpor vlivem změny okolní teploty. Při zvyšování okolní teploty se odpor termistoru zmenšuje a naopak (platí pro termistor použitý v níže uvedeném zapojení). Tohoto jevu se využívá k regulaci teploty přičemž čidlo-termistor je součástí můstku. Zařízení je napájeno přímo ze sítě 230V přes kondenzátor C3, který zde slouží jako předřadný odpor. Za tímto kondenzátorem následuje diodový usměrňovač z diod D5 až D8. Zenerova dioda D4 stabilizuje napětí 24V pro napájení cívky relé RE1 a signalizační diodu LED D3. Přes omezovací rezistor R7 je napájená další Zenerova dioda D1, která stabilizuje napájecí napětí pro regulační můstek a komparátor IO1. Regulační můstek je sestaven z R1, R2, R3, potenciometru P1 a termistoru TM1. Pes snímací rezistory R4, R5 je zapojen komparátor IO1, který vyhodnocuje stav napětí na můstku. Pokud je můstek rozvážený, tak výstup komparátoru je v kladné saturaci, relé je sepnuto a topné těleso je připojeno k síti 230V. Až teplota dosáhne nastavené hodnoty, napětí na můstku se vyrovná a komparátor přejde do záporné saturace a relé odpojí topné těleso. Rezistorem R6 ve zpětné vazbě se nastavuje hystereze komparátoru. Odpor tohoto rezistoru se může pohybovat od 100kΩ do 10MΩ. Čím větší bude odpor, tím bude reakce na změnu teploty rychlejší a regulátor citlivější. Na výstup komparátoru je přes dělič R8, R9 zapojen tranzistor T1, který spíná cívku relé. Dioda D2 zapojená paralelně k cívce chrání tranzistor proti indukčním špičkám, které vznikají na cívce relé. Dioda LED D3 indikuje sepnutí relé. Požadovanou teplotu nastavujeme potenciometrem P Schéma Obr.5.1 Schéma zapojení termistoru v regulačním obvodu Str. 13

14 5.3 Seznam součástek Rezistory Kondenzátory Polovodiče R10 12kΩ R11 22kΩ/N TM1 22kΩ, termistor R1, 4, 5 10kΩ R 2, 3 8,2kΩ R6 4,7MΩ R7 3,3kΩ R8 4,7kΩ R9 1,8kΩ C1 C2 C3 Ostatní RE1 S1 22µF/50V 100µF/25V 220nF/630V S-DC24 svorka trojitá D1 12V/0,5W D2,5,6,7,8 1N4007 D3 LED, 2mA D4 24V/1,3W IO1 741 T1 BC Varianta rozložení součástek Obr. 5.2 DPS - pohled ze strany součástek Str. 14

15 5.5 Deska jednostranného plošného spoje (pro výše navržené rozložení součástek) Obr. 5.3 DPS - pohled ze strany spojů Str. 15

16 5.6 Popis mechanických a montážních prací Desku s plošnými spoji osaďte součástkami podle popisu. Při osazování dávejte pozor na polaritu a pozici osazovaných součástek. Termistor je umístěn mimo desku a je propojen obyčejnou dvoulinkou, např. 2x 0,15mm. Délku propojovací dvoulinky zvolte podle vlastní potřeby. Termistor zalepte z bezpečnostního důvodu do epoxidové pryskyřice, která zajistí kvalitní elektrickou izolaci i v kapalinách. Z bezpečnostních důvodů je také vhodné regulátor vestavět do plastové krabičky, protože celé zařízení je galvanicky spojeno se sítí a hrozí zde nebezpečí úrazu elektrickým proudem. Hřídel potenciometru také opatřete plastovým ovládacím knoflíkem. 5.7 Oživení Před prvním připojením k síti udělejte ještě nezbytnou kontrolu zapojení, aby se vyloučila chyba zapojení. K oživení obvodu lze jako topné těleso použít obyčejnou žárovku. Termistor umístěte do blízkosti této žárovky a regulátor připojte k síti. Otočením potenciometru najděte okamžik, kdy se žárovka rozsvítí. Za určitý okamžik žárovka zhasne a to znamená, že byla dosažena nastavená teplota. Žárovka se opět rozsvítí, až teplota poklesne pod nastavenou úroveň. Tento cyklus se neustále opakuje a tak se udržuje nastavená teplota. Při nastavování požadované teploty použijte kontrolní teploměr, na němž budete vidět nastavenou teplotu. Při praktickém používání regulátoru je potřeba najít nejvhodnější prostor pro umístění termistoru v ohřívaném prostoru 6. Pyroelektrický snímač pohybu 6.1 Popis Senzor funguje na principu pyroelektrického jevu, kdy se při změnách teploty pyroelektrické materiály deformují. Změna teploty vyvolá deformaci, kdy piezoelektrický jev je příčinou indukce elektrického náboje na povrchu materiálu. Na povrch pyroelektrického materiálu je optickou soustavou promítán obraz okolí. Pokud v okolí nastane tepelná změna, např. projde člověk, je materiál změnou teploty v části povrchu deformován a je možné detekovat indukovaný náboj na jeho povrchu. Využití senzoru PIR pro detekci pohybu se stalo velice populárním v zabezpečovací technice a v aplikacích pro úsporu energie. Přestože je možné využívat i jiné typy senzorů (termistory, termočlánky), jsou senzory založené na pyroelektrickém jevu v těchto odvětvích využívány téměř výhradně pro svou jednoduchost, nízkou cenu, vysokou spolehlivost a velký dynamický rozsah možných měřených tepelných změn. Pro projekci okolí na pyroelektrický materiál se využívá plastové Fresnelovy čočky. Kromě funkce optické soustavy, kdy dokáží rozšířit zorné pole senzoru, lze tyto čočky libovolně tvarovat. Tyto rovněž chrání senzor před vlivy okolí, jako jsou vlhkost a prach. Při využití více senzorů je možné např. u stropních detektorů mít zorné pole plných 360. Zorné pole bývá často Fresnelovými čočkami děleno i v horizontálních úrovních, aby bylo možné lépe rozlišit pohyb osob od zvířat apod. Str. 16

17 6.2 Infračervené pohybové čidlo LX 14 v silnoproudém zapojení Technické parametry: Napájení: 230V-AC, 50Hz I max: 5A Zátěž: žárovka halogen trafo zářivka nekompenzovaná Detekční dosah: 2 12m Detekční úhel: 120 Doba sepnutí: 5s 10min, nastavitelná Instalační výška: 1,5 3m Citlivost: Lux, nastavitelná Nastavovací prvky: SENS dosah TIME doba sepnutrí LUX regulace citlivosti 6.3 Zadání - Prostuduj schéma zapojení - Proveď montáž komponentů na cvičném panelu - Při využití technické dokumentace proveď montáž a zapojení ovládacího obvodu - Na výstup čidla zapoj žárovkové svítidlo. - Za přítomnosti učitele odborného výcviku proveď praktické odzkoušení celého zapojení - Po odzkoušení otestuj všechny funkce a proveď nastavení tak, aby čidlo reagovalo na pohyb ve vzdálenosti 3m a doba sepnutí byla 2min 6.4 Schéma Obr. 6.1 Přehledné schéma Obr. 6.2 Schéma zapojení Str. 17

18 6.5 Praktické provedení na panelu DIAMETRAL Obr. 6.3 Realizace zapojení 7. Závěr Produkt Sborník výukových prací z automatizačních prvků a čidel pro předmět Odborný výcvik je zaměřen na vymezení pojmu a rozdělení senzorů s konkrétními aplikacemi snímačů používaných v automatizační technice. Sborník umožňuje nejen pochopit funkci vlastního snímače, ale i jeho využití v elektrotechnickém obvodu, který si žák může v rámci předmětu odborný výcvik vyrobit. Obsahuje konkrétní zapojení s technickou dokumentací, technologickým postupem nebo doporučeními. Tento metodický materiál je určen pro studijní obory elektrotechnické na úrovni 4letých i 3letých oborů. 8. Seznam použité literatury: [1] Konstrukce, kapacitní snímač [online]. [cit ]. Dostupné z: [2] Regulátor s termistorem [online]. [cit ]. Dostupné z: [3] Čidla a převodníky, V.Lysenko [online]. [cit ]. Dostupné z: [4] Štěpán Berka a kol.- Elektrotechnická schémata a zapojení BEN technická literatura, Praha 2010 [5] Z archívu autorů Str. 18

19 Zpracoval kolektiv autorů SŠ TEGA Blansko Miroslav Opletal František Kitner Str. 19

9. ČIDLA A PŘEVODNÍKY

9. ČIDLA A PŘEVODNÍKY Úvod do metrologie - 49-9. ČIDLA A PŘEVODNÍKY (V.LYSENKO) Čidlo (senzor, detektor, receptor) je em jedné fyzikální veličiny na jinou fyzikální veličinu. Snímač (senzor + obvod pro zpracování ) je to člen

Více

ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ

ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ (1.1, 1.2 a 1.3) Ing. Pavel VYLEGALA 2014 Rozdělení snímačů Snímače se dají rozdělit podle mnoha hledisek. Základním rozdělení: Snímače

Více

TECHNICKÁ DOKUMENTACE

TECHNICKÁ DOKUMENTACE Střední škola, Havířov-Šumbark, Sýkorova 1/613, příspěvková organizace TECHNICKÁ DOKUMENTACE Rozmístění a instalace prvků a zařízení Ing. Pavel Chmiel, Ph.D. OBSAH VÝUKOVÉHO MODULU 1. Součástky v elektrotechnice

Více

1.3 Bipolární tranzistor

1.3 Bipolární tranzistor 1.3 Bipolární tranzistor 1.3.1 Úkol: 1. Změřte vstupní charakteristiku bipolárního tranzistoru 2. Změřte převodovou charakteristiku bipolárního tranzistoru 3. Změřte výstupní charakteristiku bipolárního

Více

Témata profilové maturitní zkoušky z předmětu Souborná zkouška z odborných elektrotechnických předmětů (elektronická zařízení, elektronika)

Témata profilové maturitní zkoušky z předmětu Souborná zkouška z odborných elektrotechnických předmětů (elektronická zařízení, elektronika) ta profilové maturitní zkoušky z předmětu Souborná zkouška z odborných elektrotechnických předmětů (elektronická zařízení, elektronika) 1. Cívky - vlastnosti a provedení, řešení elektronických stejnosměrných

Více

Impulsní regulátor ze změnou střídy ( 100 W, 0,6 99,2 % )

Impulsní regulátor ze změnou střídy ( 100 W, 0,6 99,2 % ) ZÁPADOČESKÁ UNIVERZITA V PLZNI Fakulta elektrotechnická Impulsní regulátor ze změnou střídy ( 100 W, 0,6 99,2 % ) Školní rok: 2007/2008 Ročník: 2. Datum: 12.12. 2007 Vypracoval: Bc. Tomáš Kavalír Zapojení

Více

11. Polovodičové diody

11. Polovodičové diody 11. Polovodičové diody Polovodičové diody jsou součástky, které využívají fyzikálních vlastností přechodu PN nebo přechodu kov - polovodič (MS). Nelinearita VA charakteristiky, zjednodušeně chápaná jako

Více

Zdroje napětí - usměrňovače

Zdroje napětí - usměrňovače ZDROJE NAPĚTÍ Napájecí zdroje napětí slouží k přeměně AC napětí na napětí DC a následnému předání energie do zátěže, která tento druh napětí (proudu) vyžaduje ke správné činnosti. Blokové schéma síťového

Více

1 SENZORY V MECHATRONICKÝCH SOUSTAVÁCH

1 SENZORY V MECHATRONICKÝCH SOUSTAVÁCH 1 V MECHATRONICKÝCH SOUSTAVÁCH Senzor - důležitá součást většiny moderních elektronických zařízení. Účel: Zjišťovat přítomnost různých fyzikálních, většinou neelektrických veličin, a umožnit další zpracování

Více

Univerzální napájecí moduly

Univerzální napájecí moduly Od čísla 11/2002 jsou Stavebnice a konstrukce součástí časopisu Amatérské radio V této části Amatérského radia naleznete řadu zajímavých konstrukcí a stavebnic, uveřejňovaných dříve v časopise Stavebnice

Více

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr. Zadání: A. Na předloženém kompenzovaném vstupní děliči k nf milivoltmetru se vstupní impedancí Z vst = MΩ 25 pf, pro dělící poměry :2,

Více

VÝVOJOVÁ DESKA PRO JEDNOČIPOVÝ MIKROPOČÍTAČ PIC 16F88 A. ZADÁNÍ FUNKCE A ELEKTRICKÉ PARAMETRY: vstupní napětí: U IN AC = 12 V (např.

VÝVOJOVÁ DESKA PRO JEDNOČIPOVÝ MIKROPOČÍTAČ PIC 16F88 A. ZADÁNÍ FUNKCE A ELEKTRICKÉ PARAMETRY: vstupní napětí: U IN AC = 12 V (např. VÝVOJOVÁ DESKA PRO JEDNOČIPOVÝ MIKROPOČÍTAČ PIC 16F88 A. ZADÁNÍ FUNKCE A ELEKTRICKÉ PARAMETRY: vstupní napětí: U IN AC = 12 V (např. z transformátoru TRHEI422-1X12) ovládání: TL1- reset, vývod MCLR TL2,

Více

popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu

popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu 9. Čidla napětí a proudu Čas ke studiu: 15 minut Cíl Po prostudování tohoto odstavce budete umět popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu Výklad

Více

Návrh a realizace regulace otáček jednofázového motoru

Návrh a realizace regulace otáček jednofázového motoru Středoškolská technika 2015 Setkání a prezentace prací středoškolských studentů na ČVUT Návrh a realizace regulace otáček jednofázového motoru Michaela Pekarčíková 1 Obsah : 1 Úvod.. 3 1.1 Regulace 3 1.2

Více

1.1 Pokyny pro měření

1.1 Pokyny pro měření Elektronické součástky - laboratorní cvičení 1 Bipolární tranzistor jako zesilovač Úkol: Proměřte amplitudové kmitočtové charakteristiky bipolárního tranzistoru 1. v zapojení se společným emitorem (SE)

Více

Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452

Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452 Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0452 OV_2_39_Optické oddělovací členy Název

Více

Návod k obsluze Spínací zesilovač pro světlovodná vlákna. OBF5xx 704513 / 00 04 / 2009

Návod k obsluze Spínací zesilovač pro světlovodná vlákna. OBF5xx 704513 / 00 04 / 2009 Návod k obsluze Spínací zesilovač pro světlovodná vlákna CZ OBF5xx 705 / 00 0 / 009 Obsah Předběžná poznámka. Použité symboly Použití z hlediska určení. Oblast nasazení Montáž. Připojení světlovodných

Více

Řídicí obvody (budiče) MOSFET a IGBT. Rozdíly v buzení bipolárních a unipolárních součástek

Řídicí obvody (budiče) MOSFET a IGBT. Rozdíly v buzení bipolárních a unipolárních součástek Řídicí obvody (budiče) MOSFET a IGBT Rozdíly v buzení bipolárních a unipolárních součástek Řídicí obvody (budiče) MOSFET a IGBT Řídicí obvody (budiče) MOSFET a IGBT Hlavní požadavky na ideální budič Galvanické

Více

Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/

Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/ Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452 Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0452 OV_2_24_Relaxační oscilátor Název školy

Více

Osnova přípravného studia k jednotlivé zkoušce Předmět - Elektrotechnika

Osnova přípravného studia k jednotlivé zkoušce Předmět - Elektrotechnika Osnova přípravného studia k jednotlivé zkoušce Předmět - Elektrotechnika Garant přípravného studia: Střední průmyslová škola elektrotechnická a ZDVPP, spol. s r. o. IČ: 25115138 Učební osnova: Základní

Více

Oscilátory. Návod k přípravku pro laboratorní cvičení v předmětu EO.

Oscilátory. Návod k přípravku pro laboratorní cvičení v předmětu EO. Oscilátory Návod k přípravku pro laboratorní cvičení v předmětu EO. Měření se skládá ze dvou základních úkolů: (a) měření vlastností oscilátoru 1 s Wienovým členem (můstkový oscilátor s operačním zesilovačem)

Více

SNÍMAČE. - čidla, senzory snímají měří skutečnou hodnotu regulované veličiny (dávají informace o stavu technického zařízení).

SNÍMAČE. - čidla, senzory snímají měří skutečnou hodnotu regulované veličiny (dávají informace o stavu technického zařízení). SNÍMAČE - čidla, senzory snímají měří skutečnou hodnotu regulované veličiny (dávají informace o stavu technického zařízení). Rozdělení snímačů přímé- snímaná veličina je i na výstupu snímače nepřímé -

Více

Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452

Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452 Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0452 OV_2_25_Hledač vedení Název školy Střední

Více

Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452

Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452 Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0452 OV_2_15_Stabilizátor se stabilizační

Více

Optický oddělovač nízkofrekvenčního audio signálu Michal Slánský

Optický oddělovač nízkofrekvenčního audio signálu Michal Slánský Optický oddělovač nízkofrekvenčního audio signálu Michal Slánský K této stavbě tohoto zařízení optického oddělovače NF signálu mě vedla skutečnost, neustálé pronikajícího brumu do audio signálu. Tato situace

Více

Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452

Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452 Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0452 OV_2_61_Převodník kmitočtu na napětí

Více

- Stabilizátory se Zenerovou diodou - Integrované stabilizátory

- Stabilizátory se Zenerovou diodou - Integrované stabilizátory 1.2 Stabilizátory 1.2.1 Úkol: 1. Změřte VA charakteristiku Zenerovy diody 2. Změřte zatěžovací charakteristiku stabilizátoru se Zenerovou diodou 3. Změřte převodní charakteristiku stabilizátoru se Zenerovou

Více

2. Pomocí Theveninova teorému zjednodušte zapojení na obrázku, vypočtěte hodnoty jeho prvků. U 1 =10 V, R 1 =1 kω, R 2 =2,2 kω.

2. Pomocí Theveninova teorému zjednodušte zapojení na obrázku, vypočtěte hodnoty jeho prvků. U 1 =10 V, R 1 =1 kω, R 2 =2,2 kω. A5M34ELE - testy 1. Vypočtěte velikost odporu rezistoru R 1 z obrázku. U 1 =15 V, U 2 =8 V, U 3 =10 V, R 2 =200Ω a R 3 =1kΩ. 2. Pomocí Theveninova teorému zjednodušte zapojení na obrázku, vypočtěte hodnoty

Více

Výukové texty. pro předmět. Měřící technika (KKS/MT) na téma. Základní charakteristika a demonstrování základních principů měření veličin

Výukové texty. pro předmět. Měřící technika (KKS/MT) na téma. Základní charakteristika a demonstrování základních principů měření veličin Výukové texty pro předmět Měřící technika (KKS/MT) na téma Základní charakteristika a demonstrování základních principů měření veličin Autor: Doc. Ing. Josef Formánek, Ph.D. Základní charakteristika a

Více

Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452

Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452 Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0452 OV_2_23_Zvyšující měnič Název školy

Více

MĚŘENÍ Laboratorní cvičení z měření Měření optoelektronického vazebního členu, část 3-11-1

MĚŘENÍ Laboratorní cvičení z měření Měření optoelektronického vazebního členu, část 3-11-1 MĚŘENÍ Laboratorní cvičení z měření Měření optoelektronického vazebního členu, část 3-11-1 Výukový materiál Číslo projektu: CZ.1.07/1.5.00/34.0093 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

TENZOMETRICKÝ PŘEVODNÍK

TENZOMETRICKÝ PŘEVODNÍK TENZOMETRICKÝ PŘEVODNÍK typ TENZ2109-5 Výrobu a servis zařízení provádí: ATERM, Nad Hřištěm 206, 765 02 Otrokovice Telefon/Fax: 577 932 759 Mobil: 603 217 899 E-mail: matulik@aterm.cz Internet: http://www.aterm.cz

Více

Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452

Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452 Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0452 OV_2_41_Využití prvků SSR Název školy

Více

Profilová část maturitní zkoušky 2015/2016

Profilová část maturitní zkoušky 2015/2016 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2015/2016 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: počítačové

Více

Kategorie M. Test. U všech výpočtů uvádějte použité vztahy včetně dosazení! 1 Sběrnice RS-485 se používá pro:

Kategorie M. Test. U všech výpočtů uvádějte použité vztahy včetně dosazení! 1 Sběrnice RS-485 se používá pro: Krajské kolo soutěže dětí a mládeže v radioelektronice, Vyškov 2009 Test Kategorie M START. ČÍSLO BODŮ/OPRAVIL U všech výpočtů uvádějte použité vztahy včetně dosazení! 1 Sběrnice RS-485 se používá pro:

Více

1 Jednoduchý reflexní přijímač pro střední vlny

1 Jednoduchý reflexní přijímač pro střední vlny 1 Jednoduchý reflexní přijímač pro střední vlny Popsaný přijímač slouží k poslechu rozhlasových stanic v pásmu středních vln. Přijímač je napájen z USB portu počítače přijímaný signál je pak připojen na

Více

MONTÁŽNÍ NÁVOD Venkovní svítilna s detektorem pohybů (PIR) Provedení: Bílý držák, foukané sklo Obj. č.: 61 16 54

MONTÁŽNÍ NÁVOD Venkovní svítilna s detektorem pohybů (PIR) Provedení: Bílý držák, foukané sklo Obj. č.: 61 16 54 MONTÁŽNÍ NÁVOD Venkovní svítilna s detektorem pohybů (PIR) Provedení: Bílý držák, foukané sklo Obj. č.: 61 16 54 Venkovní osvětlení LiftBoy TECHNIC s detektorem pohybů (technika PIR) s úhlem záběru 270

Více

Základy elektrického měření Milan Kulhánek

Základy elektrického měření Milan Kulhánek Základy elektrického měření Milan Kulhánek Obsah 1. Základní elektrotechnické veličiny...3 2. Metody elektrického měření...4 3. Chyby při měření...5 4. Citlivost měřících přístrojů...6 5. Měřící přístroje...7

Více

Inovace a zkvalitnění výuky prostřednictvím ICT Elektrický proud střídavý. Název: Téma: Autor:

Inovace a zkvalitnění výuky prostřednictvím ICT Elektrický proud střídavý. Název: Téma: Autor: Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Inovace a zkvalitnění výuky prostřednictvím ICT Elektrický proud střídavý MĚŘENÍ EL. VELIČIN

Více

Test. Kategorie M. 1 Na obrázku je průběh napětí, sledovaný osciloskopem. Jaké je efektivní napětí signálu?

Test. Kategorie M. 1 Na obrázku je průběh napětí, sledovaný osciloskopem. Jaké je efektivní napětí signálu? Oblastní kolo, Vyškov 2006 Test Kategorie M START. ČÍSLO BODŮ/OPRAVIL U všech výpočtů uvádějte použité vztahy včetně dosazení! 1 Na obrázku je průběh napětí, sledovaný osciloskopem. Jaké je efektivní napětí

Více

Modulové přístroje. Technické změny vyhrazeny H.159

Modulové přístroje. Technické změny vyhrazeny H.159 Modulové Technické změny vyhrazeny H.159 Soumrakové spínače - řízení umělého osvětlení v závislosti na intenzitě denního osvětlení Pomocí těchto přístrojů lze jednoduše řídit umělé osvětlení v závislosti

Více

Elektrická měření pro I. ročník (Laboratorní cvičení)

Elektrická měření pro I. ročník (Laboratorní cvičení) Střední škola informatiky a spojů, Brno, Čichnova 23 Elektrická měření pro I. ročník (Laboratorní cvičení) Studentská verze Zpracoval: Ing. Jiří Dlapal B R N O 2011 Úvod Výuka předmětu Elektrická měření

Více

Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452

Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452 Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0452 OV_2_36_Aktivní zátěž Název školy Střední

Více

Návrh a analýza jednostupňového zesilovače

Návrh a analýza jednostupňového zesilovače Návrh a analýza jednostupňového zesilovače Zadání: U CC = 35 V I C = 10 ma R Z = 2 kω U IG = 2 mv R IG = 220 Ω Tolerance u napětí a proudů, kromě Id je ± 1 % ze zadaných hodnot. Frekvence oscilátoru u

Více

Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452

Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452 Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0452 OV_2_34_PWM regulátor Název školy Střední

Více

2. MĚŘENÍ TEPLOTY TERMOČLÁNKY

2. MĚŘENÍ TEPLOTY TERMOČLÁNKY 2. MĚŘENÍ TEPLOTY TERMOČLÁNKY Otázky k úloze (domácí příprava): Jaká je teplota kompenzačního spoje ( studeného konce ), na kterou koriguje kompenzační krabice? Dá se to zjistit jednoduchým měřením? Čemu

Více

E L E K T R I C K Á M Ě Ř E N Í

E L E K T R I C K Á M Ě Ř E N Í Střední škola, Havířov Šumbark, Sýkorova 1/613, příspěvková organizace E L E K T R I C K Á M Ě Ř E N Í R O Č N Í K MĚŘENÍ ZÁKLDNÍCH ELEKTRICKÝCH ELIČIN Ing. Bouchala Petr Jméno a příjmení Třída Školní

Více

Technická dokumentace. === Plošný spoj ===

Technická dokumentace. === Plošný spoj === VŠB - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky KAT453 Katedra elektrických strojů a přístrojů Technická dokumentace Zadání úkolu č.4 a č.5 === Plošný spoj === Zadání platné pro

Více

PRINCIP MĚŘENÍ TEPLOTY spočívá v porovnání teploty daného tělesa s definovanou stupnicí.

PRINCIP MĚŘENÍ TEPLOTY spočívá v porovnání teploty daného tělesa s definovanou stupnicí. 1 SENZORY TEPLOTY TEPLOTA je jednou z nejdůležitějších veličin ovlivňujících téměř všechny stavy a procesy v přírodě Ke stanovení teploty se využívá závislosti určitých fyzikálních veličin na teplotě (A

Více

ELEKTROTECHNICKÁ SCHÉMATA A ZAŘÍZENÍ, DESKY S PLOŠNÝMI SPOJI

ELEKTROTECHNICKÁ SCHÉMATA A ZAŘÍZENÍ, DESKY S PLOŠNÝMI SPOJI ELEKTROTECHNICKÁ SCHÉMATA A ZAŘÍZENÍ, DESKY S PLOŠNÝMI SPOJI Označování komponent ve schématu Zkratky jmenovitých hodnot rezistorů a kondenzátorů Zobrazování komponentů ve schématu Elektrotechnická schémata

Více

Měřicí řetězec. měřicí zesilovač. převod na napětí a přizpůsobení rozsahu převodníku

Měřicí řetězec. měřicí zesilovač. převod na napětí a přizpůsobení rozsahu převodníku Měřicí řetězec fyzikální veličina snímač měřicí zesilovač A/D převodník počítač převod fyz. veličiny na elektrickou (odpor, proud, napětí, kmitočet...) převod na napětí a přizpůsobení rozsahu převodníku

Více

A:Měření odporových teploměrů v ultratermostatu B:Měření teploty totálním pyrometrem KET/MNV (8. cvičení)

A:Měření odporových teploměrů v ultratermostatu B:Měření teploty totálním pyrometrem KET/MNV (8. cvičení) A:Měření odporových teploměrů v ultratermostatu B:Měření teploty totálním pyrometrem KET/MNV (8. cvičení) Vypracoval : Martin Dlouhý Osobní číslo : A8B268P A:Měření odporových teploměrů v ultratermostatu

Více

Technické podmínky a návod k použití detektoru GR31

Technické podmínky a návod k použití detektoru GR31 Technické podmínky a návod k použití detektoru GR31 Detektory GR31 jsou určeny pro detekci výbušných plynů a par hořlavých látek ve vnitřních prostorách jako jsou např kotelny, technologické provozy, prostory

Více

Střední průmyslová škola elektrotechniky a informatiky, Ostrava VÝROBNÍ DOKUMENTACE

Střední průmyslová škola elektrotechniky a informatiky, Ostrava VÝROBNÍ DOKUMENTACE Střední průmyslová škola elektrotechniky a informatiky, Ostrava Číslo dokumentace: VÝROBNÍ DOKUMENTACE Jméno a příjmení: Třída: E2B Název výrobku: Interface/osmibitová vstupní periferie pro mikropočítač

Více

Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/

Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/ Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452 Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0452 OV_2_59_Digitálně analogový převodník

Více

2-LC: Měření elektrických vlastností výkonových spínačů (I)

2-LC: Měření elektrických vlastností výkonových spínačů (I) 2-LC: Měření elektrických vlastností výkonových spínačů (I) Cíl měření: Ověření a porovnání vlastností výkonových spínačů: BJT, MOSFET a tyristoru. Zkratování řídících vstupů Obr. 1 Přípravek pro měření

Více

Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452

Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452 Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0452 OV_2_31_Triakový regulátor Název školy

Více

DeltaSol TECHNICKÁ DATA

DeltaSol TECHNICKÁ DATA TECHNICKÁ DATA IP30/DIN40050 Provozní teplota: 0 až +40 C Rozměry: 150 x 102 x 52 mm Instalace: na stěnu, na izolaci nádrže Zobrazení: LCD Nastavení: T: 2...11 K (nastavitelná hodnota) hystereze: 1,0 K

Více

Regulace napětí automobilového alternátoru

Regulace napětí automobilového alternátoru Regulace napětí automobilového alternátoru Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Zdeněk Vala. Dostupné z Metodického portálu www.rvp.cz; ISSN 1802-4785, financovaného z ESF

Více

MĚŘENÍ JALOVÉHO VÝKONU

MĚŘENÍ JALOVÉHO VÝKONU MĚŘENÍ JALOVÉHO VÝKONU &1. Které elektrické stroje jsou spotřebiči jalového výkonu a na co ho potřebují? &2. Nakreslete fázorový diagram RL zátěže připojené na zdroj střídavého napětí. &2.1 Z fázorového

Více

+ U CC R C R B I C U BC I B U CE U BE I E R E I B + R B1 U C I - I B I U RB2 R B2

+ U CC R C R B I C U BC I B U CE U BE I E R E I B + R B1 U C I - I B I U RB2 R B2 Pro zadané hodnoty napájecího napětí, odporů a zesilovacího činitele β vypočtěte proudy,, a napětí,, (předpokládejte, že tranzistor je křemíkový a jeho pracovní bod je nastaven do aktivního normálního

Více

Hlídač plamene SP 1.4 S

Hlídač plamene SP 1.4 S Hlídač plamene SP 1.4 S Obsah: 1. Úvod 2. Technické údaje 3. Vnější návaznosti 4. Provoz 4.1 Způsob použití 4.2 Aplikace tubusu 4.3 Pokyny pro provoz 4.4 Bezpečnostní předpisy 4.5 Kontrola funkce 4.6 Zkušební

Více

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Projekt: ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Téma: ME II 4.7.1. Kontrola,měření a opravy obvodů I Obor: Mechanik - elekronik Ročník: 2. Zpracoval: Ing. Michal Gregárek Střední průmyslová škola Uherský Brod,

Více

Kapacitní senzory. ε r2. Změna kapacity důsledkem změny X. b) c) ε r1. a) aktivní plochy elektrod. b)vzdálenosti elektrod

Kapacitní senzory. ε r2. Změna kapacity důsledkem změny X. b) c) ε r1. a) aktivní plochy elektrod. b)vzdálenosti elektrod Kapacitní senzory a) b) c) ε r1 Změna kapacity důsledkem změny a) aktivní plochy elektrod d) ε r2 ε r1 e) ε r2 b)vzdálenosti elektrod c)plochy dvou dielektrik s různou permitivitou d) tloušťky dvou dielektrik

Více

Maturitní témata. pro ústní část profilové maturitní zkoušky. Dne: 5. 11. 2014 Předseda předmětové komise: Ing. Demel Vlastimil

Maturitní témata. pro ústní část profilové maturitní zkoušky. Dne: 5. 11. 2014 Předseda předmětové komise: Ing. Demel Vlastimil Obor vzdělání: Mechanik elektronik 26 41 L/01 Školní rok: 2014/2015 Předmět: Odborné předměty Maturitní témata pro ústní část profilové maturitní zkoušky Dne: 5. 11. 2014 Předseda předmětové komise: Ing.

Více

Zesilovače. Ing. M. Bešta

Zesilovače. Ing. M. Bešta ZESILOVAČ Zesilovač je elektrický čtyřpól, na jehož vstupní svorky přivádíme signál, který chceme zesílit. Je to tedy elektronické zařízení, které zesiluje elektrický signál. Zesilovač mění amplitudu zesilovaného

Více

Měřící a senzorová technika

Měřící a senzorová technika VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ Měřící a senzorová technika Semestrální projekt Vypracovali: Petr Osadník Akademický rok: 2006/2007 Semestr: zimní Původní zadání úlohy

Více

Kód VM: VY_32_INOVACE_5 PAV04 Projekt: Zlepšení výuky na ZŠ Schulzovy sady registrační číslo: CZ.1.07./1.4.00/21.2581

Kód VM: VY_32_INOVACE_5 PAV04 Projekt: Zlepšení výuky na ZŠ Schulzovy sady registrační číslo: CZ.1.07./1.4.00/21.2581 Kód VM: VY_32_INOVACE_5 PAV04 Projekt: Zlepšení výuky na ZŠ Schulzovy sady registrační číslo: CZ.1.07./1.4.00/21.2581 Autor: Mgr. Petr Pavelka Datum: 15. 10. 2012 Ročník: 9. Vzdělávací oblast: Člověka

Více

Polovodičové usměrňovače a zdroje

Polovodičové usměrňovače a zdroje Polovodičové usměrňovače a zdroje Druhy diod Zapojení a charakteristiky diod Druhy usměrňovačů Filtrace výstupního napětí Stabilizace výstupního napětí Zapojení zdroje napětí Závěr Polovodičová dioda Dioda

Více

Logická sonda do ruky. Milan Horkel

Logická sonda do ruky. Milan Horkel TTLPROBE MLB Logická sonda do ruky Milan Horkel Logická sonda slouží k zobrazování logických stavů H a L a neurčitého stavu X TTL logiky na třech LED. Logická sonda zobrazuje krátké impulsy na vstupu tak,

Více

Učební osnova vyučovacího předmětu elektronika Volitelný vyučovací předmět. Pojetí vyučovacího předmětu. 23-41-M/01 Strojírenství

Učební osnova vyučovacího předmětu elektronika Volitelný vyučovací předmět. Pojetí vyučovacího předmětu. 23-41-M/01 Strojírenství Učební osnova vyučovacího předmětu elektronika Volitelný vyučovací předmět Obor vzdělání: -1-M/01 Strojírenství Délka a forma studia: roky, denní studium Celkový počet týdenních vyuč. hodin: Platnost od:

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. výstup

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. výstup ELEKTONIKA I N V E S T I C E D O O Z V O J E V Z D Ě L Á V Á N Í 1. Usměrňování a vyhlazování střídavého a. jednocestné usměrnění Do obvodu střídavého proudu sériově připojíme diodu. Prochází jí proud

Více

Bipolární tranzistory

Bipolární tranzistory Bipolární tranzistory h-parametry, základní zapojení, vysokofrekvenční vlastnosti, šumy, tranzistorový zesilovač, tranzistorový spínač Bipolární tranzistory (bipolar transistor) tranzistor trojpól, zapojení

Více

Popis - Snowfree M1 Řídící jednotka pro ochranu před ledem a sněhem na venkovních plochách.

Popis - Snowfree M1 Řídící jednotka pro ochranu před ledem a sněhem na venkovních plochách. Popis - Snowfree M1 Řídící jednotka pro ochranu před ledem a sněhem na venkovních plochách. Použití - aplikace Ovládací jednotka Snowfree M1 slouží k ovládání tání sněhu a ledu pro nakládací rampy, schody,

Více

Úloha 5 Řízení teplovzdušného modelu TVM pomocí PC a mikropočítačové jednotky CTRL

Úloha 5 Řízení teplovzdušného modelu TVM pomocí PC a mikropočítačové jednotky CTRL VŠB-TUO 2005/2006 FAKULTA STROJNÍ PROSTŘEDKY AUTOMATICKÉHO ŘÍZENÍ Úloha 5 Řízení teplovzdušného modelu TVM pomocí PC a mikropočítačové jednotky CTRL SN 72 JOSEF DOVRTĚL HA MINH Zadání:. Seznamte se s teplovzdušným

Více

25 A Vypracoval : Zdeněk Žák Pyrometrie υ = -40 C.. +10000 C. Výhody termovize Senzory infračerveného záření Rozdělení tepelné senzory

25 A Vypracoval : Zdeněk Žák Pyrometrie υ = -40 C.. +10000 C. Výhody termovize Senzory infračerveného záření Rozdělení tepelné senzory 25 A Vypracoval : Zdeněk Žák Pyrometrie Bezdotykové měření Pyrometrie (obrázky viz. sešit) Bezdotykové měření teplot je měření povrchové teploty těles na základě elektromagnetického záření mezi tělesem

Více

MĚŘENÍ Laboratorní cvičení z měření Měření parametrů tyristoru část 3-5-1 Teoretický rozbor

MĚŘENÍ Laboratorní cvičení z měření Měření parametrů tyristoru část 3-5-1 Teoretický rozbor MĚŘENÍ Laboratorní cvičení z měření část 3-5-1 Teoretický rozbor Výukový materiál Číslo projektu: CZ.1.07/1.5.00/34.0093 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada: 1 Číslo materiálu:

Více

VY_32_INOVACE_AUT-2.N-11-MERENI A REGULACE. Střední odborná škola a Střední odborné učiliště, Dubno

VY_32_INOVACE_AUT-2.N-11-MERENI A REGULACE. Střední odborná škola a Střední odborné učiliště, Dubno Číslo projektu Číslo materiálu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0581 VY_32_INOVACE_AUT-2.N-11-MERENI A REGULACE Střední odborná škola a Střední odborné učiliště, Dubno Ing. Jiří

Více

Určení čtyřpólových parametrů tranzistorů z charakteristik a ze změn napětí a proudů

Určení čtyřpólových parametrů tranzistorů z charakteristik a ze změn napětí a proudů Určení čtyřpólových parametrů tranzistorů z charakteristik a ze změn napětí a proudů Tranzistor je elektronická aktivní součástka se třemi elektrodami.podstatou jeho funkce je transformace odporu mezi

Více

Oddělovací moduly VariTrans

Oddělovací moduly VariTrans Oddělovací moduly VariTrans VariTrans B 13000 určen pro standardní průmyslové aplikace, kalibrované rozsahy VariTrans P 15000 profesionální převodník pro standardní signály, kalibrované rozsahy VariTrans

Více

Programovatelný časový spínač 1s 68h řízený jednočip. mikroprocesorem v3.0a

Programovatelný časový spínač 1s 68h řízený jednočip. mikroprocesorem v3.0a Programovatelný časový spínač 1s 68h řízený jednočip. mikroprocesorem v3.0a Tato konstrukce představuje časový spínač řízený mikroprocesorem Atmel, jehož hodinový takt je odvozen od přesného krystalového

Více

Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452

Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452 Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0452 OV_2_35_Efektový blikač Název školy

Více

Anemometr s vyhřívanými senzory

Anemometr s vyhřívanými senzory Anemometr s vyhřívanými senzory Úvod: Přípravek anemometru je postaven na 0,5 m větrném tunelu, kde se na jedné straně nachází měřící část se senzory na straně druhé ventilátor s řízením. Na obr. 1 je

Více

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Projekt: ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Úloha: Univerzální stmívač Obor: Elektrikář silnoproud Ročník: 2. Zpracoval: Ing. Jaromír Budín, Ing. Jiří Šima Střední odborná škola Otrokovice, 2010 Projekt je

Více

MĚŘENÍ Laboratorní cvičení z měření. Měření přechodových dějů, část 3-4-3

MĚŘENÍ Laboratorní cvičení z měření. Měření přechodových dějů, část 3-4-3 MĚŘENÍ Laboratorní cvičení z měření Měření přechodových dějů, část Číslo projektu: Název projektu: Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada: 1 Číslo materiálu: VY_32_INOVACE_

Více

Název: Téma: Autor: Číslo: Prosinec 2013. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1

Název: Téma: Autor: Číslo: Prosinec 2013. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Inovace a zkvalitnění výuky prostřednictvím ICT Elektrický proud střídavý Elektronický oscilátor

Více

VSTUPNÍ VÝSTUPNÍ ROZSAHY

VSTUPNÍ VÝSTUPNÍ ROZSAHY Univerzální vysokonapěťový oddělovací modul VariTrans P 29 000 P0 ní signály ±30 mv až ±1000 V ±20 ma, ±10 V nebo 0(4)..20 ma Pracovní napětí až 1000 V ac/dc Přesnost 0,1 nebo 0,2 % z rozsahu Zkušební

Více

Interakce ve výuce základů elektrotechniky

Interakce ve výuce základů elektrotechniky Střední odborné učiliště, Domažlice, Prokopa Velikého 640, Místo poskytovaného vzdělávaní Stod, Plzeňská 245 CZ.1.07/1.5.00/34.0639 Interakce ve výuce základů elektrotechniky TRANSFORMÁTORY Číslo projektu

Více

Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící, výpočetní a regulační technice. Má napěťové zesílení alespoň A u

Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící, výpočetní a regulační technice. Má napěťové zesílení alespoň A u Fyzikální praktikum č.: 7 Datum: 7.4.2005 Vypracoval: Tomáš Henych Název: Operační zesilovač, jeho vlastnosti a využití Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící,

Více

TECHNICKÝ POPIS ZDROJŮ ŘADY EZ1 T 73304

TECHNICKÝ POPIS ZDROJŮ ŘADY EZ1 T 73304 Signal Mont s.r.o Hradec Králové T73304 List č.: 1 Výzkumný ústav železniční Praha Sdělovací a zabezpečovací dílny Hradec Králové TECHNICKÝ POPIS ZDROJŮ ŘADY EZ1 T 73304 JKPOV 404 229 733 041 Zpracoval:

Více

Popis zapojení a návod k osazení desky plošných spojů STN-G

Popis zapojení a návod k osazení desky plošných spojů STN-G Popis zapojení a návod k osazení desky plošných spojů STN-G STN-G je aplikací zaměřenou především na detekci obsazenosti a to až 4 izolovaných úseků. Doplňkově ji lze osadit i detektorem přítomnosti DCC

Více

ÚVOD. Výhoda spínaného stabilizátoru oproti lineárnímu

ÚVOD. Výhoda spínaného stabilizátoru oproti lineárnímu ÚVOD Podsvícení budíků pomocí LED je velmi praktické zapojení. Pokud je použita varianta s paralelním zapojením všech LE diod je třeba napájet celý obvod zdrojem konstantního napětí. Jas lze regulovat

Více

*Správné připojení je nezbytné k bezvadné funkci zapojení průchodu

*Správné připojení je nezbytné k bezvadné funkci zapojení průchodu 2 2 310 321 01 LUNA LUNA 109 109 0 100, 109 0 200 110 0 100, 110 0 200 Návod na montáž a obsluhu Soumrakový spínač Test 2 2000 LUNA 109 I:2-35 II : 35-200 III : 200-1000 min max IV:1-5klx V: 5-50klx min

Více

Účinky elektrického proudu. vzorová úloha (SŠ)

Účinky elektrického proudu. vzorová úloha (SŠ) Účinky elektrického proudu vzorová úloha (SŠ) Jméno Třída.. Datum.. 1. Teoretický úvod Elektrický proud jako jev je tvořen uspořádaným pohybem volných částic s elektrickým nábojem. Elektrický proud jako

Více

Laboratorní cvičení č.15. Název: Měření na optoelektronických prvcích. Zadání: Popis měřeného předmětu: Teoretický rozbor:

Laboratorní cvičení č.15. Název: Měření na optoelektronických prvcích. Zadání: Popis měřeného předmětu: Teoretický rozbor: Laboratorní cvičení č.15 Název: Měření na optoelektronických prvcích Zadání: Změřte voltampérovou charakteristiku fototranzistoru, fotodiody (fotovodivostní a fotovoltaický režim) a fotorezistoru pro pět

Více

Time RELAY. Přídavný časový spínač. Uživatelská příručka

Time RELAY. Přídavný časový spínač. Uživatelská příručka Time RELAY Přídavný časový spínač Uživatelská příručka Popis Přídavný časový spínač je určen jako doplněk k univerzálnímu vrátnému pro rozšíření možností ovládání dalších elektrických zámků, elektrických

Více