Exprese rekombinantních proteinů
|
|
- Bohumila Křížová
- před 9 lety
- Počet zobrazení:
Transkript
1 Exprese rekombinantních proteinů Exprese rekombinantních proteinů je proces, při kterém můžeme pomocí různých expresních systémů vytvořit protein odvozený od konkrétního genu, nebo části genu. Tento protein lze purifikačním systémem oddělit od nežádoucích nečistot a získat tak čistý produkt. Čistý protein můžeme následně použít k různým účelům v oboru molekulární biologie, imunologie apod. Existuje několik typů expresních systémů, které můžeme rozdělit na dvě hlavní třídy, eukaryotní a prokaryotní. Prokaryotní expresní systémy: bakteriální Bakteriální expresní systém je v běžné praxi nejznámější a nejpoužívanější systém pro expresi rekombinantních proteinů. Jeho výhodou je především jednoduchost, a vysoký výtěžek exprimovaného proteinu. Samotná exprese není finančně, ani časově náročná (24 hodin). Od bakteriálního expresního systému ovšem nesmíme vyžadovat vysoké nároky na kvalitu proteinu. Přesněji řečeno, systém neumožňuje postranslační modifikace, což může ovlivnit terciální strukturu proteinu. V bakteriích lze také exprimovat protein omezené velikosti, maximální molekulová hmotnost proteinu se pohybuje kolem 150 kda. Proteiny jsou v bakteriích exprimovány buď do cytosolu, nebo se hromadí v inkluzních tělískách. Typ exprese závisí zejména na struktuře rekombinantního proteinu a nelze ho cíleně ovlivnit. Dle typu exprese je tedy nutné zvolit správný druh purifikace proteinu. Eukaryotní expresní systémy: kvasinkové, hmyzí, savčí Kvasinkový systém je v oboru druhým nejpoužívanějším expresním systémem. Nároky na obtížnost a finanční dostupnost se výrazně neliší od bakteriálního systému, je jen třeba počítat s delším časovým plánem. V kvasinkovém systému lze také na rozdíl od bakterií produkovat protein větší než 150 kda. V kvasinkách navíc probíhají postranslační modifikace, potřebné pro formování proteinu do přirozené struktury. Nevýhodou je hlavně nízký výtěžek produktu. Kvasinky produkují rekombinantní protein buď do cytosolu, nebo sekretoricky do růstového média. Typ exprese lze ovlivnit správným výběrem exrpesního vektoru. Exprese proteinu v buňkách hmyzu je specializovaný typ exprese, kdy je nutné pracovat ve striktně aseptickém prostředí. Exprse rekombinantního proteinu je náročná na praktické provedení, čas i finanční porstředky. Také výtěžek exprese se pohybuje ve velice nízkých koncentracích. Výhodou systému je výroba proteinu v buňkách mnohobuněčného organismu. Savčí expresní systém je velice podobný systému hmyzímu. Ke kultivaci savčích buněk ovšem potřebujeme speciální inkubátor, který zajistí specifickou hladinu kyslíku a oxidu uhličitého. Proto se tento expresní systém používá pouze ve specializovaných laboratořích.
2 Exprese rekombinantního proteinu v E. coli V úvodním odstavci jsou uvedeny základní informace o bakteriálním expresním systému. Následující text se zaměří na konkrétní problematiku exprese v E. coli, dále principy exprese a purifikace rekombinantních proteinů. Inzert: Inzert je lineární molekula DNA, která nese sekvenci nukleotidů kódující rekombinantní protein. Inzert je specificky upravený pro zaklonování do expresního vektoru tak, že jsou na koncích sekvence proteinu přidaná restrikční místa kompatibilní s expresním vektorem. Pomocí restrikčních endonukleáz lze pak jednoduše vytvořit ligační přesahy a zaklonovat inzert do vektoru. Inzert musí nést sekvenci pro začátek transkripce (methionin) a stop kodon pro ukončení transkripce. Dále by měl inzert obsahovat specifickou signální sekveni, pomocí které lze exprimovaný protein následně identifikovat a přečistit. Obrázek 1: Schéma komponent inzertu Expresní vektory: Expresní vektor je plasmid (kruhová molekula DNA), speciálně upravený pro expresi rekombinantních proteinů v bakteriích. Expresní vektor je složen z několika základních sekvencí důležitých pro integraci inzertu, selekci bakteriálního klonu a expresi proteinu (viz obrázek).
3 Obrázek 2: Expresní vektor Komponenty expresního vektoru: T7 promotor (T7 promoter) je sekvence vektoru, na kterou specificky nasedá transkripční enzym T7 RNA polymeráza, která je zodpovědná za transkripci inzertu. T7 RNA polymeráza není bakteriální enzym, ale pochází z bakteriofága λ, což zajišťuje vazebnou specificitu pouze na jednom úseku DNA expresním vektoru. T7 počátek transkripce (T7 transkription start) je místo, kde začíná T7 RNA polymeráza syntetizovat mrna inzertu. His Tag sekvence (His Tag coding sequence) je úsek DNA kódující histidinovou kotvu užitečnou pro detekci a purifikaci proteinu (viz dále). Pokud His tag sekvenci z nějakého důvodu nechceme, či nepotřebujeme, lze ji jednoduše z vektoru vyštěpit restrikčními endonukleázami. Klonovací místo (Multiple cloning site) je místo na vektoru, kam lze zaklonovat inzert. Tento úsek vektorové DNA obsahuje několik specifických sekvencí pro různé restrikční endonukleázy a tím plní funkci univerzálního klonovacího místa. T7 terminátor (T7 terminator) je místem pro ukončení transkripce inzertu. LacI sekvence (LacI coding sequence) je gen, který kóduje lac represor. Lac represor je protein, který se bez přítomnosti IPTG (isopropyl-beta-d-thiogalaktopyranosid) váže na DNA vektoru do blízkosti T7 promotoru a blokuje tak aktivitu T7 RNA
4 polymerázy. V opačném případě se represor na molekuli IPTG naváže, což umožní T7 RNA polymeráze nasednout na promotor a zahájit transkripci (viz obrázek 3). pbr322 počátek replikace (pbr322 origin) je sekvence důležitá pro replikaci plasmidu během kultivace bakteriální kultury. bla kódující sekvence (bla coding sequence) je gen, který kóduje resistenci k ampicilinu. Pomocí resistence k antibiotiku lze v médiu obohaceném ampicilinem snadno selektovat bakteriální klony, které obsahují expresní vektor. Expresní buňky: BL21, Rosseta, Origami BL21 jsou geneticky modifikované kmeny E. coli, které mají genom speciálně upravený tak, abychom mohli cíleně ovlivnit a načasovat expresi rekombinantního proteinu. Klíčocou roli zde hraje gen laci, který kóduje lac represor, a gen DE3, který nese informaci pro syntézu T7 RNA polymerázy zodpovědnou za transkripci inzertu. Lac represor nasedá na lac promotor (promotor genu DE3), blokuje tím syntézu T7 RNA polymerázy a transkripce rekombinantního proteinu na vektoru neprobíhá. Pokud je v buňce přítomen IPTG, váže na sebe lac represor, který se uvolní z vazby na lac promotor a umožní tím syntézu T7 RNA polymerázy (viz obrázek 3). Rosseta jsou expresní buňky odvozené od kmenu BL21. Tyto buňky mají navíc upravené t-rna kodony pro syntézu proteinů tak, aby snáze probíhala syntéza eukaryotních genů v prokaryotním systému. Origami B je expresní kmen odvozený od kmene BL21, který zároveň přejímá výhod kmene Origami a usnadňuje tak tvorbu disulfidických můstků cílového proteinu. Obrázek 3: Schéma principu indukce exprese rekombinantního proteinu
5 Expresní média a kultivační podmínky: Kultivace expresních buněk bakteriálního systému probíhá v LB mediu za standardních podmínek (37 C, rpm), za přítomnosti IPTG a antibiotika. Pokud exprese probíhá pouze v termostatu, je doporučeno kultivovat bakterie v malém množství média (1/4 objemu kultivační baňky) po dobu 4 6 hodin (Stationary phase). Po delší inkubaci v médiu začnou ubývat živiny, hromadí se odpadní látky a klesá schopnost dělení a přežívání bakterií (Death phase). Dále se zpomaluje exprese proteinu, který může být navíc poškozen stresovým stavem umírajících bakterií. Obrázek 4: Růstová křivka bakteriální kultury Pro zvýšení výtěžku exprese se doporučuje použít pro kultivaci speciální přístroj fermentor, který na základě měření ph, O2, CO2 a živin upravuje podmínky pro růst bakterií tak, aby bylo možné exprimovat rekombinantní protein po dobu 24 hodin za konstatních podmínek. Obrázek 5: Fermentor
6 Systémy purifikace proteinů: Afinitní chromatografie, purifikace z inkluzních tělsíek Afinitní chromatografie je metoda, která umožňuje ze směsi proteinů oddělit relativně čistou frakci jediného proteinu, nebo přpíbuzných proteinů. Principem metody je vazba purifikovaného proteinu na ligand ukotvený na koloně, promytí nežádoucích nenavázaných proteinů a uvolnění purifikovaného proteinu do čisté fáze. V laboratorní praxi se při purifikaci nejvíce osvědčil systém založený na interakci iontu kovu (Ni 2+, Zn 2+, Cu 2+ ) s histidinem (hexahistidinová kotva). Na chromatografické koloně tak dochází k vazbě proteinu označeného hexahistidinovou kotvou na částice kovu (ligand), který je pevnou součástí výplně kolony (agarózy). Po důkaldném vymytí nenavázané proteinové frakce mobilní fází následuje pomocí imidazolu uvolnění histidinové kotvy z vazby. Jelikož imidazol vykazuje vyšší afinitu k částicím kovu, vytěsní svou vazbou histidinovou kotvu a purifikovaný protein je následně uvolněn do eluční fáze. Obrázek 6: Kolonka na afinitní chromatografii Tato metoda umožňuje purifikaci proteinů buď za nativních nebo denaturačních podmínek. Za nativních podmínek lze purifikovat rozpustný protein, který se nachází v cytosolu bakterií. Purifikovaný protein si za nativnívch podmínek uchová přirozenou strukturu a aktivitu, což má výhodu pro následné využití proteinu. Denaturační podmínky lze zvolit za situace, že je rekombinantní protein nerozpustný a bakterie ho ukaládá do struktur zvaných inkluzní tělíska. Nerozpustný protein poznáme jeho přítomností v lyzovaném bakteriálním peletu. Purifikace z inkluzních tělsíek je poměrně elegantní purifikační metoda vhodná především v případě, pokud zjistíme, že je sledovaný protein nerozpustný a bakterie ho shromažďuje v inkluzních tělískách. Principem je několikanásobná lýze nakultivovaného buněčného materiálu. Při první lýze bakteriální kultuy se po centrifugaci uvolní do supernatantu jako odpadní produkt proteiny cytosolu. Opětovnou lýzou a centrifugací ve speciálních pufrech získáme samostatná inkluzní tělíska a následně čistý protein. Známým lyzačním pufrem je komerčně vyráběný B- PER (bacterial protein extractin reagent, Pierce), který ovšem může odradit vysokou cenou. Pro izolaci proteinu z inkluzních tělísek ve větší míře se proto vyplatí použít běžný protokol dostupný na webu, nebo v odborné literatuře.
7 Jelikož se pro purifikaci proteinů ve většině protokolů používají koncentrované roztoky solí a jiných nežádouích chemikálií, je třeba proteinový vzorek před vlastním využitím dialyzovat proti vhodnému pufru (např. PBS). Dále je důležité protein správně uskladnit. Typy uskladnění proteinů nabízí obrázek 7 (Pierce). Obrázek 7: Skaldování proteinů Detekce: SDS-page, western blot, hmotnostní spektrometrie K detekci exprese rekombinantního proteinu je možné použít základních metod pro práci s proteiny a to SDS-page elektroforézu a western blot analýzu. Principy obou metod jsou probírány v kurzu Základní metody molekulární biologie. Speciální kapitolou analýzy proteinů je hmotnostní spektrometrie. Pomocí této metody lze velice přesně identifikovat sledovaný protein z roztoku, nebo elektroforetického gelu a ověřit tak jeho identitu porovnáním s databází, nebo známou sekvencí proteinu. Analýza proteinu hmotnostní spektrometrií je ovšem poměrně finančně náročná a lze ji provádět pouze na specializovaných pracovištích.
Exprese a purifikace rekombinantních proteinů
Jméno a učo: Datum: Exprese a purifikace rekombinantních proteinů Teoretická část Pomocí různých expresních systémů je možné vytvořit rekombinantní protein odvozený od konkrétního genu, nebo části genu.
1. Metodika. Protokol č. F1-4 Metodika: Srovnávací analýza efektivity přípravy rekombinantního proteinu ve fermentoru
Protokol č.: F1-4 Datum: 20.12.2010 Metodika: analýza efektivity přípravy výběr z výsledků ze zkušebních provozů výroby antigenů. Vypracoval: Ing. Václav Filištein, Mgr. Tereza Chrudimská, Spolupracující
Zdrojem je mrna. mrna. zpětná transkriptáza. jednořetězcová DNA. DNA polymeráza. cdna
Obsah přednášky 1) Klonování složených eukaryotických genů 2) Úprava rekombinantních genů 3) Produkce rekombinantních proteinů v expresních systémech 4) Promotory 5) Vektory 6) Reportérové geny Zdrojem
Klonování DNA a fyzikální mapování genomu
Klonování DNA a fyzikální mapování genomu. Terminologie Klonování je proces tvorby klonů Klon je soubor identických buněk (příp. organismů) odvozených ze společného předka dělením (např. jedna bakteriální
Příprava vektoru IZOLACE PLASMIDU ALKALICKÁ LYZE, KOLONKOVÁ IZOLACE DNA GELOVÁ ELEKTROFORÉZA RESTRIKČNÍ ŠTĚPENÍ. E. coli. lyze buňky.
Příprava vektoru IZOLCE PLSMIDU LKLICKÁ LYZE, KOLONKOVÁ IZOLCE DN E. coli plasmidová DN proteiny proteiny + + vysrážená plasmidová lyze buňky + snížení ph chromosomální DN centrifugace DN chromosomální
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Mária Čudejková 2. Transkripce genu a její regulace Transkripce genetické informace z DNA na RNA Transkripce dvou genů zachycená na snímku z elektronového mikroskopu.
Izolace nukleových kyselin
Izolace nukleových kyselin Požadavky na izolaci nukleových kyselin V nativním stavu z přirozeného materiálu v dostatečném množství požadované čistotě. Nukleové kyseliny je třeba zbavit všech látek, které
Protokoly Transformace plasmidu do elektrokompetentních buněk BL21 Pracovní postup:
Protokoly Pracovní potřeby, pufry a chemikálie jsou uvedeny na konci protokolu. Pracovní postupy jsou odvozeny od těchto kitů: Champion pet160 Directional TOPO Expression Kit with Lumio Technology (Invitrogen)
MIKROBIOLOGIE V BIOTECHNOLOGII
Biotechnologie MIKROBIOLOGIE V BIOTECHNOLOGII Termín biotechnologie byl poprvé použit v roce 1917 Procesy, při kterých se na tvorbě výsledného produktu podílejí živé organismy Širší definice: biotechnologie
MIKROBIOLOGIE V BIOTECHNOLOGII
Biotechnologie MIKROBIOLOGIE V BIOTECHNOLOGII Využití živých organismů pro uskutečňování definovaných chemických procesů pro průmyslové nebo komerční aplikace Organismus je geneticky upraven metodami genetického
Rekombinantní protilátky, bakteriofágy, aptamery a peptidové scaffoldy pro analytické a terapeutické účely Luděk Eyer
Rekombinantní protilátky, bakteriofágy, aptamery a peptidové scaffoldy pro analytické a terapeutické účely Luděk Eyer Virologie a diagnostika Výzkumný ústav veterinárního lékařství, v.v.i., Brno Alternativní
Molekulární biotechnologie č.9. Cílená mutageneze a proteinové inženýrství
Molekulární biotechnologie č.9 Cílená mutageneze a proteinové inženýrství Gen kódující jakýkoliv protein lze izolovat z přírody, klonovat, exprimovat v hostitelském organismu. rekombinantní protein purifikovat
Izolace RNA. doc. RNDr. Jan Vondráček, PhD..
Izolace RNA doc. RNDr. Jan Vondráček, PhD.. Metodiky izolace RNA celková buněčná RNA ( total RNA) zahrnuje řadu typů RNA, které se mohou lišit svými fyzikálněchemickými vlastnostmi a tedy i nároky na jejich
Interakce proteinu p53 s genomovou DNA v kontextu chromatinu glioblastoma buněk
MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fakulta Ústav experimentální biologie Oddělení genetiky a molekulární biologie Interakce proteinu p53 s genomovou DNA v kontextu chromatinu glioblastoma buněk
Metody práce s proteinovými komplexy
Metody práce s proteinovými komplexy Zora Nováková, Zdeněk Hodný Proteinové komplexy tvořeny dvěma a více proteiny spojenými nekovalentními vazbami Van der Waalsovy síly vodíkové můstky hydrofobní interakce
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 7. Interakce DNA/RNA - protein Ivo Frébort Interakce DNA/RNA - proteiny v buňce Základní dogma molekulární biologie Replikace DNA v E. coli DNA polymerasa a
Column DNA Lego Kit UNIVERZÁLNÍ SOUPRAVY PRO RYCHLOU IZOLACI ČISTÉ DNA (Katalogové číslo D201 + D202)
Column DNA Lego Kit UNIVERZÁLNÍ SOUPRAVY PRO RYCHLOU IZOLACI ČISTÉ DNA (Katalogové číslo D201 + D202) Popis Column DNA Lego Kit je základ moderní stavebnicové (Lego) soupravy pro izolaci čisté DNA různého
Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza
Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových
Exprese genetické informace
Exprese genetické informace Tok genetické informace DNA RNA Protein (výjimečně RNA DNA) DNA RNA : transkripce RNA protein : translace Gen jednotka dědičnosti sekvence DNA nutná k produkci funkčního produktu
Zkušební okruhy k přijímací zkoušce do magisterského studijního oboru:
Biotechnologie interakce, polarita molekul. Hydrofilní, hydrofobní a amfifilní molekuly. Stavba a struktura prokaryotní a eukaryotní buňky. Viry a reprodukce virů. Biologické membrány. Mikrobiologie -
Úloha protein-nekódujících transkriptů ve virulenci patogenních bakterií
Téma bakalářské práce: Úloha protein-nekódujících transkriptů ve virulenci patogenních bakterií Nové odvětví molekulární biologie se zabývá RNA molekulami, které se nepřekládají do proteinů, ale slouží
Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA
Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA
Molekulární biotechnologie č.12. Využití poznatků molekulární biotechnologie. Transgenní rostliny.
Molekulární biotechnologie č.12 Využití poznatků molekulární biotechnologie. Transgenní rostliny. Transgenní organismy Transgenní organismus: Organismus, jehož genom byl geneticky modifikován cizorodou
Molekulární biotechnologie č.8. Produkce heterologního proteinu v eukaryontních buňkách
Molekulární biotechnologie č.8 Produkce heterologního proteinu v eukaryontních buňkách Eukaryontní buňky se využívají v případě, když Eukaryontní proteiny syntetizované v baktériích postrádají biologickou
Praktické cvičení: Izolace a purifikace rekombinantního proteinu
Praktické cvičení: Izolace a purifikace rekombinantního proteinu Toto blokové praktické cvičení spočívá v teoretickém i praktickém seznámení s rekombinantními proteiny, jejich izolací, purifikací a využitím.
1. Definice a historie oboru molekulární medicína. 3. Základní laboratorní techniky v molekulární medicíně
Obsah Předmluvy 1. Definice a historie oboru molekulární medicína 1.1. Historie molekulární medicíny 2. Základní principy molekulární biologie 2.1. Historie molekulární biologie 2.2. DNA a chromozomy 2.3.
Metody molekulární biologie
Metody molekulární biologie 1. Základní metody molekulární biologie A. Izolace nukleových kyselin Metody využívající různé rozpustnosti Metody adsorpční Izolace RNA B. Centrifugační techniky o Princip
analýza dat a interpretace výsledků
Genetická transformace bakterií III analýza dat a interpretace výsledků Předmět: Biologie ŠVP: Prokaryotní organismy, genetika Doporučený věk žáků: 16-18 let Doba trvání: 45 minut Specifické cíle: analyzovat
Příprava rekombinantních molekul pro diagnostické účely
1 Příprava rekombinantních molekul pro diagnostické účely doc. RNDr. Milan Bartoš, Ph.D. bartosm@vfu.cz Přírodovědecká fakulta MU, 2014 2 Obsah přednášky 1) Pojem rekombinantní DNA 2) Historické milníky
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Ivo Frébort 4. Metody molekulární biologie I Izolace DNA a RNA Specifické postupy pro baktérie, kvasinky, rostlinné a živočišné tkáně U RNA nutno zabránit kontaminaci
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. OBVSB/Obecná virologie Tento projekt je spolufinancován Evropským
ÚLOHA C Klonování PCR produktu do plasmidu
Jméno a učo: Datum: ÚLOHA C Klonování PCR produktu do plasmidu TEORETICKÝ ÚVOD Při klonování PCR produktů do plasmidů se využívá vlastnosti Taq polymerasy, a jiných non-proofreading polymeras, přidávat
Autor prezentace: Mgr. Michal Křupka
Práce s inkluzními tělísky Refoldování Fúzní proteiny Autokatalitická technika odštěpení fúzní kotvy a její separace od rekombinantního proteinu Mgr. Michal Křupka Ústav imunologie LF UP Inkluzní tělíska
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
I n v e s t i c e d o r o z v o j e v z d ě l á v á n í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Genomika (KBB/GENOM) Fyzické mapování Fyzické cytogenetické a fyzické molekulární mapy Ing. Hana Šimková, CSc. Cíl přednášky
Hybridizace nukleových kyselin
Hybridizace nukleových kyselin Tvorba dvouřetězcových hybridů za dvou jednořetězcových a komplementárních molekul Založena na schopnosti denaturace a renaturace DNA. Denaturace DNA oddělení komplementárních
Replikace, transkripce a translace
Replikace, transkripce a translace Pravděpodobnost zařazení chybné báze cca 1:10 4, reálně 1:10 10 ; Proč? Výběr komplementární base je zásadní pro správnost mezigeneračního předávání genetické informace
Bílkoviny a rostlinná buňka
Bílkoviny a rostlinná buňka Bílkoviny Rostliny --- kontinuální diferenciace vytváření orgánů: - mitotická dělení -zvětšování buněk a tvorba buněčné stěny syntéza bílkovin --- fotosyntéza syntéza bílkovin
Seminář izolačních technologií
Seminář izolačních technologií Zpracoval: Karel Bílek a Kateřina Svobodová Podpořeno FRVŠ 2385/2007 a 1305/2009 Úpravy a aktualizace: Pavla Chalupová ÚMFGZ MZLU v Brně 1 Lokalizace jaderné DNA 2 http://www.paternityexperts.com/basicgenetics.html
IV117: Úvod do systémové biologie
IV117: Úvod do systémové biologie David Šafránek 3.12.2008 Obsah Obsah Robustnost chemotaxe opakování model chemotaxe bakterií nerozliseny stavy aktivity represoru aktivita = ligandy a konc. represoru
2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:
Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ELEKTROMIGRAČNÍ METODY
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ELEKTROMIGRAČNÍ METODY ELEKTROFORÉZA K čemu to je? kritérium čistoty preparátu stanovení molekulové hmotnosti makromolekul stanovení izoelektrického
Aplikovaná bioinformatika
Aplikovaná bioinformatika Číslo aktivity: 2.V Název klíčové aktivity: Na realizaci se podílí: Implementace nových předmětů do daného studijního programu doc. RNDr. Michaela Wimmerová, Ph.D., Mgr. Josef
Metody používané v MB. analýza proteinů, nukleových kyselin
Metody používané v MB analýza proteinů, nukleových kyselin Nukleové kyseliny analýza a manipulace Elektroforéza (délka fragmentů, čistota, kvantifikace) Restrikční štěpení (manipulace s DNA, identifikace
Obsah přednášky. 1) Exprese v Escherichia coli 2) Exprese v Saccharomyces cerevisiae 3) Exprese v Pichia pastoris 4) Exprese v hmyzích buňkách
Obsah přednášky 1) Exprese v Escherichia coli 2) Exprese v Saccharomyces cerevisiae 3) Exprese v Pichia pastoris 4) Exprese v hmyzích buňkách Exprese v Escherichia coli proteiny větší než malé proteiny
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Metody používané v MB. analýza proteinů, nukleových kyselin
Metody používané v MB analýza proteinů, nukleových kyselin Nukleové kyseliny analýza a manipulace Elektroforéza (délka fragmentů, čistota, kvantifikace) Restrikční štěpení (manipulace s DNA, identifikace
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
IZOLACE, SEPARACE A DETEKCE PROTEINŮ I. Vlasta Němcová, Michael Jelínek, Jan Šrámek
IZOLACE, SEPARACE A DETEKCE PROTEINŮ I Vlasta Němcová, Michael Jelínek, Jan Šrámek Studium aktinu, mikrofilamentární složky cytoskeletu pomocí dvou metod: detekce přímo v buňkách - fluorescenční barvení
Genové knihovny a analýza genomu
Genové knihovny a analýza genomu Klonování genů Problém: genom organismů je komplexní a je proto obtížné v něm najít a klonovat specifický gen Klonování genů Po restrikčním štěpení genomové DNA pocházející
Bakteriální transpozony
Bakteriální transpozony Transpozon = sekvence DNA schopná transpozice, tj. přemístění z jednoho místa v genomu do jiného místa Transpozice = proces přemístění transpozonu Transponáza (transpozáza) = enzym
Proteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D.
Proteiny Genová exprese 2013 Doc. MVDr. Eva Bártová, Ph.D. Bílkoviny (proteiny), 15% 1g = 17 kj Monomer = aminokyseliny aminová skupina karboxylová skupina α -uhlík postranní řetězec Znát obecný vzorec
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
I n v e s t i c e d o r o z v o j e v z d ě l á v á n í I ti d j dělá á í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním
Mendelova univerzita v Brně Agronomická fakulta Ústav biologie rostlin
Mendelova univerzita v Brně Agronomická fakulta Ústav biologie rostlin Inovace praktických cvičení molekulárně-biologických předmětů o sekvenční úlohy PRACOVNÍ PROTOKOL PRO PŘEDMĚT METODY MOLEKULÁRNÍ A
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ 4. Metody molekulární biologie I Izolace DNA a RNA Specifické postupy pro baktérie, kvasinky, rostlinné a živočišné tkáně U RNA nutno zabránit kontaminaci RNasami
GENOTOXICITA A ZMĚNY V GENOVÉ EXPRESI
GENOTOXICITA A ZMĚNY V GENOVÉ EXPRESI INDUKOVANÉ PŮSOBENÍM ORGANICKÝCH LÁTEK Z PRACHOVÝCH ČÁSTIC V OVZDUŠÍ Kateřina Hanzalová Oddělení genetické ekotoxikologie Ústav experimentální medicíny AV ČR v.v.i.
Imunochemické metody. na principu vazby antigenu a protilátky
Imunochemické metody na principu vazby antigenu a protilátky ANTIGEN (Ag) specifická látka (struktura) vyvolávající imunitní reakci a schopná vazby na protilátku PROTILÁTKA (Ab antibody) molekula bílkoviny
Determinanty lokalizace nukleosomů
METODY STUDIA CHROMATINU Topologie DNA a nukleosomů Struktura nukleosomu 1.65-1.8 otáčky Struktura nukleosomu 10.5 nt 1.8 otáčky 10n, 10n + 5 146 nt Determinanty lokalizace nukleosomů mechanické vlastnosti
Magnetické částice, izolace a detekce chřipky (hemaglutininu)
Název: Magnetické částice, izolace a detekce chřipky (hemaglutininu) Školitel: Ludmila Krejčová, MVDr. Datum: 7.11. 2013 Reg.č.projektu: CZ.1.07/2.4.00/31.0023 Název projektu: Partnerská síť centra excelentního
19.b - Metabolismus nukleových kyselin a proteosyntéza
19.b - Metabolismus nukleových kyselin a proteosyntéza Proteosyntéza vyžaduje především zajištění primární struktury. Informace je uložena v DNA (ev. RNA u některých virů) trvalá forma. Forma uskladnění
TRANSLACE - SYNTÉZA BÍLKOVIN
TRANSLACE - SYNTÉZA BÍLKOVIN Translace - překlad genetické informace z jazyka nukleotidů do jazyka aminokyselin podle pravidel genetického kódu. Genetický kód - způsob zápisu genetické informace Kód Morseovy
Tématické okruhy pro státní závěrečné zkoušky
Tématické okruhy pro státní závěrečné zkoušky Obor Povinný okruh Volitelný okruh (jeden ze dvou) Forenzní biologická Biochemie, pathobiochemie a Toxikologie a bioterorismus analýza genové inženýrství Kriminalistické
Tématické okruhy pro státní závěrečné zkoušky
Tématické okruhy pro státní závěrečné zkoušky Program / Obor Povinný okruh Volitelný okruh (jeden ze tří) Mikrobiologie a buněčná biologie Mikrobiologie životního prostředí Obor: Mikrobiologie Bioinženýrství
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Vztah struktury a funkce nukleových kyselin. Replikace, transkripce
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vztah struktury a funkce nukleových kyselin. Replikace, transkripce Nukleová kyselina gen základní jednotka informace v živých systémech,
Molekulárn. rní. biologie Struktura DNA a RNA
Molekulárn rní základy dědičnosti Ústřední dogma molekulárn rní biologie Struktura DNA a RNA Ústřední dogma molekulárn rní genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
NUKLEOVÉ KYSELINY. Základ života
NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním
Klonování gen a genové inženýrství
Klonování gen a genové inženýrství Genové inženýrství užite né termíny Rekombinantní DNA = DNA, ve které se nachází geny nejmén ze dvou zdroj, asto ze dvou zných druh organism Biotechnologie = manipulace
První testový úkol aminokyseliny a jejich vlastnosti
První testový úkol aminokyseliny a jejich vlastnosti Vysvětlete co znamená pojem α-aminokyselina Jaký je rozdíl mezi D a L řadou aminokyselin Kolik je základních stavebních aminokyselin a z čeho jsou odvozeny
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
REKOMBINACE Přestavby DNA
REKOMBINACE Přestavby DNA variace v kombinacích genů v genomu adaptace evoluce 1. Obecná rekombinace ( General recombination ) Genetická výměna mezi jakýmkoli párem homologních DNA sekvencí - často lokalizovaných
Hmotnostní detekce biologicky významných sloučenin pro biotechnologie část 3 - Provedení štěpení proteinů a následné analýzy,
Laboratoř Metalomiky a Nanotechnologií Hmotnostní detekce biologicky významných sloučenin pro biotechnologie část 3 - Provedení štěpení proteinů a následné analýzy, vyhodnocení výsledků, diskuse Anotace
Nukleové kyseliny. DeoxyriboNucleic li Acid
Molekulární lární genetika Nukleové kyseliny DeoxyriboNucleic li Acid RiboNucleic N li Acid cukr (deoxyrobosa, ribosa) fosforečný zbytek dusíkatá báze Dusíkaté báze Dvouvláknová DNA Uchovává genetickou
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
List protokolu QIAsymphony SP
List protokolu QIAsymphony SP Srpen 2015 Tissue_LC_200_V7_DSP a Tissue_HC_200_V7_DSP (uživatelem validovaný pro použití s minisadou QIAsymphony DSP DNA) Tento dokument Tissue_LC_200_V7_DSP a Tissue_HC_200_V7_DSP
Optimalizace metody PCR pro její využití na vzorky KONTAMINOVANÝCH PITNÝCH VOD
Optimalizace metody PCR pro její využití na vzorky KONTAMINOVANÝCH PITNÝCH VOD Dana Vejmelková, Milan Šída, Kateřina Jarošová, Jana Říhová Ambrožová VODÁRENSKÁ BIOLOGIE, 1. 2. 2017 ÚVOD Sledované parametry,
Molekulární biotechnologie. Nový obor, který vznikl koncem 70. let 20. století (č.1)
Molekulární biotechnologie Nový obor, který vznikl koncem 70. let 20. století (č.1) Molekulární biotechnologie je založena Na přenosu genů z jednoho organismu do druhého Jeden organismus má gen, který
Translace (druhý krok genové exprese)
Translace (druhý krok genové exprese) Od RN k proteinu Milada Roštejnská Helena Klímová 1 enetický kód trn minoacyl-trn-synthetasa Translace probíhá na ribosomech Iniciace translace Elongace translace
BAKTERIÁLNÍ GENETIKA. Lekce 12 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc.
BAKTERIÁLNÍ GENETIKA Lekce 12 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc. -dědičnost u baktérií principiálně stejná jako u komplexnějších organismů -genom haploidní a značně menší Bakteriální genom
Monitorování hladiny metalothioneinu a thiolových sloučenin u biologických organismů vystavených působení kovových prvků a sloučenin
Laboratoř Metalomiky a Nanotechnologií Monitorování hladiny metalothioneinu a thiolových sloučenin u biologických organismů vystavených působení kovových prvků a sloučenin Ing. Kateřina Tmejová, Ph. D.,
Globální pohled na průběh replikace dsdna
Globální pohled na průběh replikace dsdna 3' 5 3 vedoucí řetězec 5 3 prodlužování vedoucího řetězce (polymerace ) DNA-ligáza směr pohybu enzymů DNA-polymeráza I DNA-polymeráza III primozom 5' 3, 5, hotový
Genetika bakterií. KBI/MIKP Mgr. Zbyněk Houdek
Genetika bakterií KBI/MIKP Mgr. Zbyněk Houdek Bakteriofágy jako extrachromozomální genomy Genom bakteriofága uvnitř bakterie profág. Byly objeveny v bakteriích už v r. 1915 Twortem. Parazitické org. nemají
MOLEKULÁRNĚ BIOLOGICKÉ METODY V ENVIRONMENTÁLNÍ MIKROBIOLOGII. Martina Nováková, VŠCHT Praha
MOLEKULÁRNĚ BIOLOGICKÉ METODY V ENVIRONMENTÁLNÍ MIKROBIOLOGII Martina Nováková, VŠCHT Praha MOLEKULÁRNÍ BIOLOGIE V BIOREMEDIACÍCH enumerace FISH průtoková cytometrie klonování produktů PCR sekvenování
AUG STOP AAAA S S. eukaryontní gen v genomové DNA. promotor exon 1 exon 2 exon 3 exon 4. kódující oblast. introny
eukaryontní gen v genomové DNA promotor exon 1 exon 2 exon 3 exon 4 kódující oblast introny primární transkript (hnrna, pre-mrna) postranskripční úpravy (vznik maturované mrna) syntéza čepičky AUG vyštěpení
RNA Blue REAGENS PRO RYCHLOU PŘÍPRAVU ČISTÉ A NEDEGRADOVANÉ RNA (katalogové číslo R011, R012, R013)
RNA Blue REAGENS PRO RYCHLOU PŘÍPRAVU ČISTÉ A NEDEGRADOVANÉ RNA (katalogové číslo R011, R012, R013) Upozornění: RNA Blue obsahuje fenol a další toxické komponenty. Při kontaktu s kůží je nutné omytí velkým
Izolace genomové DNA ze savčích buněk, stanovení koncentrace DNA pomocí absorpční spektrofotometrie
Izolace genomové DNA ze savčích buněk, stanovení koncentrace DNA pomocí absorpční spektrofotometrie IZOLACE GENOMOVÉ DNA Deoxyribonukleová kyselina (DNA) představuje základní genetický materiál většiny
PREPARING, ISOLATION AND PARTICAL CHARACTERIZATION OF RECOMBINANT PROTEINS OF β-glukosidase ZM-P60.1
PREPARING, ISOLATION AND PARTICAL CHARACTERIZATION OF RECOMBINANT PROTEINS OF β-glukosidase ZM-P60.1 PŘÍPRAVA, IZOLACE A ČÁSTEČNÁ CHARAKTERIZACE REKOMBINANTNÍCH PROTEINŮ β-glukosidasy ZM-P60.1 Klimeš P.
7. Regulace genové exprese, diferenciace buněk a epigenetika
7. Regulace genové exprese, diferenciace buněk a epigenetika Aby mohl mnohobuněčný organismus efektivně fungovat, je třeba, aby se jednotlivé buňky specializovaly na určité funkce. Nový jedinec přitom
Exprese genetické informace
Exprese genetické informace Stavební kameny nukleových kyselin Nukleotidy = báze + cukr + fosfát BÁZE FOSFÁT Nukleosid = báze + cukr CUKR Báze Cyklické sloučeniny obsahující dusík puriny nebo pyrimidiny
Mendelova univerzita v Brně Agronomická fakulta Ústav biologie rostlin
Mendelova univerzita v Brně Agronomická fakulta Ústav biologie rostlin Inovace laboratorních úloh genetických předmětů metodikami pracujícími s ribonukleovými kyselinami pšenice Metodické návody pro laboratorní
BAKTERIÁLNÍ REZISTENCE
BAKTERIÁLNÍ REZISTENCE Petr Zouhar, Fyziologický ústav AV ČR, v. v. i.; UK v Praze, PřF, Katedra fyziologie V této úloze se v hrubých rysech seznámíte s některými metodami používanými v běžné molekulárně
MUTAGENEZE INDUKOVANÁ TRANSPOZONY (TRANSPOZONOVÁ MUTAGENEZE)
MUTAGENEZE INDUKOVANÁ TRANSPOZONY (TRANSPOZONOVÁ MUTAGENEZE) Nejrozšířenější použití transpozonů je mutageneza za účelem lokalizace genů a jejich charakterizace. Výhody: 1. vyšší frekvence mutace než při
Mnohobuněčné kvasinky
Laboratoř buněčné biologie PROJEKT Mnohobuněčné kvasinky Libuše Váchová ve spolupráci s laboratoří Prof. Palkové (PřFUK) Do laboratoře přijímáme studenty se zájmem o vědeckou práci Kontakt: vachova@biomed.cas.cz
-nukleové kyseliny jsou makromolekulární látky, jejichž základní stavební jednotkou je nukleotid každý nukleotid vzniká spojením:
Otázka: Molekulární základy dědičnosti Předmět: Biologie Přidal(a): Mulek NUKLEOVÉ KYSELINY -nositelkami genetické informace jsou molekuly nukleových kyselin tvořené řetězci vzájemně spojených nukleotidů,
Kontrola genové exprese
Základy biochemie KBC/BC Kontrola genové exprese Inovace studia biochemie prostřednictvím e-learningu CZ.04.1.03/3.2.15.3/0407 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem
Chromatofokusace. separace proteinů na základě jejich pi vysoké rozlišení. není potřeba připravovat ph gradient zaostřovací efekt jednoduchost
Chromatofokusace separace proteinů na základě jejich pi vysoké rozlišení není potřeba připravovat ph gradient zaostřovací efekt jednoduchost Polypufry - amfolyty Stacionární fáze Polybuffer 96 - ph 9-6
MagPurix Bacterial DNA Extraction Kit
MagPurix Bacterial DNA Extraction Kit Kat. č. ZP02006 Doba zpracování: 55-65 minut pro MagPurix 12S 55-75 minut pro MagPurix 24 Použití Souprava MagPurix Bacterial DNA Extraction Kit je určena pro izolátor
Detekce Leidenské mutace
Detekce Leidenské mutace MOLEKULÁRNÍ BIOLOGIE 3. Restrikční štěpení, elektroforéza + interpretace výsledků Restrikční endonukleasy(restriktasy) bakteriální enzymy štěpící cizorodou dsdna na kratší úseky
MODERNÍ BIOFYZIKÁLNÍ METODY:
MODERNÍ BIOFYZIKÁLNÍ METODY: POKROČILÉ PRAKTICKÉ VZDĚLÁVÁNÍ V EXPERIMENTÁLNÍ BIOLOGII Operační program Vzdělávání pro konkurenceschopnost Číslo projektu: CZ.1.07/2.3.00/09.0046 Praktický kurz pokročilých