PARNÍ KOTEL, JEHO FUNKCE A ZAČLENĚNÍ V PROCESU ENERGETICKÉHO VYUŽITÍ PRŮMYSLOVÝCH A KOMUNÁLNÍCH ODPADŮ
|
|
- Libuše Dvořáková
- před 8 lety
- Počet zobrazení:
Transkript
1 Energetické využití odpadů PARNÍ KOTEL, JEHO FUNKCE A ZAČLENĚNÍ V PROCESU ENERGETICKÉHO VYUŽITÍ PRŮMYSLOVÝCH A KOMUNÁLNÍCH ODPADŮ komunální a průmyslové odpady patří do kategorie tzv. druhotných energetických zdrojů. spalování odpadů je dnes samostatný obor pro energetické využití se hodí pouze vytříděné odpady tuhé - průmyslové a komunální třídění se provádí z hlediska ochrany životního prostředí možnosti jejich spalování na zvoleném technologickém zařízení spalování je poslední možností jak snížit množství skládkovaných odpadů a respektovat při tom stanovené zásady ochrany životního prostředí Výhody energetického využití odpadů využití spalného tepla odpadů k výrobě tepla nebo elektrické energie, čímž se příznivě ovlivní ekonomie celého projektu, objemová redukce odpadů až na 20-30% stabilizace produktů po spalování, takže jejich ukládání na skládky neohrožuje životní prostředí, možnost čistění spalin, takže lze dodržet předepsané emise škodlivin. Dostupné technologie Pro energetické využití vytříděných odpadů jsou dnes k dispozici technologie: pro spalování odpadů, a to pro: samostatné spalování odpadů pro přídavné spalování alternativního paliva z odpadů v kotlech spalujících uhlí pro pyrolýzní proces (za nedostatku vzduchu) zplynování. Kotle pro samostatné spalování odpadů Z hlediska stavby kotlů lze zařízení na energetické využití odpadů rozdělit do dvou skupin podle toho, jestli: parní kotel současně plní i funkci spalovacího zařízení pro odpady parní kotel nemá spalovací zařízení a využívá teplo odpadních spalin vznikajících při spalování odpadů v jiném spalovacím zařízení (např. rotační peci). 1
2 Zařízení pro spalování odpadů Parní kotel pro spalování odpadů se staví: s klasickým nebo speciálním roštovým ohništěm s fluidním ohništěm Zařízení na termickou likvidaci odpadů tvoří spalovací zařízení, kterým může být: rotační spalovací pec fluidní spalovací zařízení různé jiné druhy spalovacích pecí kotel na využití tepla odpadních spalin ZEVO Malešice 3 stupně čištění spalin Termizo Liberec 3 stupně čištění spalin Rotační pec na spalování průmyslového odpadu 2
3 Žárotrubný kotel na využití odpadního tepla spalin za rotační pec Vodotrubný kotel na využití odpadního tepla spalin za rotační pec Přídavné spalování odpadů provádí se v kotlích spalujících uhlí je jednodušší než samostatné spalování odpadů. takto lze spalovat jen ty odpady, které nevyvolávají u uhelného kotle potřebu výstavby dalšího zařízení načištění spalin nepovedou ke zvýšení korozního poškození kotle nezhorší kvalitu tuhých zbytků z hlediska dalšího využití musí se provést separace nevhodných složek Kotle pro přídavné spalování odpadů musí umožňovat alternativní provoz pouze s uhlím, s uhlím při přídavném spalování alternativního paliva z odpadů obvykle do výše cca 25% tepelného příkonu kotle lze jej realizovat především u kotlů: s fluidním ohništěm, především s cirkulující fluidní vrstvou lze spalovat i odpady kapalné a plynné. jednoduchá doprava alternativního paliva z odpadů do ohniště s vhodným roštovým ohništěm Podmínky pro přídavné spalování odpadů obvykle není třeba provádět speciální konstrukční úpravy uhelného kotle Doplnění u stávajících kotlů: v kotelně musí být možnost umístit zařízení pro skladování a dopravu alternativního paliva z odpadů = často rozhodující na základě analýzy se provede posouzení vhodnosti daného kotle a rozsah potřebných úprav konečné rozhodnutí lze provést až na základě provedených spalovacích zkoušek. Pyrolýzní proces energetického využití odpadů probíhá ve dvou fázích: termický rozklad za nedostatku vzduchu při teplotách kolem 400 C za vzniku hořlavých plynů pyrolyzních zbytků (tzv. pyrolyzní koks). druhý stupeň plyn lze dále využívat nebo spálit bezpečné zpracování pyrolyzních zbytků 3
4 Charakteristika kotlů zařazených v systému energetického využití odpadů většinou nižší parametry páry, cca 380 C nebo speciální úpravu kotle pro dosažení vysokých parametrů cca 530 C nižší parní výkon kotlů, těsné tahy kotle z hlediska přisávání falešného vzduchu pro vyloučení nízkoteplotní koroze. napájení kotlů vodou o nižší teplotě, většinou 105 C složitější regulace spalování u roštových kotlů a to na straně spalovacího vzduchu (primární vzduch v zónách, sekundární vzduch nad roštem, recirkulace spalin) z hlediska požadované teploty na roštu aplikace opatření proti zanášení teplosměnných ploch kotle a k jejich čištění. PARNÍ KOTEL, JEHO FUNKCE A ZAČLENĚNÍ V ZAŘÍZENÍCH NA VYUŽITÍ ODPADNÍ ENERGIE Odpadní energie z technologických procesů je jednou z forem energií, jejíchž využívání je součástí zásad dlouhodobého rozvoje energetiky a je v souladu s energetickou politikou státu. jedná se o energii získanou z tzv. druhotných energetických zdrojů (DEZ), které se dělí na palivové druhotné energetické zdroje tepelné druhotné energetické zdroje Možnosti využití palivových DEZ spalovat samostatně či s fosilními palivy lze vysokopecní plyn, sulfátové či sulfitové výluhy, plyny z chemické výroby a konvertorový plyn. Využití tepelných DEZ využití tepla spalin z výfuku spalovací turbíny využití tepla odcházejících spalin z různých pecí a zařízení v železárnách, ocelárnách, sklárnách a pekárnách Teplo se využívá v rekuperačním kotli = kotel na odpadní teplo Parní kotel připojený za plynovou turbínu 1 spalovací turbína 2 parní kotel 3 napájecí nádrž 4 ohřívák vody 5 výparník s nucenou cirkulací 6 přehřívák páry. 7 oběhové čerpadlo Vertikální kotel na odpadní teplo nouzový komín spaliny z plynové turbíny 4 ohřívák vody 6 přehřívák páry 5 výparník s nucenou cirkulací 7 oběhové čerpadlo 4
5 plynová turbína Paroplynový zdroj připojením parní turbíny za kotel na odpadní teplo vznikne paroplynový zdroj účinnost až 60 % parní kotel na odp.teplo parní turbína vzduchový kondenzátor Charakteristika kotle na využívání odpadní energie většinou nižší parametry páry v souvislosti s nižší teplotní úrovní nositele odpadní energie, napájení kotlů vodou o nižší teplotě, většinou 105 C, většinou různé netradiční konstrukční provedení kotlů vzhledem ke specifickým podmínkám, které jsou dány charakterem zdroje odpadní energie při návrhu kotle a zejména jeho zapojení v systému se musí respektovat i požadavky na úzkou součinnost kotle se zdrojem odpadní energie, pro konvekční část teplosměnných ploch se v řadě případů používají žebrované trubky. 5
Popis výukového materiálu
Popis výukového materiálu Číslo šablony III/2 Číslo materiálu VY_32_INOVACE_SZ_20. 9. Autor: Ing. Luboš Veselý Datum vypracování: 15. 02. 2013 Předmět, ročník Tematický celek Téma Druh učebního materiálu
VíceModerní kotelní zařízení
Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní Katedra energetiky Moderní kotelní zařízení Text byl vypracován s podporou projektu CZ.1.07/1.1.00/08.0010 Inovace odborného vzdělávání
VíceODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv - Kotle Ing. Jan Andreovský Ph.D.
ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE Spalování paliv - Kotle Ing. Jan Andreovský Ph.D. Funkce, rozdělení, parametry, začlenění parního kotle do schémat
VíceTYPY KOTLŮ, JEJICH DĚLENÍ PODLE VYBRANÝCH HLEDISEK. Kotel horkovodní. Typy kotlů 7.12.2015. dělení z hlediska:
Typy kotlů TYPY KOTLŮ, JEJICH DĚLENÍ PODLE VYBRANÝCH HLEDISEK dělení z hlediska: pracovního média a charakteru jeho proudění ve výparníku druhu spalovaného paliva, způsobu jeho spalování a druhu ohniště
VíceSPALOVÁNÍ A KOTLE. Fosilní paliva a jejich vlastnosti. Přírodní a umělá paliva BIOMASA. Doc. Ing. Tomáš Dlouhý, CSc.
SPALOVÁNÍ A KOTLE Doc. Ing. Tomáš Dlouhý, CSc. 1 ENERGIE Energie je extensivní veličina definuje se jako schopnost hmoty konat práci vyskytuje se v nejrůznějších formách Z hlediska jejího využití se často
VíceSPALOVÁNÍ A KOTLE. Fosilní paliva a jejich vlastnosti BIOMASA. doc. Ing. Tomáš Dlouhý, CSc. Obnovitelné palivo
SPALOVÁNÍ A KOTLE doc. Ing. Tomáš Dlouhý, CSc. 1 ENERGIE Energie je extensivní veličina definuje se jako schopnost hmoty konat práci vyskytuje se v nejrůznějších formách Z hlediska jejího využití se často
VíceFLUIDNÍ KOTLE. Fluidní kotel na biomasu(parní) parní výkon 16 150 t/h tlak páry 1,4 10 MPa teplota páry 220 540 C. Fluidní kotel
FLUIDNÍ KOTLE Osvědčená technologie pro spalování paliv na pevném roštu s fontánovou fluidní vrstvou. Možnost spalování široké palety spalování pevných paliv s velkým rozpětím výhřevnosti uhlí, biomasy
VíceEnergetické využití odpadu. 200 let První brněnské strojírny
200 let První brněnské strojírny Řešení využití odpadů v nové produktové linii PBS Spalování odpadů Technologie spalování vytříděného odpadu, kontaminované dřevní hmoty Depolymerizace a možnosti využití
VíceODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv - Kotle Ing. Jan Andreovský Ph.D.
ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE Spalování paliv - Kotle Ing. Jan Andreovský Ph.D. Kotle Úvod do problematiky Základní způsoby získávání energie Spalováním
VíceZDROJE TEPLA Rozdělení Jako zdroj tepla může být navržena kotelna, CZT (centrální zásobování teplem) nebo netradiční zdroj (tepelné čerpadlo,
ZDROJE TEPLA Rozdělení Jako zdroj tepla může být navržena kotelna, CZT (centrální zásobování teplem) nebo netradiční zdroj (tepelné čerpadlo, sluneční energie, termální teplo apod.). Nejčastější je kotelna.
VíceElektrárny část II. Tepelné elektrárny. Ing. M. Bešta
Tepelné elektrárny 1) Kondenzační elektrárny uhelné K výrobě elektrické energie se využívá tepelné energie uvolněné z uhlí spalováním. Teplo uvolněné spalováním se využívá k výrobě přehřáté (ostré) páry.
VíceElektroenergetika 1. Technologické okruhy parních elektráren
Technologické okruhy parních elektráren Schéma tepelné elektrárny Technologické okruhy parních elektráren 2 Hlavní technologické okruhy Okruh paliva Okruh vzduchu a kouřových plynů Okruh škváry a popela
VíceUniverzální středotlaké parní kotle KU
Univerzální středotlaké parní kotle Popis Kotle jsou plamencožárotrubné, velkoprostorové kotle s přirozenou cirkulací kotelní vody, pro spalování kapalných a plynných paliv. Rozměry spalovací komory jsou
VíceNEKONVENČNÍ ZPŮSOBY VÝROBY TEPELNÉ A ELEKTRICKÉ ENERGIE. Ing. Stanislav HONUS
NEKONVENČNÍ ZPŮSOBY VÝROBY TEPELNÉ A ELEKTRICKÉ ENERGIE Ing. Stanislav HONUS ORGANICKÝ MATERIÁL Spalování Chemické přeměny Chem. přeměny ve vodním prostředí Pyrolýza Zplyňování Chemické Biologické Teplo
VíceSPOLUSPALOVÁNÍ TUHÉHO ALTERNATIVNÍHO PALIVA VE STANDARDNÍCH ENERGETICKÝCH JEDNOTKÁCH
SPOLUSPALOVÁNÍ TUHÉHO ALTERNATIVNÍHO PALIVA VE STANDARDNÍCH ENERGETICKÝCH JEDNOTKÁCH Teplárenské dny 2015 Hradec Králové J. Hyžík STEO, Praha, E.I.C. spol. s r.o., Praha, EIC AG, Baden (CH), TU v Liberci,
VíceEnergetické využití biomasy Hustopeče 2010 5. až 6. května. úprav vajících ch uhelných kotlů. Možnosti. EKOL, spol. s r.o., Brno.
Energetické využití biomasy Hustopeče 2010 5. až 6. května Možnosti úprav stávaj vajících ch uhelných kotlů na spalování biomasy EKOL, spol. s r.o., Brno divize kotlů Ing. Jiří Jelínek OBSAH: obecné možnosti
VíceBiflux. Vstřikový chladič páry. Regulace teploty páry chladičem. Regulace teploty páry. Regulace teploty páry. Regulaci teploty páry jde provádět :
Regulace teploty páry Regulaci teploty páry jde provádět : přerozdělením tepla v kotli např. recirkulací spalin nebo naklápěním hořáků chlazením páry vstřikem napájecí vody vstřikem vlastního kondenzátu
VíceKEY PERFORMANCE INDICATORS (KPI)
KEY PERFORMANCE INDICATORS (KPI) Zavedením monitorováním a vyhodnocením KPI pro energetické provozy lze optimalizovat provoz a údržbu energetických zařízení, zlepšit účinnost a spolehlivost a také snížit
VíceEmisní limity pro zvláště velké spalovací zdroje znečišťování pro oxid siřičitý (SO 2 ), oxidy dusíku (NO x ) a tuhé znečišťující látky
Příloha č. 20 (Příloha č. 1 NV č. 352/2002 Sb.) Emisní limity pro zvláště velké spalovací zdroje znečišťování pro oxid siřičitý (SO 2 ), oxidy dusíku (NO x ) a tuhé znečišťující látky 1. Emisní limity
VíceSpalování zemního plynu
Kotel na odpadní teplo pro PPC Kotel na odpadní teplo pro PPC Označení KNOT (Doc. Kolovratník) HRSG = Heat Recovery Steam Generator Funkce dochladit spaliny odcházející z plynové turbíny vyrobit páru pro
VíceStavba kotlů. Stav u parních oběhů. Zvyšování účinnosti parního oběhu. Vliv účinnosti uhelného bloku na produkci CO 2
Stavba kotlů Vliv účinnosti uhelného bloku na produkci CO 2 dnešní standard 2.n. ročník zimní semestr Doc. Ing. Tomáš DLOUHÝ, CSc. 18.9.2012 Stavba kotlů - přednáška č. 1 1 18.9.2012 Stavba kotlů - přednáška
VíceZplyňování biomasy. Sesuvný generátor. Autotermní zplyňování Autotermní a alotermní zplyňování
Zplyňování = termochemická přeměna uhlíkatého materiálu v pevném či kapalném skupenství na výhřevný energetický plyn pomocí zplyňovacích médií a tepla. Produktem je plyn obsahující výhřevné složky (H 2,
VíceNA FOSILNÍ PALIVA: pevná, plynná, kapalná NA FYTOMASU: dřevo, rostliny, brikety, peletky. SPALOVÁNÍ: chemická reakce k získání tepla
ZDROJE TEPLA - KOTELNY PŘEDNÁŠKA Č. 8 SLOŽENÍ PALIV 1 NA FOSILNÍ PALIVA: pevná, plynná, kapalná NA FYTOMASU: dřevo, rostliny, brikety, peletky SPALOVÁNÍ: chemická reakce k získání tepla SPALNÉ SLOŽKY PALIV:
VíceIng. David Kupka, Ph.D. Řešeno v rámci projektu Nakládání s odpady v Moravskoslezském a Žilinském kraji
Ing. David Kupka, Ph.D. Řešeno v rámci projektu Nakládání s odpady v Moravskoslezském a Žilinském kraji Nakládání s odpady Předcházení vzniku Opětovné použití Materiálově využití by mělo být upřednostněno
VíceDigitální učební materiál
Digitální učební materiál Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno CZ.1.07/1.5.00/34.0061 VY_32_INOVACE_D.2.12 Integrovaná střední škola
Více1/62 Zdroje tepla pro CZT
1/62 Zdroje tepla pro CZT kombinovaná výroba elektřiny a tepla výtopny, elektrárny a teplárny teplárenské ukazatele úspory energie teplárenským provozem Zdroje tepla 2/62 výtopna pouze produkce tepla kotle
VíceENERGETIKA TŘINEC, a.s. Horní Lomná
ENERGETIKA TŘINEC, a.s. Horní Lomná 21. 06. 2016. Charakteristika společnosti ENERGETIKA TŘINEC, a.s. je 100 % dceřiná společnost Třineckých železáren, a.s. Zásobuje energiemi především mateřský podnik,
VícePerspektivní metody. PROČ sušení pevných paliv? Většina dodané energie se ztrácí. Klasická metoda sušení horkými spalinami
Perspektivní metody sušení pevných paliv Klasická metoda sušení horkými spalinami Uzavřený mlecí okruh PROČ sušení pevných paliv? zvýšení výhřevnosti snazší vzněcování spalování při vyšší teplotě menší
VíceDNY TEPLÁRENSTVÍ A ENERGETIKY
Hradec Králové 2015 DNY TEPLÁRENSTVÍ A ENERGETIKY Centrální zásobování teplem a spalovny komunálních odpadů doc. Ing. Zdeněk Skála, CSc Ing. Jiří Moskalík, Ph.D. Obsah Vznik a členění produkovaných odpadů
VíceDODAVATELSKÝ PROGRAM
DODAVATELSKÝ PROGRAM HLAVNÍ ČINNOSTI DODÁVKY KOTELEN NA KLÍČ Projekty, dodávka, montáž, zkoušky a uvádění do provozu Teplárny Energetická centra pro rafinerie, cukrovary, papírny, potravinářský průmysl,chemický
VíceNový fluidní kotel NK14
NK14 Petr Matuszek Dny teplárenství a energetiky Hradec Králové 26. 27. 4. 2016. Obsah Charakteristika společnosti Nový fluidní kotel Výstavba Parametry Zkušenosti Závěr Charakteristika společnosti ENERGETIKA
VíceDenitrifikace. Ochrana ovzduší ZS 2012/2013
Denitrifikace Ochrana ovzduší ZS 2012/2013 1 Úvod Pojem oxidy dusíku NO NO 2 Další formy NO x Vznik NO x 2 Vlastnosti NO Oxid dusnatý Vlastnosti M mol,no = 30,01 kg/kmol V mol,no,n = 22,41 m 3 /kmol ρ
VíceNovela nařízení vlády č. 352/2002 Sb. Kurt Dědič, odbor ochrany ovzduší MŽP
Novela nařízení vlády č. 352/2002 Sb. Kurt Dědič, odbor ochrany ovzduší MŽP Právní základ ČR» zákon o ochraně ovzduší č. 86/2002 Sb. ve znění zákonů č. 521/2002 Sb., č. 92/2004 Sb., č. 186/2004 Sb., č.
VícePříloha 1/A. Podpisy zdrojů 2005. Ostravská oblast Střední Čechy a Praha. Technické parametry zdrojů
Příloha 1/A Podpisy zdrojů 2005 Ostravská oblast Střední Čechy a Praha Spalovna Malešice Pražské služby a.s - spalovna Malešice (závod 14) ČKD Dukla, parní kotel na spalování TKO, 36 t/h ČKD Dukla, parní
VíceMatematické modely v procesním inženýrství
Matematické modely v procesním inženýrství Věda pro praxi OP VK CZ.1.07/2.3.00/20.0020 Michal Touš AMathNet, Pavlov, 6. - 8. 6. 2011 Osnova 1. Procesní inženýrství co si pod tím představit? 2. Matematické
VíceKOTLE NA SPALOVÁNÍ BIOMASY TYPU BF
KOTLE NA SPALOVÁNÍ BIOMASY TYPU BF U Školky 357/14, 326 00 Plzeň IČO: 61168254 DIČ: CZ61168254 tel.: +420 271 960 935 tel.: +420 271961319 fax.: +420 271960035 http://www.invelt.cz invelt.praha@invelt-servis.cz
VíceROZVOJ ENERGETICKÝCH ZDROJOV V PRIEMYSELNEJ A KOMUNÁLNEJ SFÉRE V SÚLADE S REGIONÁLNOU ENERGETICKOU POLITIKOU ČR
ROZVOJ ENERGETICKÝCH ZDROJOV V PRIEMYSELNEJ A KOMUNÁLNEJ SFÉRE V SÚLADE S REGIONÁLNOU ENERGETICKOU POLITIKOU ČR František Strmiska Asociace Energetických Manažerů - sekce Energetická zařízení a technologie
VícePosouzení vlivu teploty napájecí vody na konstrukci kotle
Předběžný návrh koncepce kotle a přípravy paliva Podle zadaných parametrů se volí typ parního generátoru (výparníku) s přirozeným oběhem, nucenou nebo superponovanou cirkulací průtočný. Zvolí se uspořádání
VíceZpůsob uvolňování chloru z paliva
Předběžný návrh koncepce kotle a přípravy paliva Podle zadaných parametrů se volí typ parního generátoru (výparníku) s přirozeným oběhem, nucenou nebo superponovanou cirkulací průtočný. Zvolí se uspořádání
VícePokročilé technologie spalování tuhých paliv
Pokročilé technologie spalování tuhých paliv Může zvyšovaní obsahu CO 2 v ovzduší změnit životní podmínky na Zemi? Možnosti zvyšování účinnosti parních kotlů 1 Vliv účinnosti uhelného bloku na produkci
VíceModerní energetické stoje
Moderní energetické stoje Jedná se o zdroje, které spojuje několik charakteristických vlastností. Jedná se hlavně o tyto: + vysoká účinnost + nízká produkce škodlivých látek - vysoká pořizovací cena! -
VíceCo udělaly (a musí udělat) teplárny pro splnění limitů? Co přinesla ekologizace?
Co udělaly (a musí udělat) teplárny pro splnění limitů? Co přinesla ekologizace? Petr Matuszek XXIX. SEMINÁŘ ENERGETIKŮ Luhačovice 22. 24. 1. 2019 1. Obsah Charakteristika společnosti Teplárna E2 Teplárna
VíceOsnova kurzu. Výroba elektrické energie. Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 3
Osnova kurzu 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 1 Základy teorie elektrických obvodů 2 Základy teorie elektrických
VícePříloha1) Atributy modulu
Příloha1) Atributy modulu Název realizovaného modulu Kontaktní údaje garanta: Energetika doc. Ing. Ladislav 597324484 ladislav.vilimec@vsb.cz Vilimec Jméno a příjemní Telefon e-mail Požadované obsahové
VíceOdpadové hospodá ství a projekt Odpadové hospodá ství Brno. RNDr. Jana Suzová, Ing. Václav Hnaní ek
Konference projektu ClimactRegions Energetické využití odpad Staré M sto, 11. prosinec 2012 Odpadové hospodá ství a projekt Odpadové hospodá ství Brno RNDr. Jana Suzová, Ing. Václav Hnaní ek Nakládání
VíceEnergetické využití odpadů. Ing. Michal Jirman
Energetické využití odpadů Ing. Michal Jirman KOGENERAČNÍ BLOKY A SPALOVÁNÍ ODPADŮ Propojení problematiky odpadů, ekologie a energetiky Pozitivní dopady na zlepšení životního prostředí Efektivní výroba
Víceení Ing. Miroslav Mareš EGP - EGP
Opatřen ení ke zvýšen ení energetické účinnosti při i výrobě elektřiny Ing. Miroslav Mareš Ing. Karel Bíža ÚJV EGP Ing. Zdeněk k Vlček ÚJV - EGP CÍL: Informovat o reálných možnostech zvýšení účinnosti
Více21.4.2015. Energetické využití a technologie spalování uhelného multiprachu v soustavách CZT a průmyslových energetikách
21.4.2015 Energetické využití a technologie spalování uhelného multiprachu v soustavách CZT a průmyslových energetikách 2 SÍDLA SPOLEČNOSTÍ 3 SCHÉMA KOTELNY NA UHELNÝ PRACH sklad paliva a dávkování parní
VíceZDROJE TEPLA Rozdělení Jako zdroj tepla může být navržena kotelna, CZT (centrální zásobování teplem) nebo netradiční zdroj (tepelné čerpadlo,
ZDROJE TEPLA Rozdělení Jako zdroj tepla může být navržena kotelna, CZT (centrální zásobování teplem) nebo netradiční zdroj (tepelné čerpadlo, sluneční energie, termální teplo apod.). Nejčastější je kotelna.
VíceZEVO Mohelnice špičková technologie pro ekologické a ekonomické využití odpadu. TCN ENERGIE s.r.o. VÍTKOVICE POWER ENGINEERING a.s.
ZEVO Mohelnice špičková technologie pro ekologické a ekonomické využití odpadu TCN ENERGIE s.r.o. VÍTKOVICE POWER ENGINEERING a.s. JFE HOLDING OBSAH Obsah prezentace Partneři s tradicí a jasnou vizí Nakládání
VíceEnergetické zhodnocení komunálního odpadu, plastů, kalů ČOV, kyselých kalů, gudrónov, gumy a biomasy
Energetické zhodnocení komunálního odpadu, plastů, kalů ČOV, kyselých kalů, gudrónov, gumy a biomasy obsah Prezentace cíl společnosti Odpadní komodity a jejich složení Nakládání s komunálním odpadem Thermo-katalitická
VíceSchéma výtopny. Kotel, jeho funkce a začlenění v oběhu výtopny. Hořáky na spalování plynu. Skupinový atmosférický hořák teplovodního kotle
Schéma výtopny Kotel, jeho funkce a začlenění v oběhu výtopny kotle přívodní větev spotřebiče oběhové čerpadlo vratná větev Hořáky na spalování plynu Existuje celá řada kritérií pro jejich dělení, nejdůležitější
VíceMETODICKÝ POKYN MINISTERSTVA ŽIVOTNÍHO PROSTŘEDÍ ODBORU OCHRANY OVZDUŠÍ
METODICKÝ POKYN MINISTERSTVA ŽIVOTNÍHO PROSTŘEDÍ ODBORU OCHRANY OVZDUŠÍ k definici nízkoemisního spalovacího zdroje Metodický pokyn upřesňuje požadavky na nízkoemisní spalovací zdroje co do přípustných
VíceZapojení špičkových kotlů. Obecné doporučení 27.10.2015. Typy turbín pro parní teplárny. Schémata tepláren s protitlakými turbínami
Výtopny výtopny jsou zdroje pouze pro vytápění a TUV teplo dodávají v páře nebo horké vodě základním technologickým zařízením jsou kotle s příslušenstvím (dle druhu paliva) výkonově výtopny leží mezi domovními
VíceKombinovaná výroba elektřiny a tepla
Kombinovaná výroba elektřiny a tepla Kurz Kombinovaná výroba elektřiny a tepla Doc. Ing. Jiří Míka, CSc. Katedra energetiky (361) Energetické jednotky pro využití netradičních zdrojů energie Program 6.9.2017
VíceÚVOD DO PROBLEMATIKY PAROVZDUCHOVÝCH OBĚHŮ
ÚVOD DO PROBLEMATIKY PAROVZDUCHOVÝCH OBĚHŮ Pavel Milčák, Kamil Stárek, Ladislav Vilimec Příspěvek je zaměřen na problematiku vývoje flexibilního energetického systému, který slouží k výrobě elektrické
VíceMETODICKÝ POKYN MINISTERSTVA ŽIVOTNÍHO PROSTŘEDÍ ODBORU OCHRANY OVZDUŠÍ
METODICKÝ POKYN MINISTERSTVA ŽIVOTNÍHO PROSTŘEDÍ ODBORU OCHRANY OVZDUŠÍ k definici nízkoemisního spalovacího zdroje Metodický pokyn upřesňuje požadavky na nízkoemisní spalovací zdroje co do přípustných
VíceSystémem Pro E. Kotel má následující charakteristické vlastnosti: - NO X
s atmosférickým hořákem Závěsný kotel v komínovém provedení nebo s nuceným odvodem spalin s vodou chlazeným hořákem pro velmi nízký obsah škodlivin ve spalinách. řady exclusiv se vyznačují speciální konstrukcí
VíceOBSAH VÝCHOZÍ SITUACE SPALOVACÍ PROCES MOŽNOSTI ZVYŠOVÁNÍ ÚČINNOSTI TECHNOLOGICKÉHO ŘETĚZCE PARAMETRY PŘEHŘÁTÉ PÁRY
* Úskalí a možnosti zvyšování účinnosti u energetického využívání odpadů Jaroslav Hyžík Seminář STEO ODPADY 2012 A JAK DÁL aneb Hříšný tanec kolem spaloven Brno 24.04.12 OBSAH VÝCHOZÍ SITUACE SPALOVACÍ
Víceodbor výstavby a ŽP 573500743 nám. Svobody 29, 768 11 Chropyně
O Z N Á M E N Í údajů pro stanovení výše ročního poplatku pro malý zdroj znečišťování ovzduší za rok (dle ust. 19, odst. 16 zákona č. 86/2002 Sb., o ochraně ovzduší a o změně některých dalších zákonů,
VíceDoc. Ing. Michal KOLOVRATNÍK, CSc. Doc. Ing. Tomáš DLOUHÝ, CSc.
Doc. Ing. Michal KOLOVRATNÍK, CSc. Doc. Ing. Tomáš DLOUHÝ, CSc. ČVUT v PRAZE, Fakulta strojní Ústav mechaniky tekutin a energetiky Odbor tepelných a jaderných energetických zařízení pro energetiku 1 optimalizace
VíceProjekt EVO Komořany žije
Projekt EVO Komořany žije 1 Komise životního prostředí - město Chomutov dne 21.6 2017 Ing. Petr Mareš technický ředitel United Energy, a.s. člen představenstva EVO Komořany, a.s. Jak je to s odpady? 2
VíceVlhkost 5 20 % Výhřevnost 12 25 MJ/kg Velikost částic ~ 40 mm Popel ~ 15 % Cl ~ 0,8 % S 0,3 0,5 % Hg ~ 0,2 mg/kg sušiny Cu ~ 100 mg/kg sušiny Cr ~ 50
TECHNICKÉ MOŽNOSTI A VYBAVENOST ZDROJŮ PRO SPOLUSPALOVÁNÍ TAP Ing. Jan Hrdlička, Ph.D. ČVUT v Praze, Fakulta strojní TAP = tuhé alternativní palivo = RDF = refuse derived fuel, popř. SRF = specified recovered
VíceFinanční podpora státu u opatření na snižování emisí v segmentu velké energetiky na území Moravskoslezského kraje
Finanční podpora státu u opatření na snižování emisí v segmentu velké energetiky na území Moravskoslezského kraje Ing. Radomír Štěrba 9.-10. září 2015 Rožnov pod Radhoštěm ENERGETIKA A ŽIVOTNÍ PROSTŘEDÍ
VíceOBSAH. ZVU Engineering a.s., člen skupiny ZVU, UTILIZAČNÍ KOTLE strana 2
UTILIZAČNÍ KOTLE OBSAH 1 ÚVOD...3 2 KONCEPCE UTILIZAČNÍCH KOTLŮ...4 2.1 Komplexní řešení... 4 2.2 Druh tepelné výměny... 4 2.3 Utilizační jednotky a jejich využití... 5 2.4 Konstrukční materiály, normy...
VíceJak lze získat energii z odpadů v konkrétních regionech a mikroregionech? Ing. Vladimír Ucekaj, Ph.D.
Jak lze získat energii z odpadů v konkrétních regionech a mikroregionech? Ing. Vladimír Ucekaj, Ph.D. NOVĚ: hierarchie nakládání s odpady (Směr. 2006/12/ES): NUTNOST: nové systémy nakládání s odpady s
VíceEVECO Brno, s.r.o. ZAŘÍZENÍ PRO EKOLOGII A ENERGETIKU
EVECO Brno, s.r.o. ZAŘÍZENÍ PRO EKOLOGII A ENERGETIKU Sídlo/kancelář: Březinova 42, Brno Pobočka: Místecká 901, Paskov Česká Republika eveco@evecobrno.cz www.evecobrno.cz INTRODUCTION Společnost EVECO
VíceSPALOVÁNÍ PLYNU ZE ZPLYŇOVÁNÍ BIOMASY
SPALOVÁNÍ PLYNU ZE ZPLYŇOVÁNÍ BIOMASY Jan Škvařil Článek se zabývá energetickými trendy v oblasti využívání obnovitelného zdroje s největším potenciálem v České republice. Prezentuje výzkumnou práci prováděnou
VíceC-Energy Bohemia s.r.o. Ekologizace a obnova teplárny v Plané nad Lužnicí
Zákazník: Název zakázky: C-Energy Bohemia s.r.o. Ekologizace a obnova teplárny v Plané nad Lužnicí Rozsah dodávek společnosti invelt elektro s.r.o.: Projekt, výroba a montáž DCS systému řízení teplárny
VícePROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ ENERGIE
PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ ENERGIE 2010 Ing. Andrea Sikorová, Ph.D. 1 Problémy životního prostředí - energie V této kapitole se dozvíte: Čím se zabývá energetika. Jaké jsou trvalé a vyčerpatelné zdroje
VíceDÁLKOVÉ VYTÁPĚNÍ (DISTRICT HEATING, CZT CENTRALIZOVAN ZÁSOBOVÁNÍ TEPLEM)
DÁLKOVÉ VYTÁPĚNÍ (DISTRICT HEATING, CZT CENTRALIZOVAN ZÁSOBOVÁNÍ TEPLEM) 125TBA1 - prof. Karel Kabele 160 Zdroj tepla Distribuční soustava Předávací stanice Otopná soustava Dálkové vytápění Zdroj tepla
Více5.17.17.14. Kotelny http://www.guard7.cz/nabidka/lexikon-bozp/sektory-bozp/kotelny Bezpečnost práce v kotelnách stanovuje ČSN 07 0703, bezpečnost práce v nízkotlakých kotelnách stanovuje Nařízení vlády
VíceEnergie z odpadních vod. Karel Plotěný
Energie z odpadních vod Karel Plotěný Propojení vody a energie Voda pro Energii Produkce paliv (methan, ethanol, vodík, ) Těžba a rafinace Vodní elektrárny Chladící okruhy Čištění odpadních vod Ohřev vody
VíceAUTOMATICKÝ KOTEL SE ZÁSOBNÍKEM NA SPALOVÁNÍ BIOMASY O VÝKONU 100 KW Rok vzniku: 2010 Umístěno na: ATOMA tepelná technika, Sladkovského 8, Brno
AUTOMATICKÝ KOTEL SE ZÁSOBNÍKEM NA SPALOVÁNÍ BIOMASY O VÝKONU 100 KW Rok vzniku: 2010 Umístěno na: ATOMA tepelná technika, Sladkovského 8, 612 00 Brno Popis Prototyp automatického kotle o výkonu 100 kw
VíceEKODESIGN ROSTOUCÍ POŽADAVKY NA ÚČINNOST ZDROJŮ TEPLA
EKODESIGN ROSTOUCÍ POŽADAVKY NA ÚČINNOST ZDROJŮ TEPLA OBSAH Přehled legislativy Nařízení o ekodesignu č. 813/2013 Předmět nařízení Požadavky na účinnost Stanovení sezonní účinnosti ƞ s SPER pro palivová
VícePEVNÁ PALIVA. Základní dělení: Složení paliva: Fosilní-jedná se o nerostnou surovinu u našich výrobků se týká jen hnědouhelné brikety
PEVNÁ PALIVA Základní dělení: Fosilní-jedná se o nerostnou surovinu u našich výrobků se týká jen hnědouhelné brikety Biomasa obnovitelný zdroj energie u našich výrobků se týká dřeva a dřevních briket Složení
VíceNÍZKÝ KOTEL 5 EMISÍ TŘÍDY S AUTOMATICKÝM PODÁVÁNÍM UHLÍ
SAS SPARK NÍZKÝ KOTEL 5 EMISÍ TŘÍDY S AUTOMATICKÝM PODÁVÁNÍM UHLÍ VE VÝKONU 12 kw- 36 kw speciálně vyvinutý pro nízké kotelny MATERIÁL: P265GH ocel 6 mm, prvky topeniště z nerezové oceli 1.4301 ÚČINNOST:
VíceNedokonalé spalování. Spalování uhlíku C na CO. Metodika kontroly spalování. Kontrola jakosti spalování. Části uhlíku a a b C + 1/2 O 2 CO
Nedokonalé spalování palivo v kotli nikdy nevyhoří dokonale nedokonalost spalování je příčinou ztrát hořlavinou ve spalinách hořlavinou v tuhých zbytcích nedokonalost spalování tuhých a kapalných paliv
VíceVliv V daf na výbušnost prášku
Předběžný návrh koncepce kotle a přípravy paliva Podle zadaných parametrů se volí typ parního generátoru (výparníku) s přirozeným oběhem, nucenou nebo superponovanou cirkulací průtočný. Zvolí se uspořádání
VíceODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv Spalovací turbíny Ing. Jan Andreovský Ph.D.
ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE Spalování paliv Spalovací turbíny Ing. Jan Andreovský Ph.D. Spalovací turbíny Základní informace Historie a vývoj Spalovací
VíceVliv V daf na výbušnost prášku
Předběžný návrh koncepce kotle a přípravy paliva Podle zadaných parametrů se volí typ parního generátoru (výparníku) s přirozeným oběhem, nucenou nebo superponovanou cirkulací průtočný. Zvolí se uspořádání
Více1) Parní kotel a jeho začlenění v oběhu parní elektrárny, hlavní znaky, T-s diagram, mezipřehřívák, tok pracovního média, účinnost elektrárny
1) Parní kotel a jeho začlenění v oběhu parní elektrárny, hlavní znaky, T-s diagram, mezipřehřívák, tok pracovního média, účinnost elektrárny Parní elektrárna se skládá z celé řady provozních zařízení
VícePŘEHŘÍVÁK PÁRY. Charakteristika přehříváku
PŘEHŘÍVÁK PÁRY Účelem použití přehříváku je zvýšení účinnosti cyklu snížení vlhkosti po expanzi v turbíně. Pára se musí přehřívat na konstantní teplotu - materiál je obvykle využit do krajnosti Kolísáním
VíceNedokonalé spalování. Spalování uhlíku C na CO. Metodika kontroly spalování. Kontrola jakosti spalování. Části uhlíku a a b C + 1/2 O 2 CO
Nedokonalé spalování palivo v kotli nikdy nevyhoří dokonale nedokonalost spalování je příčinou ztrát hořlavinou ve spalinách hořlavinou v tuhých zbytcích nedokonalost spalování tuhých a kapalných paliv
VíceDÁLKOVÉ VYTÁPĚNÍ =DISTRICT HEATING, = SZT SYSTÉM ZÁSOBOVÁNÍ TEPLEM = CZT CENTRALIZOVANÉ ZÁSOBOVÁNÍ TEPLEM
DÁLKOVÉ VYTÁPĚNÍ =DISTRICT HEATING, = SZT SYSTÉM ZÁSOBOVÁNÍ TEPLEM = CZT CENTRALIZOVANÉ ZÁSOBOVÁNÍ TEPLEM 184 Zdroj tepla Distribuční soustava Předávací stanice Otopná soustava Dálkové vytápění Zdroj tepla
VíceTECHNICKÁ ZAŘÍZENÍ BUDOV
Katedra prostředí staveb a TZB TECHNICKÁ ZAŘÍZENÍ BUDOV Cvičení pro bakalářské studium studijního oboru Příprava a realizace staveb Cvičení č. 7 Zpracoval: Ing. Zdeněk GALDA Nové výukové moduly vznikly
Víceití,, výhody a nevýhody jednotlivých zdrojů
Účel použit ití,, výhody a nevýhody jednotlivých zdrojů vytápění Ing. Jan Koloničný, Ph.D. Seminář: : Technologické trendy ve vytápění pevnými palivy 21.10. 22.10.2009 Pozlovice 1 Obsah prezentace Rozdělení
Více1/79 Teplárenské zdroje
1/79 Teplárenské zdroje parní protitlakové turbíny parní odběrové turbíny plynové turbíny s rekuperací paroplynový cyklus Teplárenské zdroje 2/79 parní protitlaké turbíny parní odběrové turbíny plynové
VíceNakládání s odpady v Brně
Nakládání s odpady v Brně Ing. Jiří Kratochvil ředitel akciové společnosti Představení společnosti Představení společnosti Nakládání s odpady PŘEDCHÁZENÍ VZNIKU ODPADU OPĚTOVNÉ VYUŽITÍ MATERIÁLOVÉ VYUŽITÍ
VíceKRAJSKÉ INTEGROVANÉ CENTRUM VYUŽÍVÁNÍ KOMUNÁLNÍCH ODPADŮ PRO MORAVSKOSLEZSKÝ KRAJ
KRAJSKÉ INTEGROVANÉ CENTRUM VYUŽÍVÁNÍ KOMUNÁLNÍCH ODPADŮ PRO MORAVSKOSLEZSKÝ KRAJ Plánovaný projekt v rámci optimalizace krajského systému integrovaného systému nakládání s komunálním odpadem Obsah krajský
VíceTepelné zpracování odpadu
Seminář KONEKO: Prováděcí vyhláška 415/2012 Sb., metodické pokyny a stanoviska MŽP k zákonu o ovzduší Tepelné zpracování odpadu Mgr. Pavel Gadas odbor ochrany ovzduší, MŽP Obecný legislativní rámec Národní
VíceSC 2.5 SNÍŽENÍ ENERGETICKÉ NÁROČNOSTI V SEKTORU BYDLENÍ
SC 2.5 SNÍŽENÍ ENERGETICKÉ NÁROČNOSTI V SEKTORU BYDLENÍ Specifická kritéria přijatelnosti pro SC 2.5 Snížení energetické náročnosti v sektoru bydlení Název kritéria Aspekt podle Metodického pokynu pro
VíceVliv paliva na konstrukční provedení kotle
Předběžný návrh koncepce kotle a přípravy paliva Podle zadaných parametrů se volí typ parního generátoru (výparníku) s přirozeným oběhem, nucenou nebo superponovanou cirkulací průtočný. Zvolí se uspořádání
VíceTematické okruhy z předmětu Vytápění a vzduchotechnika obor Technická zařízení budov
Tematické okruhy z předmětu Vytápění a vzduchotechnika obor Technická zařízení budov 1. Klimatické poměry a prvky (přehled prvků a jejich význam z hlediska návrhu a provozu otopných systémů) a. Tepelná
VíceSC 2.5 SNÍŽENÍ ENERGETICKÉ NÁROČNOSTI V SEKTORU BYDLENÍ
SC 2.5 SNÍŽENÍ ENERGETICKÉ NÁROČNOSTI V SEKTORU BYDLENÍ Specifická kritéria přijatelnosti pro SC 2.5 Snížení energetické náročnosti v sektoru bydlení Název kritéria Aspekt podle Metodického pokynu pro
VíceStudie proveditelnosti rozvoje skládky Chotíkov
Studie proveditelnosti rozvoje skládky Chotíkov Plzeňská teplárenská, a.s. 304 10 Plzeň, Doubravecká 2578/1 Tel.: 377 180 111, Fax: 377 235 845 E-mail: inbox@plzenskateplarenska.cz Množství odpadů v Plzni
VíceROŠTOVÝ KOTEL NA SPALOVÁNÍ UHLÍ A NEBO DŘEVNÍ BIOMASY O PARAMETRECH 200 T/H, 9,3 MPA, 520 C
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE ROŠTOVÝ KOTEL NA SPALOVÁNÍ UHLÍ A NEBO DŘEVNÍ
VíceKotle a kotelny
5.6.16.7.1.1. Kotle a kotelny http://www.guard7.cz/lexikon/lexikon-bozp/stroje-technicka-zarizenipristroje-a-naradi/vyhrazena-technicka-zarizeni/vyhrazena-tlakovazarizeni/kotle-a-kotelny Základní podmínky
Více* odstavení s algoritmem pro dohoření paliva a vyčištění roštu od nedohořelého paliva zvýšeným výkonem ventilátoru.
Instalační podmínky, schemata a regulace pro peletový kotel GFN s hořákem SUN P7 Instalační podmínky nutné pro provoz peletového hořáku FERROLI SUN P7 Provoz peletového hořáku má atypický průběh odlišný
VícePrezentace společnosti VENTOS s.r.o.
Prezentace společnosti VENTOS s.r.o. Úspory energií v komunální oblasti a průmyslu-využití odpadního tepla V současné době, kdy dochází k dramatickému snižování emisních limitů a postupnému růstu cen vstupních
Více