Silikáty. cca 1050 minerálů, tj. 26 % známých minerálů (údaj k r. 2002)

Rozměr: px
Začít zobrazení ze stránky:

Download "Silikáty. cca 1050 minerálů, tj. 26 % známých minerálů (údaj k r. 2002)"

Transkript

1 Přednáška č. 6 Silikáty - základní klasifikace na základě struktur. Systematický přehled nejdůležitějších minerálů ze skupiny silikátů. Přehled technického použití vybraných minerálů a jejich výskyt.

2 Silikáty cca 1050 minerálů, tj. 26 % známých minerálů (údaj k r. 2002) Silikáty jsou vůbec nejdůležitější skupinou minerálů podle kvalifikovaných odhadů tvoří asi 75 % zemské kůry, spolu s křemenem (který je jim strukturně blízký) dokonce asi 95 %. Zemská kůra obsahuje 49,13 % O a 26 % Si. Silikáty představují velmi důležitou skupinu nerostných surovin (keramický a sklářský průmysl, stavební průmysl, těžba některých kovů atd.). Z těchto důvodů je silikátům věnována mimořádná pozornost ze strany přírodovědců i technologů.

3 Struktury silikátů Silikáty - převažující minerály v horninách zemské kůry a svrchního pláště. Převážná část hlavních horninotvorných minerálů (křemen, živce, amfiboly, pyroxeny, slídy a další). Velmi rozsáhlá skupina, která se dále člení na základě struktury. Základem struktury je tetraedrická skupina [SiO 4 ] -4, která má schopnost polymerizace, tzn. může vytvářet skupiny, řetězce, sítě nebo celé prostorové mřížky. Iont Si +4 je ve struktuře řady silikátů nahrazen iontem Al +3, což je nezbytně nutné pro vstup dalších kationtů do struktury. Do struktur silikátů vstupují převážně prvky - Ca, Mg, Fe, Na, Mn, K, Ti a některé další.

4 Struktury silikátů Základní strukturní jednotkou silikátů je koordinační tetraedr [SiO 4 ] 4- Tetraedr se polymerizuje do skupin, řetězů, vrstev nebo prostorově. model kuličkový se znázorněním vazeb model polyedrický

5 Struktury silikátů Základní strukturní jednotkou silikátů je koordinační tetraedr [SiO 4 ] 4- Tetraedr se polymerizuje do skupin, řetězů, vrstev nebo prostorově. [SiO 4 ] 4- Nezávislé tetraedry Nesosilikáty Příklady: olivín granáty [Si 2 O 7 ] 6- Dvojice tetraedrů Sorosilikáty Příklad: lawsonit n[sio 3 ] 2- n = 3, 4, 6 Cyklosilikáty Příklady: benitoit BaTi[Si 3 O 9 ] axinit Ca 3 Al 2 BO 3 [Si 4 O 12 ]OH beryl Be 3 Al 2 [Si 6 O 18 ]

6 Struktury silikátů Základní strukturní jednotkou silikátů je koordinační tetraedr [SiO 4 ] 4- Tetraedr se polymerizuje do skupin, řetězů, vrstev nebo prostorově. [SiO 3 ] 2- jednoduché řetězce Inosilikáty [Si 4 O 11 ] 4- dvojité tetraedrů řetězce tetraedrů pyroxeny amfiboly

7 Struktury silikátů Základní strukturní jednotkou silikátů je koordinační tetraedr [SiO 4 ] 4- Tetraedr se polymerizuje do skupin, řetězů, vrstev nebo prostorově. [Si 2 O 5 ] 2- Vrstvy tetraedrů Fylosilikáty slídy mastek jílové minerály serpentin

8 Struktury silikátů Základní strukturní jednotkou silikátů je koordinační tetraedr [SiO 4 ] 4- Tetraedr se polymerizuje do skupin, řetězů, vrstev nebo prostorově. [SiO 2 ] 3-D kostra tetraedrů: plně polymerizovaná Tektosilikáty křemen živce zeolity

9 Nesosilikáty: nezávislé (izolované) tetraedry [SiO 4 ] 4- Do prostorové struktury jsou propojeny přes iontové vazby s jinými kationty (nejčastěji Fe, Mg, Ca, Li, Be, Zn, Al). Uspořádání atomů ve strukturách nesosilikátů je těsné a proto mají relativně vysokou hustotu a tvrdost. Nezávislé tetraedry nevytváří žádný přednostní směr, takže štěpnost zpravidla chybí. Substituce Al za Si v tetraedrických pozicích je zanedbatelná.

10 Nesosilikáty: nezávislé (izolované) tetraedry [SiO 4 ] 4- b c projekce Olivín (100) modře = M1 žlutě = M2

11 Nesosilikáty: nezávislé (izolované) tetraedry [SiO 4 ] 4- Olivín - obecné označení minerálů, které jsou svým složením mezi dvěma krajními členy neomezeně mísitelné olivínové řady - forsteritem (Mg 2 SiO 4 ) a fayalitem (Fe 2 SiO 4 ). V přírodě mají běžné olivíny podíl kolem 20% fayalitové komponenty. Chemický vzorec: forsterit - Mg 2 SiO 4 a fayalit - Fe 2 SiO 4 Symetrie: rombická, oddělení rombicky dipyramidální Forma výskytu: Zpravidla krátce sloupcovité krystaly, které mohou srůstat podle (031) nebo hrubě zrnité agregáty Olivín v bazaltu u Podmoklic (zdroj Ďuďa, 1990) Krystaly olivínu; a (100), b (010), C (001), m (110), s (120), r (130), h (011), k (021), d (101), p (111), f (121) (zdroj Ježek, 1932)

12 Nesosilikáty: nezávislé (izolované) tetraedry [SiO 4 ] 4- Složení a struktura: Poměr Fe : Mg kolísá. Vznik a výskyt: jeden z hlavních horninotvorných minerálů v gabrech, peridotitech a bazaltech. Téměř monominerální olivínovou horninou je dunit. Při vyšším zastoupení SiO 2 v krystalizující tavenině reaguje za vzniku enstatitu (pyroxen). V metamorfovaných horninách je přítomen v dolomitických mramorech a erlanech. Při alteraci olivinických hornin dochází k přeměně na minerály serpentinové skupiny. Naleziště: Smrčí a Podmoklice u Semil (olivinické bazalty), Sušice (skarn), Višňová u Moravského Krumlova (dolomitický mramor) Použití: některé odrůdy (chryzolit) mají využití ve šperkařství

13 Nesosilikáty: nezávislé (izolované) tetraedry [SiO 4 ] 4- Granát A 2+ 3 B 3+ 2 [SiO 4 ] 3 Pyralspity - B = Al Pyrop: Mg 3 Al 2 [SiO 4 ] 3 Almandin: Fe 3 Al 2 [SiO 4 ] 3 Spessartin: Mn 3 Al 2 [SiO 4 ] 3 Ugrandity - A = Ca Uvarovit: Ca 3 Cr 2 [SiO 4 ] 3 Grossular: Ca 3 Al 2 [SiO 4 ] 3 Andradit: Ca 3 Fe 2 [SiO 4 ] 3 Granát (001) modrá = Si fialová = A tyrkysová = B

14 Nesosilikáty: nezávislé (izolované) tetraedry [SiO 4 ] 4- Granáty - skupina je tvořena řadou koncových členů, mezi kterými je úplná nebo omezená izomorfní mísitelnost. Běžné přírodní granáty jsou zpravidla směsí dvou a více koncových členů. Symetrie: kubická, oddělení hexaoktaedrické Forma výskytu: Krystaly nejčastěji ve formě dvanáctistěnu nebo čtyřiadvacetistěnu, resp. jejich spojek. Často tvoří jen izometrická zrna nebo jemně až hrubě zrnité agregáty. Almandin krystal 2 cm, Itálie (zdroj Ďuďa, 1990) Nejběžnější krystaly granátu; d (110), n (211), s (321) (zdroj Klein a Hurlbut, 1993)

15 Nesosilikáty: nezávislé (izolované) tetraedry [SiO 4 ] 4- Fyzikální vlastnosti: Barva a další fyzikální vlastnosti granátů závisí na jejich chemickém složení. Barva: pyropu - temně rudá, almandinu - červená nebo červenohnědá, spessartinu - hnědočervená, grossulár - zelený nebo žlutavý, andradit - zelenavý nebo hnědavý a uvarovit - smaragdově zelený. Složení a struktura: Obecný vzorec je A 3 B 2 (SiO 4 ) 3, kde pozici A obsazují dvojmocné prvky (Ca, Mg, Fe, Mn) pozici B trojmocné prvky (Al, Fe, Cr). Neomezaná mísitelnost je v rámci skupiny "pyralspitové" (pyrop - almandin - spessartin) a pak mezi grosulárem a andraditem.

16 Nesosilikáty: nezávislé (izolované) tetraedry [SiO 4 ] 4- Vznik a výskyt: pyropy - v ultrabazických horninách (peridotity, serpentinity, kimberlity), almandiny - typické pro metamorfované horniny (svory, ruly, amfibolity), spessartin - ve skarnech, Mn ložiscích a pegmatitech, grosulár nebo andradit - typické pro kontaktní metamorfózu uvarovit - bývá v Cr bohatých hadcích. Naleziště: Měrunice, Třebenice (pyrop v peridotitech českého středohoří), Přibyslavice u Čáslavi (almandin v pegmatitu), Zlatý Chlum u Jeseníku (almandin ve svoru), Budislav, Maršíkov (spessartin v pegmatitech), Švagrov (spessartin v Fe páskovaných rudách), Chvaletice (spassartin v Mn, Fe sedimentárních rudách), Obří důl v Krkonoších (grosulár ve skarnu), Žulová, Vápenná (grosulár v kontaktních skarnech), Mariánská hora v Ústí n. Lab. (andradit ve fonolitu). Použití: jako brusivo nebo šperky Diagnostické znaky: tvrdost, krystalový tvar

17 Nesosilikáty: nezávislé (izolované) tetraedry [SiO 4 ] 4- Staurolit Chemický vzorec: Fe +2 2 Al 9 O 6 (SiO 4 ) 4 (O, OH) 2 Symetrie: monoklinická, oddělení monoklinicky prizmatické Forma výskytu: Krátce sloupcovité krystaly s nerovnými plochami, velmi často tvoří křížová dvojčata podle (032) nebo (232). Agregáty zrnité. Dvojče staurolitu podle (232) ze svoru u Petrova (zdroj Ďuďa, 1990)

18 Nesosilikáty: nezávislé (izolované) tetraedry [SiO 4 ] 4- Fyzikální vlastnosti: T = 7-7,5; H = 3,65-3,75; barva červenohnědá, hnědá, černohnědá, lesk skelný za čerstva, štěpnost (010) nevýrazná. Složení a struktura: Dvojmocné Fe je běžně nahrazováno Fe +3, Mg, Mn, Co nebo Zn. Struktura mírně připomíná kyanit - jsou zde "vrstvy" 4Al 2 SiO 5 s oktaedry hliníku v řetězcích ve směru osy c, které se střídají s "vrstvami" Fe 2 AlO 3 (OH) 2 ve směru [010]. Vznik a výskyt: Typický minerál svorů vzniklých metamorfózou jílovitých sedimentů s vyššími obsahy Fe. Díky své odolnosti se hromadí v aluviích. Naleziště: Kouty nad Desnou, Keprník, Vozka, Červenohorské sedlo (svory) Diagnostické znaky: typická dvojčata

19 Sorosilikáty: dvojice tetraedrů [Si 2 O 7 ] 6- silikáty se samostatnými skupinami tetraedrů, diortosilikáty; sóros ř. skupina Ve strukturách sorosilikátů jsou samostaté (vzájemně nazávislé) skupiny křemíkkyslíkových tetraedrů. Nejčastěji jde o dvojice tetraedrů spojené prostřednictvím jednoho společného atom u kyslíku, takže společně tvoří skupinu [Si 2 O 7 ] 6-. K sorosilikátům řadíme i minerály se smíšenou strukturou, které mají ve strukturách současně izolované tetraedry [SiO 4 ] 4 i dvojice tetraedrů [Si 2 O 7 ] 6- (řada epidotu, vesuvian). Horninotvorný význam mají zejména sorosilikáty řady epidotu.

20 Sorosilikáty: dvojice tetraedrů [Si 2 O 7 ] 6- Epidot Chemický vzorec: Ca 2 (Fe +3, Al) Al 2 (SiO 4 ) (Si 2 O 7 ) O (OH) Symetrie: monoklinická, oddělení monoklinicky prizmatické Forma výskytu: Krátce i dlouze sloupcovité často hojnoploché krystaly protažené podle osy b (známo kolem 200 tvarů), některé plochy bývají výrazně rýhované. Častý je srůst podle (100). Agregáty zrnité nebo celistvé. Fyzikální vlastnosti: T = 6,5; H = 3,3-3,5; barva v různých odstínech zelené až zelenočerné, lesk skelný, štěpnost dokonalá podle (100). Složení a struktura: Poměry Al : Fe jsou proměnlivé, může mít izomorfní příměsi Mn nebo Cr. Vznik a výskyt: Vzniká při alteraci vyvřelých hornin. Nejkrásnější krystaly pocházejí z alpských žil, objevuje se i v kontaktně metamorfovaných skarnech. Naleziště: Sobotín, Markovice, Krásné u Šumperka (alpská parageneze), na puklinách granitoidů brněnského masívu (Dolní Kounice), Žulová, Vápenná (kontaktní skarny). Použití: výjimečně jako šperk Diagnostické znaky: barva a tvary krystalů

21 Sorosilikáty: dvojice tetraedrů [Si 2 O 7 ] 6- Vesuvian Chemický vzorec: Ca 10 (Mg, Fe) 2 Al 4 (SiO 4 ) 5 (Si 2 O 7 ) 2 (OH) 4 Symetrie: tetragonální, oddělení ditetragonálně dipyramidální Forma výskytu: Krystaly jsou zpravidla spojky prizmat, pyramid a pinakoidu, běžné jsou celistvé nebo zrnité agregáty. Fyzikální vlastnosti: T = 6,5-7; H = 3,33-3,45; barva zpravidla žlutohnědá, hnědá nebo zelená, lesk skelný. Složení a struktura: Běžná je substituce Na za Ca, Mn za Mg a Fe nebo Ti za Al a F za OH. Struktura vesuviánu je velmi blízká grosuláru. Vznik a výskyt: Je typickým minerálem kontaktní metamorfózy Ca bohatých hornin (skarny, erlány). Diagnostické znaky: tetragonální sloupcovité krystaly Vesuvián (1,5 cm), Rusko (zdroj Ďuďa, 1990)

22 Cyklosilikáty: uzavřené kruhy tetraedrů n[sio 3 ] 2- n = 3, 4, 6 silikáty s kruhovou vazbou tetraedrů, kruhové silikáty Tetraedry [SiO4]4 jsou spojeny do samostatně uložených prstenců, nejčastěji šestičlánkových, takže vzniká skupina [Si6O18]12 (beryl, cordierit, turmalíny atd.). Méně časté jsou cyklosilikáty s trojčlánkovými (benitoid) či čtyřčlánkovými (axinit, neptunit) prstenci. Tvar prstenců výrazně ovlivňuje symetrii cyklosilikátů nejčastěji jsou trigonální či hexagonální.

23 Cyklosilikáty: uzavřené kruhy tetraedrů n[sio 3 ] 2- n = 3, 4, 6 Beryl Chemický vzorec: Be 3 Al 2 (Si 6 O 18 ) Symetrie: hexagonální, oddělení dihexagonálně dipyramidální Forma výskytu: Krystaly mají tvar dlouhých hexagonálních sloupců. Méně časté jsou tlustě tabulkovité krystaly podle (0001). Beryl, Brazílie (zdroj, Bernard, 1992) Fyzikální vlastnosti: T = 7,5-8; H = 2,65-2,8; barva obecného berylu je žlutozelená, lesk skelný. Drahokamové odrůdy jsou průhledné s barvou zelenou (smaragd), světle modrou (akvamarín), růžovou (morganit), žlutou (heliodor) nebo purpurově červenou (bixbit). Štěpnost nedokonalá podle (0001).

24 Cyklosilikáty: uzavřené kruhy tetraedrů n[sio 3 ] 2- n = 3, 4, 6 Složení a struktura: Ve struktuře jsou šestičetné prstence Si tetraedrů uloženy rovnoběžně s bází. Be v 4-četné a Al v 6-četné koordinaci propojují tyto aniontové skupiny ve vertikálním i horizontálním směru. Kruhy SiO 4 tetraedrů jsou v jednotlivých vrstvách uloženy nad sebou, takže ve struktuře vznikají poměrně široké "kanály" ve směru osy c. V těchto kanálech mohou být uloženy ionty (Li, Na, K, Rb, Cs, Ca, OH, F) nebo neutrální skupiny (H 2 O, He). Vznik a výskyt: Beryl se vyskytuje převážně ve spojitosti s kyselým granitickým magmatem - v pegmatitech, albititech a greisenech. Méně častý je na alpských žilách a ve svorech v kontaktu s granity (smaragdy). Přechází i do rozsypů. Naleziště: Maršíkov, Lázně Kynžvart, Sobotín, Jeclov, Puklice (pegmatity), Horní Slavkov, Čistá (greiseny), Habachtal (smaragdy ve svoru, Rakousko). Použití: šperkařství, Be ve slitinách zvyšuje tvrdost Diagnostické znaky: barva, tvar krystalů

25 Cyklosilikáty: uzavřené kruhy tetraedrů n[sio 3 ] 2- n = 3, 4, 6 Skupina turmalínu V této skupině minerálů je vyčleněna řada koncových členů. Běžné turmalíny jsou pak jejich poměrně komplikované kombinace. Běžný akcesorický turmalín s převahou Fe +2 a Al se označuje jako skoryl, vzácnější turmalín s obsahem Li a Al se označuje jako elbait. Chemický vzorec: (Na,Ca)(Li, Mg,Al) 3 (Al,Fe,Mn) 6 (BO 3 ) 3 (OH) 4 (Si 6 O 18 ) Symetrie: hexagonální, oddělení ditrigonálně pyramidální Forma výskytu: Skoryl tvoří krátce nebo dlouze sloupcovité, vertikálně rýhované krystaly, omezené trigonálním a hexagonálním prizmatem a zakončené polárně trigonálními pyramidami. Časté jsou i čočkovité krystaly. Agregáty skorylu jsou stébelnaté, radiálně paprsčité, jehlicovité i zrnité. Elbaity jsou zpravidla dlouze sloupcovité až jehlicovité, také s podélným rýhováním. Agregáty zrnité. Fyzikální vlastnosti: T = 7-7,5; H = 3-3,25; barva skorylu je černá, u elbaitu se podle barvy vyčleňují různé variety: zelený verdelit, červený rubelit, modrý indigolit a bezbarvý achroit. Často se na jednom krystalu vyskytuje několik variet. Lesk skelný až matný. Turmalín má piezoelektrické vlastnosti.

26 Cyklosilikáty: uzavřené kruhy tetraedrů n[sio 3 ] 2- n = 3, 4, 6 Elbait sloupec 6 cm, Brazílie (zdroj Lapis) Řez elbaitem kolmo k ose c, Madagaskar (zdroj Lapis) Skoryl (3 cm), Dolní Bory (zdroj Bernard, 1981)

27 Cyklosilikáty: uzavřené kruhy tetraedrů n[sio 3 ] 2- n = 3, 4, 6 Složení a struktura: V celé skupině dochází k rozsáhlým substitucím. Ve struktuře tvoří základ polární 6-četné cykly tetraedrů SiO 4. Na cykly je navázána skupina BO 3 a oktaedry (Li,Mg,Al)O 4 (OH) 2 je prostorově spojují. Vznik a výskyt: Skoryl je typický minerál kyselých granitů a metamorfitů (žuly, ortoruly nebo svory). Někdy tvoří i samostatné horniny (turmalinovec), běžný je v aplitech a pegmatitech, častý je i na Sn-W mineralizacích. Méně častý je na alpských žilách a přechází i do náplavů. Elbait se vyskytuje téměř výhradně v dutinách některých žul a na Li-pegmatitech. Naleziště: skoryl: Bory, Cyrilov, Přibyslavice, Bobrová (pegmatity), Blaník (ortorula); elbaity jsou známy z pegmatitů Rožná, Dobrá Voda, Řečice, Laštovičky a z dutin žul na ostrově Elba. Použití: šperky Diagnostické znaky: rýhování krystalů, barva

28 Inosilikáty silikáty s řetězovou vazbou tetraedrů, řetězové silikáty; inós ř. vlákno Tetraedry [SiO4]4 jsou uspořádány do nekonečných řetězců, nejčastěji jednoduchých nebo dvojitých. Řetězce jsou ve struktuře uloženy navzájem rovnoběžně. Tetraedry jsou kolem osy řetězce různě natočeny, takže ve směru řetězců se opakují různě dlouhé skupiny tetraedrů. Nejčastějšími kationty jsou Fe2+, Mg2+, Mn2+, Al3+, Ca2+ a Na1+. Některé inosilikáty obsahují i cizí anionty jako (OH) a F. Inosilikáty často vytvářejí sloupcovité, stébelnaté až vláknité krystaly protažené ve směru řetězců, které obvykle tvoří nepravidelně, rovnoběžně nebo paprsčitě uspořádané agregáty. Rovnoběžně s řetězci probíhají velmi často plochy štěpnosti.

29 Inosilikáty Mezi inosilikáty patří především: a) pyroxeny Inosilikáty s jednoduchými dvojčlánkovými řetězci (ve směru řetězců se periodicky opakuje skupina dvou tetraedrů [Si2O6]4 ). Jsou monoklinické (2/m) a rombické (2/m2/m2/m). b) amfiboly Inosilikáty s dvojitými dvojčlánkovými řetězci (skupina [Si4O11]6 ). Jsou monoklnické (2/m) a rombické (2/m2/m2/m). Velmi složitá skupina sestávající z několika izomorfních řad s velkým počtem krajních členů.

30 Inosilikáty Pyroxeny a amfiboly patrí k významným horninotvorným minerálům magmatických a silněji metamorfovaných hornin. V důsledku podobné struktury jsou často vzájemně makroskopicky natolik podobné, že jejich rozlisení může činit obtíže. Hlavní rozpoznávací znaky pyroxenů a amfibolů jsou: habitus krystalů příčný průřez krystalů štěpnost v mikroskopu pyroxeny většinou krátce sloupcovité většinou osmiúhelníkový nebo čtvercový podle {110} dobrá, štěpné plochy svírají úhel cca 90, bývají stupňovité. většinou bezbarvé nebo nahnědlé, bez pleochroizmu nebo jen slabý pleochroizmus, úhel zhášení amfiboly většinou dlouze sloupcovité, stébelnaté, jehličkovité většinou šestiúhelníkovitý nebo kosočtverečný podle {110} dokonalá, štěpné plochy svírají úhel cca 120. Často skelný lesk na štěpných plochách. často výrazně zbarvené, hlavně zeleně, výrazný pleochroizmus, úhel zhášení 0 24.

31 Inosilikáty s jednoduchými řetězci tetraedrů [SiO 3 ] 2- - pyroxeny b Diopsid: CaMg [Si 2 O 6 ] a sin Diopsid (001) modrá = Si fialová = M1 (Mg) žlutá = M2 (Ca)

32 Inosilikáty s jednoduchými řetězci tetraedrů [SiO 3 ] 2- - pyroxeny Minerály této skupiny mohou být izomorfní směsi asi dvaceti koncových členů, které jsou definovány v klasifikaci Morimota (1989). Obecný vzorec pyroxenů lze psát ve tvaru: XYZ 2 O 6 X atomy Na +, Li +, Ca +2, Mg +2, Fe +2 nebo Mn +2 a odpovídá strukturní pozici M2. Y atomy Mn +2, Fe +2, Mg +2, Fe +3, Al +3, Cr +3, Ti +3 a odpovídá strukturní pozici M1. Z je tetraedrická pozice v silkátovém řetězci a je obsazována atomy Si +4 a Al +3. Kationty v pozici X (M2) mají zpravidla větší iontový poloměr než kationty v pozici Y. Podle uvedené klasifikace se pyroxeny člení do několika skupin na základě svého chemického složení. Pro potřeby základního přehledu můžeme vyčlenit řadu rombických pyroxenů (enstatit - ferrosilit), řadu monoklinických pyroxenů diopsid - hedenbergit a řadu monoklinických alkalických pyroxenů (aegirín, jadeit).

33 Inosilikáty s jednoduchými řetězci tetraedrů [SiO 3 ] 2- - pyroxeny Přehled pyroxenů: řada Mg 2 Si 2 O 6 (enstatit) - Fe 2 Si 2 O 6 (ferrosilit) Pyroxen s převahou enstatitové složky se vyskytuje v bazických a ultrabazických horninách (gabra, nority, pyroxenit) a ve vysoce metamorfovaných horninách (granulity). Ferrosilit je vzácný. řada CaMgSi 2 O 6 (diopsid) - CaFeSi 2 O 6 (hedenbergit) Diopsidické pyroxeny jsou typické pro kontaktně metamorfované karbonátové horniny a pro metamorfované horninyfacie granátických amfibolitů bohatši na Mg. Pyroxeny s převahou hedenbergitové složky se uplatňují hlavně v kontaktně a regionálně metamorfovaných horninách bohatých Fe (erlány, skarny), méně často gabrech, syenitech a pegmatitech. (Ca, Na) (Mg, Fe, Al, Ti) (Si,Al) 2 O 6 (augit) Augity mívají zpravidla velmi komplikované složení a tvoří nejrůznější přechody mezi koncovými členy (např. eagirinaugit, Ti - augit). Je to minerál bazických a ultrabazických intruzív (gabra) a efuzív (bazalty, pyroklastické horniny), běžný je v alkalických horninách. Při metamorfóze se mění (uralitizace) na amfiboly.

34 Inosilikáty s jednoduchými řetězci tetraedrů [SiO 3 ] 2- - pyroxeny Přehled pyroxenů: NaAlSi 2 O 6 (jadeit) Mísitelnost s aegirinem omezená. Patří do skupiny alkalických pyroxenů. Typický minerál vysokotlakých hornin (vzniká reakcí nefelín + albit = 2 jadeit) např. glaukofanity. Použití pro umělecké předměty. NaFe +3 Si 2 O 6 (aegirin) Typický nerost alkalických hornin jako jsou nefelinické syenity a jejich efuzíva, častý je i ve fonolitech, pikritech a těšínitech.

35 Ideální pyroxenové řetězce s pravidelným opakováním dvojic tetraedrů po 5.2 A jsou deformovány pokud pozice M1 okupují jiné kationty Pyroxenoidy 17.4 A 5.2 A 7.1 A 12.5 A Pyroxen Wollastonit (Ca M1) Rhodonit MnSiO 3 Pyroxmangit (Mn, Fe)SiO 3

36 Inosilikáty s dvojiými řetězci tetraedrů [Si 4 O 11 ] 4- - amfiboly b Tremolit: Ca 2 Mg 5 [Si 8 O 22 ] (OH) 2 a sin Tremolit (001) modrá = Si fialová = M1 růžová = M2 světle modrá = M3 ( Mg) žlutá = M4 (Ca)

37 Inosilikáty s dvojiými řetězci tetraedrů [Si 4 O 11 ] 4- - amfiboly Jedná se o rozsáhlou skupinu horninotvorných minerálů, jejichž složení je zpravidla poměrně komplikované a vyjadřuje se pomocí velkého množství koncových členů. Platná klasifikace amfibolů je v práci Leake et al. (1998). Obecný vzorec amfibolů je A 0-1 B 2 C VI 5 TIV 8 O 22 (OH,F,Cl) 2, kde pozici T můžou obsazovat atomy Si, Fe, Al, Cr, pozici C atomy Al, Cr, Ti, Fe +3, Mg, Fe +2 a Mn, pozici B pak Fe +2, Mg, Mn, Ca a Na a pozici A atomy Na, K a Li. Na základě chemického složení lze amfiboly rozdělit do 4 skupin: Fe-Mg-Mn-Li amfiboly mají Ca+Na v pozici B zastoupeny méně než 1,34 apfu (atom per formula unit - atomů na vzorcovou jednotku); (Ca+Na) B < 1,34 Ca amfiboly (vápenaté) mají (Ca+Na) B > 1,34 a Na B < 0,67 apfu Na-Ca amfiboly (sodno-vápenaté) mají (Ca+Na) B > 1,34 apfu a 0,67 < Na B <1,34 apfu alkalické amfiboly mají Na B > 1,34 apfu Kromě toho je v terminologii vypracován systém různých předpon a přípon ke jménům jednotlivých amfibolů, které vyjadřují zvýšenou přítomnost nebo naopak absenci některých prvků.

38 Inosilikáty s dvojiými řetězci tetraedrů [Si 4 O 11 ] 4- - amfiboly Struktura amfibolů má za základ dvojité dvojčlánkové řetězce (Si 8 O 22 ) -12, které jsou protaženy podle osy c. Vedle toho jsou ve struktuře "pásy" různocenných koordinačních polyedrů označovaných A, M4 (B), M3 (Y), M2 (Y) a M1 (Y). Polyedry A mají 10-ti až 12-ti četnou koordinaci s OH skupinami a jsou umístěny v dutinách dvojitých aniontových řetězců. M4 pozice umístěné hned na vnější straně tetraedrických řetězců mají 6-ti až 8 -četnou kordinaci a vstupují do nich především prvky ze vzorcové pozice B. Oktaedry M1, M2 a M3 jsou hranami spojeny do pásů paralelních s osou c a vstupují do nich prvky ze vzorcové pozice C. Pozice M2 jsou koordinovány pouze s kyslíky, pozice M1 a M3 jsou koordinovány se 4 kyslíky a 2 hydroxyly.

39 Inosilikáty s dvojiými řetězci tetraedrů [Si 4 O 11 ] 4- - amfiboly Přehled amfibolů: antofylit (Mg,Fe) 7 Si 8 O 22 (OH) 2 Vyskytuje se jako sekundární minerál - produkt přeměny minerálů ultrabazických hornin a jako rekční lem na kontaktu s intruzívy. Je také minerálem Mg bohatých hornin facie granátických amfibolitů. tremolit Ca 2 Mg 5 Si 8 O 22 (OH) 2 Je produktem regionální metamorfózy, kdy vzniká z olivínu a pyroxenů. Častý je také v desilikovaných pegmatitech a na žilách alpské parageneze. Zcela běžný je v metamorfovaných mramorech a dolomitech. obecný amfibol složení je zpravidla kombinací pargasitu, tschermakitu, hastingsitu a dalších koncových členů Pojem obecný amfibol se požívá pro běžné horninotvorné amfiboly. Zpravidla se jedná o kombinaci několika krajních členů Ca nebo Na-Ca amfibolů. Variety vulkanických hornin zpravidla podstatněji obsahují Fe +3. Jedná se o běžné horninotvorné amfiboly přítomné ve vyvřelých (syenity, diority, gabra, hornblendity) a metamorfovaných horninách(amfibolity, ruly).

40 Inosilikáty s jednoduchými řetězci tetraedrů [SiO 3 ] 2- - wollastonit Chemický vzorec: CaSiO 3 Forma výskytu: Jehlicovité nebo vláknité, často radiálně paprsčité agragáty, někdy též zrnitý nebo celistvý. Fyzikální vlastnosti: T = 5-5,5; H = 2,8-2,9; barva bílá, šedá nebo bezbarvý, lesk skelný, perleťový nebo hedvábný, štěpnost dokonalá podle (100) a (001), dobrá podle (-101) a (-201). Při 1120 C přechází na pseudowollastonit. Složení : Zpravidla bývá velmi čistý, může mít malý podíl Fe nebo Mn. Vznik a výskyt: Typický kontaktní minerál erlánů, skarnů nebo mramorů, často tvoří až monominerální horninu. Vzniká reakcí kalcitu a křemene za současného uvolnění CO 2. Naleziště: Žulová, Vápenná, Bludov, Nedvědice (kontaktní horniny) Použití: ve stavebnictví Diagnostické znaky: agregace, štěpnost

41 Děkuji za pozornost.

Systematická mineralogie

Systematická mineralogie Systematická mineralogie Silikáty - základní klasifikace na základě struktur. Systematický přehled nejdůležitějších minerálů ze skupiny silikátů. Přehled technického použití vybraných minerálů a jejich

Více

Přednáška č. 8. Systematická mineralogie. Princip klasifikace silikátů na základě jejich struktur.

Přednáška č. 8. Systematická mineralogie. Princip klasifikace silikátů na základě jejich struktur. Přednáška č. 8 Systematická mineralogie. Princip klasifikace silikátů na základě jejich struktur. Systematický přehled nejdůležitějších minerálů z třídy silikátů. Přehled technického použití vybraných

Více

Mineralogie II. Prof. RNDr. Milan Novák, CSc. Mineralogický systém silikáty II. Osnova přednášky: 1. Cyklosilikáty 2. Inosilikáty pyroxeny 3.

Mineralogie II. Prof. RNDr. Milan Novák, CSc. Mineralogický systém silikáty II. Osnova přednášky: 1. Cyklosilikáty 2. Inosilikáty pyroxeny 3. Mineralogie II Prof. RNDr. Milan Novák, CSc. Mineralogický systém silikáty II Osnova přednášky: 1. Cyklosilikáty 2. Inosilikáty pyroxeny 3. Shrnutí 1. Cyklosilikáty Poměrně malá ale důležitá skupina silikátů,

Více

Přednáška č. 9. Systematická mineralogie. Princip klasifikace silikátů na základě jejich struktur.

Přednáška č. 9. Systematická mineralogie. Princip klasifikace silikátů na základě jejich struktur. Přednáška č. 9 Systematická mineralogie. Princip klasifikace silikátů na základě jejich struktur. Systematický přehled nejdůležitějších minerálů z třídy silikátů. Přehled technického použití vybraných

Více

Mineralogie I Prof. RNDr. Milan Novák, CSc.

Mineralogie I Prof. RNDr. Milan Novák, CSc. Mineralogie I Prof. RNDr. Milan Novák, CSc. Mineralogický systém - silikáty Osnova přednášky: 1. Sorosilikáty 2. Cyklosilikáty 3. Inosilikáty 4. Shrnutí 1. Sorosilikáty skupina epidotu Málo významná skupina,

Více

SOROSILIKÁTY Málo významná skupina, mají nízký stupeň polymerizace, dva spojené tetraedry Si2O7, někdy jsou ve struktuře přítomny SiO4 i Si2O7.

SOROSILIKÁTY Málo významná skupina, mají nízký stupeň polymerizace, dva spojené tetraedry Si2O7, někdy jsou ve struktuře přítomny SiO4 i Si2O7. Mineralogie I Milan Novák Ústav geologických věd, PřF MU v Brně MINERALOGICKÝ SYSTÉM 2 SOROSILIKÁTY Málo významná skupina, mají nízký stupeň polymerizace, dva spojené tetraedry Si2O7, někdy jsou ve struktuře

Více

Mineralogie I. Prof. RNDr. Milan Novák, CSc. Mineralogický systém - silikáty Osnova přednášky: 1. Strukturní a chemický základ pro klasifikaci

Mineralogie I. Prof. RNDr. Milan Novák, CSc. Mineralogický systém - silikáty Osnova přednášky: 1. Strukturní a chemický základ pro klasifikaci Mineralogie I Prof. RNDr. Milan Novák, CSc. Mineralogický systém - silikáty Osnova přednášky: 1. Strukturní a chemický základ pro klasifikaci silikátů 2. Nesosilikáty 3. Shrnutí 1. Co je minerál? Anorganická

Více

Mineralogie. pro Univerzitu třetího věku VŠB-TUO, HGF. 4. Systematická mineralogie. Silikáty

Mineralogie. pro Univerzitu třetího věku VŠB-TUO, HGF. 4. Systematická mineralogie. Silikáty Mineralogie pro Univerzitu třetího věku VŠB-TUO, HGF 4. Systematická mineralogie Silikáty Ing. Jiří Mališ, Ph.D. jiri.malis@vsb.cz, tel. 4171, kanc. J441 Silikáty (křemičitany) cca 1050 minerálů, tj. 26

Více

Mikroskopie minerálů a hornin

Mikroskopie minerálů a hornin Mikroskopie minerálů a hornin Přednáška 4 Serpentinová skupina, glaukonit, wollastonit, sádrovec, rutil, baryt, fluorit Skupina serpentinu Význam a výskyt Tvar a omezení Barva, pleochroismus v bazických,

Více

Použití: méně významná ruda mědi, šperkařství.

Použití: méně významná ruda mědi, šperkařství. Cu3(CO3)2(OH) Sloupcovité nebo tabulkovité krystaly, agregáty práškovité nebo kůrovité. Fyzikální vlastnosti: T = 3,5-4; ρ = 3,77 g.cm -3 Barva modrá až černě modrá, vryp modrý. Lesk na krystalech vyšší

Více

G3121,G3121k - Poznávání minerálů a hornin

G3121,G3121k - Poznávání minerálů a hornin G3121,G3121k - Poznávání minerálů a hornin Vyučující: doc. Zdeněk Losos, doc. Jindřich Štelcl Rozsaha forma výuky: podzimní semestr: 2 hodiny týdně, praktická cvičení Určeno: bakalářský program geologie

Více

Optické vlastnosti horninotvorných minerálů III

Optické vlastnosti horninotvorných minerálů III Optické vlastnosti horninotvorných minerálů III Pro studenty Mineralogie I a Mikroskopie minerálů a hornin sestavil Václav Vávra Obsah prezentace rombické amfiboly 3 monoklinické amfiboly 5 skupina granátu

Více

Optické vlastnosti horninotvorných minerálů II

Optické vlastnosti horninotvorných minerálů II Optické vlastnosti horninotvorných minerálů II Pro studenty přednášek Mineralogie I a Mikroskopie minerálů a hornin sestavil Václav Vávra Obsah prezentace slídy biotit 3 slídy muskovit 18 skupina olivínu

Více

Přírodopis 9. Přehled minerálů KŘEMIČITANY

Přírodopis 9. Přehled minerálů KŘEMIČITANY Přírodopis 9 14. hodina Přehled minerálů KŘEMIČITANY Mgr. Jan Souček Základní škola Meziměstí V. Křemičitany Křemičitany (silikáty) jsou sloučeniny oxidu křemičitého (SiO 2 ). Tyto minerály tvoří největší

Více

Akcesorické minerály

Akcesorické minerály Akcesorické minerály Prof. RNDr. Milan Novák, CSc. Al 2 SiO 5 modifikace a další Al-bohaté minerály Osnova přednášky: 1. Úvod 2. Skupina Al 2 SiO 5 3. Alterace Al 2 SiO 5 4. Příbuzné minerály 5. Další

Více

Geologie-Minerály I.

Geologie-Minerály I. Geologie-Minerály I. Připravil: Ing. Jan Pecháček Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Fyzikální vlastnosti minerálů: a) barva

Více

Úvod do praktické geologie I

Úvod do praktické geologie I Úvod do praktické geologie I Hlavní cíle a tematické okruhy Určování hlavních horninotvorných minerálů a nejběžnějších typů hornin Pochopení geologických procesů, kterými jednotlivé typy hornin vznikají

Více

Mineralogický systém skupina VIII - křemičitany

Mineralogický systém skupina VIII - křemičitany Mineralogický systém skupina VIII - křemičitany Autor: Mgr. Vlasta Hlobilová Datum (období) tvorby: 16. 10. 2012 Ročník: devátý Vzdělávací oblast: přírodopis Anotace: Žáci se seznámí s vybranými zástupci

Více

Mineralogie Křemžska. Pro Jihočeský Mineralogický Klub Jirka Zikeš Jihočeský mineralogický klub

Mineralogie Křemžska. Pro Jihočeský Mineralogický Klub Jirka Zikeš Jihočeský mineralogický klub Mineralogie Křemžska Pro Jihočeský Mineralogický Klub Jirka Zikeš 12. 7. 2010 Vymezení zájmového území Pojem Křemžská kotlina se v mineralogii spojuje často pouze s výskytem hadců. V okolí Křemže je však

Více

Mikroskopie minerálů a hornin

Mikroskopie minerálů a hornin Mikroskopie minerálů a hornin Cesta ke správnému určení a pojmenování hornin Přednáší V. Vávra Cíle předmětu 1. bezpečně určovat hlavní horninotvorné minerály 2. orientovat se ve vedlejších a akcesorických

Více

Cyklus přednášek z mineralogie pro Jihočeský mineralogický klub. Jihočeský Mineralogický Klub

Cyklus přednášek z mineralogie pro Jihočeský mineralogický klub. Jihočeský Mineralogický Klub Cyklus přednášek z mineralogie pro Jihočeský mineralogický klub Jihočeský Mineralogický Klub Témata přednášek 1. Minerály a krystaly 2. Fyzikální vlastnosti nerostů 3. Chemické vlastnosti nerostů 4. Určování

Více

Optické vlastnosti horninotvorných minerálů IV

Optické vlastnosti horninotvorných minerálů IV Optické vlastnosti horninotvorných minerálů IV Pro studenty přednášek Mineralogie I a Mikroskopie minerálů a hornin sestavil Václav Vávra 1 Obsah prezentace titanit 3 karbonáty 11 epidot 18 klinozoisit

Více

Fylosilikáty: tetraedry [SiO 4 ] 4- vázány do dvojrozměrných sítí

Fylosilikáty: tetraedry [SiO 4 ] 4- vázány do dvojrozměrných sítí Přednáška č. 7 Silikáty - základní klasifikace na základě struktur. Systematický přehled nejdůležitějších minerálů ze skupiny silikátů. Přehled technického použití vybraných minerálů a jejich výskyt. Fylosilikáty:

Více

Testové otázky ke zkoušce z předmětu Mineralogie

Testové otázky ke zkoušce z předmětu Mineralogie Testové otázky ke zkoušce z předmětu Mineralogie 1) Krystal můžeme definovat jako: homogenní anizotropní diskontinuum. Co znamená slovo homogenní? 2) Krystal můžeme definovat jako: homogenní anizotropní

Více

Metamorfované horniny

Metamorfované horniny Metamorfované horniny metamorfóza-- soubor procesů (fyzikálních, chemických, strukturních), při při nichžse horniny přizpůsobují nově nastalým vnějším podmínkám (především teplota a tlak) a) rekrystalizace

Více

Metamorfóza, metamorfované horniny

Metamorfóza, metamorfované horniny Metamorfóza, metamorfované horniny Přednáška 6 RNDr. Aleš Vaněk, Ph.D. č. dveří: 234, FAPPZ e-mail: vaneka@af.czu.cz 1 Metamorfóza (metamorfismus) - přeměna hornin účinkem teploty, tlaku a chemicky aktivních

Více

Hlavní činitelé přeměny hornin. 1. stupeň za teploty 200 C a tlaku 200 Mpa. 2.stupeň za teploty 400 C a tlaku 450 Mpa

Hlavní činitelé přeměny hornin. 1. stupeň za teploty 200 C a tlaku 200 Mpa. 2.stupeň za teploty 400 C a tlaku 450 Mpa Přeměna hornin Téměř všechna naše pohraniční pohoří jako Krkonoše, Šumava, Orlické hory jsou tvořena vyvřelými a hlavně přeměněnými horninami. Před několika desítkami let se dokonce žáci učili říkanku"žula,

Více

Dopočet trojmocného železa v krystalografickém vzorci granátu. vypracoval: Michal Juřena

Dopočet trojmocného železa v krystalografickém vzorci granátu. vypracoval: Michal Juřena Rešerše odborné literatury k bakalářské práci Dopočet trojmocného železa v krystalografickém vzorci granátu vypracoval: Michal Juřena vedoucí práce: RNDr. Václav Vávra, Ph.D. Brno 2012 Obsah: 1. Úvod...3

Více

METAMORFOVANÉ HORNINY

METAMORFOVANÉ HORNINY Cvičení V METAMORFOVANÉ HORNINY - žádné bezprostřední poznatky o jejich genezi - poznání pouze výsledků metamorfních procesů - intenzita metamorfózy obecně lepší mechanicko-fyzikální vlastnosti (ocenění

Více

Základní horninotvorné minerály

Základní horninotvorné minerály Základní horninotvorné minerály Optická mikroskopie v geologii Vyučují: V. Vávra N. Doláková Křemen (SiO 2 ) Morfologie: Tvoří xenomorfní zrna, pouze ve výlevných horninách může být automotfně omezený

Více

Optické vlastnosti horninotvorných minerálů I

Optické vlastnosti horninotvorných minerálů I Optické vlastnosti horninotvorných minerálů I Pro studenty předmětů Mineralogie I a Mikroskopie minerálů a hornin Sestavil Václav Vávra Obsah prezentace křemen obraz 3 ortoklas obraz 16 mikroklin obraz

Více

Určování hlavních horninotvorných minerálů

Určování hlavních horninotvorných minerálů Určování hlavních horninotvorných minerálů Pro správné určení horniny je třeba v prvé řadě poznat texturu a strukturu horninového vzorku a poté rozeznat základní minerály, které horninu tvoří. Každá hornina

Více

Struktury minerálů a krystalochemické přepočty. Přednáška ze Strukturní krystalografie

Struktury minerálů a krystalochemické přepočty. Přednáška ze Strukturní krystalografie Struktury minerálů a krystalochemické přepočty Přednáška ze Strukturní krystalografie Struktury silikátů Základní stavební jednotkou struktury silikátů je tetraedr SiO 4. Jeho tvar je definován vazebnou

Více

135GEMZ Jan Valenta Katedra geotechniky K135 (5. patro budova B) Místnost B502

135GEMZ Jan Valenta Katedra geotechniky K135 (5. patro budova B) Místnost B502 135GEMZ Jan Valenta Katedra geotechniky K135 (5. patro budova B) Místnost B502 Konzultační hodiny: Katedra geotechniky K135 (5. patro budova B) - Geologie - Mechanika zemin - Zakládání staveb - Podzemní

Více

Vliv metody přepočtu chemických analýz amfibolů na jejich klasifikaci

Vliv metody přepočtu chemických analýz amfibolů na jejich klasifikaci Vliv metody přepočtu chemických analýz amfibolů na jejich klasifikaci Rešeršní část k bakalářské práci Vypracoval: Libor Veverka Vedoucí práce: RNDr. Václav Vávra, Ph.D. Obsah 1. Skupina amfibolů 3 1.1.

Více

Monazit. (Ce,La,Th)PO 4

Monazit. (Ce,La,Th)PO 4 Monazit (Ce,La,Th)PO 4 Monazit-(Ce) Monazit-(La) Monazit-(Nd) Izostrukturní minerály Brabantit CaTh(PO 4 ) 2 Huttonit ThSiO 4 Gasparit-(Ce) (Ce,La,Nd)AsO 4 Směsný člen - cheralit (Ce,Th,Ca,)(P,Si)O 4 (Th

Více

OXIDY A HYDROXIDY. Systém oxidů - starší učebnice (např. Slavík a kol. 1974) řadí oxidy podle rostoucího podílu kyslíku ve vzorci

OXIDY A HYDROXIDY. Systém oxidů - starší učebnice (např. Slavík a kol. 1974) řadí oxidy podle rostoucího podílu kyslíku ve vzorci OXIDY A HYDROXIDY Oxidy jsou sloučeniny O 2- s prvky kovovými i nekovovými. Ke skupině minerálů - oxidů jsou řazeny také přírodní hydroxidy a oxi-hydroxidy (např. Fe O /OH/). Systém oxidů - starší učebnice

Více

Geologie Horniny vyvřelé

Geologie Horniny vyvřelé Geologie Horniny vyvřelé Připravil: Ing. Jan Pecháček Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 strana 2 strana 3 HORNINY - jsou to

Více

Přehled hornin vyvřelých

Přehled hornin vyvřelých Přehled hornin vyvřelých KYSELÉ více jak 65% křemičitanové složky, až 50 nezvětraného křemene, 40-50% živců (Kživce, nebo kyselé plagioklasy) barevné součástky vždycky ve vedlejších složkách (biotit, amfibol,

Více

Struktura a textura hornin. Cvičení 1GEPE + 1GEO1

Struktura a textura hornin. Cvičení 1GEPE + 1GEO1 Struktura a textura hornin Cvičení 1GEPE + 1GEO1 1 Nejdůležitějším vizuálním znakem všech typů hornin je jejich stavba. Stavba představuje součet vzájemných vztahů všech stavebních prvků (agregátů krystalů,

Více

Základy geologie pro geografy František Vacek

Základy geologie pro geografy František Vacek Základy geologie pro geografy František Vacek e-mail: fvacek@natur.cuni.cz; konzultační hodiny: Po 10:30-12:00 (P 25) Co je to geologie? věda o Zemi -- zabýváse se fyzikální, chemickou, biologickou a energetickou

Více

a) žula a gabro: zastoupení hlavních nerostů v horninách (pozorování pod lupou)

a) žula a gabro: zastoupení hlavních nerostů v horninách (pozorování pod lupou) Metodický list Biologie Významné horniny Pracovní list 1 1. Vyvřelé horniny: a) žula a gabro: zastoupení hlavních nerostů v horninách (pozorování pod lupou) přítomen +, nepřítomen hornina amfibol augit

Více

Mineralogie I. Prof. RNDr. Milan Novák, CSc. Mineralogický systém - silikáty. Osnova přednášky:

Mineralogie I. Prof. RNDr. Milan Novák, CSc. Mineralogický systém - silikáty. Osnova přednášky: Mineralogie I Prof. RNDr. Milan Novák, CSc. Mineralogický systém - silikáty Osnova přednášky: 1. Fylosilikáty 2. Tektosilikáty 3. Shrnutí 4. Shrnutí silikáty 1. Fylosilikáty Velmi významná skupina silikátů,

Více

Geologie Horniny vyvřelé a přeměněné

Geologie Horniny vyvřelé a přeměněné Geologie Horniny vyvřelé a přeměněné Připravil: Ing. Jan Pecháček Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 c) BAZICKÉ: Melafyr -

Více

PETROLOGIE =PETROGRAFIE

PETROLOGIE =PETROGRAFIE MINERALOGIE PETROLOGIE =PETROGRAFIE věda zkoumající horniny ze všech hledisek: systematická hlediska - určení a klasifikace genetické hlediska: petrogeneze (vlastní vznik) zákonitosti chemismu (petrochemie)

Více

Beryl a Be-minerály. Akcesorické minerály Prof. RNDr. Milan Novák, CSc., ÚGV PřF MU v Brně

Beryl a Be-minerály. Akcesorické minerály Prof. RNDr. Milan Novák, CSc., ÚGV PřF MU v Brně Beryl a Be-minerály Akcesorické minerály Prof. RNDr. Milan Novák, CSc., ÚGV PřF MU v Brně Úvod Berylium patří vzhledem ke svým amfoterním vlastnostem k důležitým stopovým prvkům. Rozměr kationtů - Be IV

Více

Environmentální geomorfologie

Environmentální geomorfologie Nováková Jana Environmentální geomorfologie Chemické zvětrávání Zemská kůra vrstva žulová (= granitová = Sial) vrstva bazaltová (čedičová = Sima, cca 70 km) Názvy granitová a čedičová vrstva neznamenají

Více

PRVKY. Kovy skupiny mědi Cu, Ag, Au

PRVKY. Kovy skupiny mědi Cu, Ag, Au PRVKY Z známých prvků (viz. periodická tabulka) se jich jenom málo vyskytuje v elementárním stavu jako minerály. Je to dáno především silnou slučivostí mnohých prvků s kyslíkem nebo sírou. ROZDĚLENÍ: -

Více

Struktura granátu. R 2+ : Ca,Mg,Mn,Fe. (AlO 6 ) -9. (SiO 4 ) -4

Struktura granátu. R 2+ : Ca,Mg,Mn,Fe. (AlO 6 ) -9. (SiO 4 ) -4 Granát Granáty Silikáty s izolovanými tetraedry SiO 4 (ortosilikát) Vzorec: X 3 Y 2 Z 3 O 12 X = Mg, Fe2+, Mn2+, Ca,.Na Y = Fe3+, Al, Mn3+, Cr3+, V3+, Y, Zr, Ti Z = Al, Si Struktura: Herrman-Mauguin oddělení

Více

Mineralogie systematická /soustavná/

Mineralogie systematická /soustavná/ Mineralogie systematická /soustavná/ - je dílčí disciplínou mineralogie - studuje a popisuje charakteristické znaky a vlastnosti jednotlivých minerálů a třídí je do přirozené soustavy (systému) Minerál

Více

Metamorfované horniny

Metamorfované horniny Metamorfované horniny Libovolná hornina se může během geologického vývoje dostat do odlišných podmínek, než které existovaly při jejím vzniku. Na odlišné teploty, tlaky, případně složení reaguje hornina

Více

Cyklus přednášek z mineralogie pro Jihočeský mineralogický klub. Jihočeský Mineralogický Klub

Cyklus přednášek z mineralogie pro Jihočeský mineralogický klub. Jihočeský Mineralogický Klub Cyklus přednášek z mineralogie pro Jihočeský mineralogický klub Jihočeský Mineralogický Klub Témata přednášek 1. Minerály a krystaly 2. Fyzikální vlastnosti nerostů 3. Chemické vlastnosti nerostů 4. Určování

Více

Přednáška č. 7. Systematická mineralogie. Vybrané minerály z třídy: Oxidů, karbonátů, sulfátů a fosfátů

Přednáška č. 7. Systematická mineralogie. Vybrané minerály z třídy: Oxidů, karbonátů, sulfátů a fosfátů Přednáška č. 7 Systematická mineralogie. Vybrané minerály z třídy: Oxidů, karbonátů, sulfátů a fosfátů Třída oxidů Oxidy tvoří skupinu minerálů s relativně vysokou tvrdostí a hustotou a vyskytují se zpravidla

Více

Číslo klíčové aktivity: V/2

Číslo klíčové aktivity: V/2 Název projektu: Pořadové číslo projektu: Název klíčové aktivity: Číslo klíčové aktivity: V/2 Název DUM: Číslo DUM: Vzdělávací předmět: Tematická oblast: Jméno autora: Anotace: Klíčová slova: Metodické

Více

Výuková pomůcka pro cvičení ze geologie pro lesnické a zemědělské obory. Úvod do mineralogie

Výuková pomůcka pro cvičení ze geologie pro lesnické a zemědělské obory. Úvod do mineralogie Úvod do mineralogie Specializovaná věda zabývající se minerály (nerosty) se nazývá mineralogie. Patří mezi základní obory geologie. Geologie je doslovně věda o zemi (z řec. gé = země, logos = slovo) a

Více

MINERÁLY II Minerály II

MINERÁLY II Minerály II MINERÁLY II Součástí projektu Geovědy vedle workshopů, odborných exkurzí a tvorby výukových materiálů je i materiální vybavení škol, které se do tohoto projektu přihlásily. Situace ve výbavě školních kabinetů

Více

Malý atlas minerálů. jméno minerálu chemické složení zařazení v systému minerálů. achát

Malý atlas minerálů. jméno minerálu chemické složení zařazení v systému minerálů. achát Malý atlas minerálů. achát Acháty vznikají v dutinách vyvřelých hornin. Jsou tvořené soustřednými vrstvičkami různě zbarvených odrůd křemene a chalcedonu, které vyplňují dutinu achátová pecka. Nauč se

Více

Kolekce 20 hornin Kat. číslo 104.0085

Kolekce 20 hornin Kat. číslo 104.0085 Kolekce 20 hornin Kat. číslo 104.0085 Strana 1 z 14 SBÍRKA 20 SYSTEMATICKY SEŘAZENÝCH HORNIN PRO VYUČOVACÍ ÚČELY Celou pevnou zemskou kůru a části zemského pláště tvoří horniny, přičemž jen 20 až 30 km

Více

HORNINA: Agregáty (seskupení) různých minerálů, popř. organické hmoty, od minerálů se liší svojí látkovou a strukturní heterogenitou

HORNINA: Agregáty (seskupení) různých minerálů, popř. organické hmoty, od minerálů se liší svojí látkovou a strukturní heterogenitou Přednáška č.5 MINERÁL: (homogenní, anizotropní, diskontinuum.) Anorganická homogenní přírodnina, složená z prvků nebo jejich sloučenin o stálém chemickém složení, uspořádaných do krystalové mřížky (tvoří

Více

PRVKY. Kovy skupiny mědi Cu, Ag, Au

PRVKY. Kovy skupiny mědi Cu, Ag, Au PRVKY Ze známých prvků (viz. periodická tabulka) se jich jenom málo vyskytuje v elementárním stavu jako minerály. Je to dáno především silnou slučivostí mnohých prvků s kyslíkem nebo sírou, případně Cl

Více

Druhy magmatu. Alkalické ( Na, K, Ca, Al, SiO 2 )

Druhy magmatu. Alkalické ( Na, K, Ca, Al, SiO 2 ) Magmatické horniny Druhy magmatu Alkalické ( Na, K, Ca, Al, SiO 2 ) Alkaklicko vápenaté Podle obsahu SiO 2: kyselé ( > 65 %) neutrální (52-65 %) bazické (44-52 %) ultrabazické (< 44 %) Láva AA Klesá hustota

Více

Platforma pro spolupráci v oblasti formování krajiny

Platforma pro spolupráci v oblasti formování krajiny Platforma pro spolupráci v oblasti formování krajiny CZ.1.07/2.4.00/31.0032 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem ČR. 1 Metamorfované horniny Pavlína Pancová

Více

Mineralogie a petrografie PRACOVNÍ pro 9. LIST ročník č. 1 ZŠ. Úkol č. 1. Úkol č. 2. Úkol č. 3. Téma: Prvky. Spoj minerál se způsobem jeho vzniku.

Mineralogie a petrografie PRACOVNÍ pro 9. LIST ročník č. 1 ZŠ. Úkol č. 1. Úkol č. 2. Úkol č. 3. Téma: Prvky. Spoj minerál se způsobem jeho vzniku. Mineralogie a petrografie PRACOVNÍ pro 9. LIST ročník č. 1 ZŠ Pracovní list 1A Téma: Prvky Úkol č. 1 Spoj minerál se způsobem jeho vzniku. DIAMANT GRAFIT SÍRA STŘÍBRO ZLATO Ze sopečných plynů aktivních

Více

MAGMATICKÉ HORNINY - VYVŘELINY

MAGMATICKÉ HORNINY - VYVŘELINY Systém magmatických hornin Cvičení III MAGMATICKÉ HORNINY - VYVŘELINY Vznik: chladnutím, tuhnutím a krystalizací silikátové taveniny (magmatu nabývá interakcí se zemskou kůrou různého složení) Diferenciace

Více

PETROGRAFICKÝ ROZBOR VZORKU GRANODIORITU Z LOKALITY PROSETÍN I (vzorek č. ÚGN /85/)

PETROGRAFICKÝ ROZBOR VZORKU GRANODIORITU Z LOKALITY PROSETÍN I (vzorek č. ÚGN /85/) Ústav geoniky AVČR, v. v. i. Oddělení laboratorního výzkumu geomateriálů Studentská 1768 70800 Ostrava-Poruba Smlouva o dílo č. 753/11/10 Zadavatel: Výzkumný ústav anorganické chemie, a.s. Ústí nad Labem

Více

ZÁKLADY GEOLOGIE. Úvod přednáška 1. RNDr. Aleš Vaněk, Ph.D. č. dveří: 234, FAPPZ

ZÁKLADY GEOLOGIE. Úvod přednáška 1. RNDr. Aleš Vaněk, Ph.D. č. dveří: 234, FAPPZ ZÁKLADY GEOLOGIE Úvod přednáška 1 RNDr. Aleš Vaněk, Ph.D. č. dveří: 234, FAPPZ e-mail: vaneka@af.czu.cz Požadavky ke zkoušce 1) Účast na cvičeních, poznávačka základních minerálů a hornin = zápočet 2)

Více

NÁZEV NEFRIT JADEIT. houževnatý a pevný vlastnosti Obecné tvary, agregáty. kryptokrystalický, břidlicovitý, jen kusový, celistvý.

NÁZEV NEFRIT JADEIT. houževnatý a pevný vlastnosti Obecné tvary, agregáty. kryptokrystalický, břidlicovitý, jen kusový, celistvý. 1 PŘÍLOHY ODDÍL V TEXTU 2.2.1 2.2.2 2.2.3 2.2.4 NÁZEV NEFRIT JADEIT Barva zelená, šedozelená zelenavě bílá, šedá, zelená, žlutavá Vryp Bílý bílý Lesk Matný skelný, mastný Transparence Průsvitný průsvitný

Více

GRANITICKÉ PEGMATITY 3 Krystalizace z magmatu

GRANITICKÉ PEGMATITY 3 Krystalizace z magmatu GRANITICKÉ PEGMATITY 3 Krystalizace z magmatu Pro Jirka Zikeš 5. 9. 2016 Co je (granitický) pegmatit? Základní pojmy Systém studovaná část prostoru; systém může být otevřený nebo uzavřený, případně izolovaný

Více

Jak jsme na tom se znalostmi z geologie?

Jak jsme na tom se znalostmi z geologie? Jména: Škola: Jak jsme na tom se znalostmi z geologie? 1) Popište vznik hlubinných vyvřelých hornin? 2) Co původně byly kopce Velký Roudný a Uhlířský vrch na Bruntálsku? Velký Roudný Uhlířský vrch 3) Hrubý

Více

Vyvřelé horniny. pracovní list. Mgr. Libuše VODOVÁ, Ph.D. Katedra biologie PdF MU.

Vyvřelé horniny. pracovní list. Mgr. Libuše VODOVÁ, Ph.D. Katedra biologie PdF MU. Vyvřelé horniny pracovní list Mgr. Libuše VODOVÁ, Ph.D. Katedra biologie PdF MU vodova@ped.muni.cz Pracovní list je tvořen souborem učebních úloh zaměřený na procvičení a upevnění učiva o vyvřelých horninách

Více

PETROGRAFIE METAMORFITŮ

PETROGRAFIE METAMORFITŮ 1 PETROGRAFIE METAMORFITŮ doc. RNDr. Jiří Zimák, CSc. Katedra geologie PřF UP Olomouc, tř. Svobody 26, 77146 Olomouc, tel. 585634533, e-mail: zimak@prfnw.upol.cz (říjen 2005) OBSAH Úvod 1. Vznik metamorfitů

Více

Geologie-Minerály II.

Geologie-Minerály II. Geologie-Minerály II. Připravil: Ing. Jan Pecháček Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Doporučená literatura do cvičení z LGAG:

Více

HORNINY. Lucie Coufalová

HORNINY. Lucie Coufalová HORNINY Lucie Coufalová Hornina Soubor minerálů v tuhém stavu Horniny se navzájem liší svým minerálním složením, fyzikálními vlastnostmi a stářím Většina hornin se skládá ze dvou či více minerálů Monominerální

Více

Poznávání minerálů a hornin. Vulkanické horniny

Poznávání minerálů a hornin. Vulkanické horniny Poznávání minerálů a hornin Vulkanické horniny Klasifikace vulkanických hornin Pro klasifikaci vulkanitů hraje chemické složení významnou roli. Klasifikace těchto hornin je totiž v porovnání s plutonity

Více

Přírodopis 9. Přehled minerálů SIRNÍKY

Přírodopis 9. Přehled minerálů SIRNÍKY Přírodopis 9 11. hodina Přehled minerálů SIRNÍKY Mgr. Jan Souček Základní škola Meziměstí II. Sirníky sulfidy Soli kyseliny sirovodíkové (H 2 S). Slučují se jeden nebo dva atomy kovu s jedním nebo několika

Více

Minerály jejich fyzikální a chemické vlastnosti. Horniny magmatické, sedimentární, metamorfované

Minerály jejich fyzikální a chemické vlastnosti. Horniny magmatické, sedimentární, metamorfované Horninotvorné minerály Magmatické horniny Hlavní témata dnešní přednášky Co jsou to minerály a horniny Minerály jejich fyzikální a chemické vlastnosti Systém minerálů Vznik minerálů Přehled hlavních horninotvorných

Více

Struktura zirkonu. Projekce na (001) 4/m 2/m 2/m ditetragonálnědipyramidální. Střídající se řetězce tetraedrů SiO 4

Struktura zirkonu. Projekce na (001) 4/m 2/m 2/m ditetragonálnědipyramidální. Střídající se řetězce tetraedrů SiO 4 Zirkon Struktura zirkonu Projekce na (001) 4/m 2/m 2/m ditetragonálnědipyramidální oddělení Střídající se řetězce tetraedrů SiO 4 a dodekaedrů ZrO 8 rovnoběžné s osou Z. Tyto řetězce způsobují velký dvojlom

Více

Chemické složení Země

Chemické složení Země Chemické složení Země Geochemie: do hloubky 16 km (zemská kůra) Clark: % obsah prvků v zemské kůře O, Si, Al = 82,5 % + Fe, Ca, Na, K, Mg, H = 98.7 % (Si0 2 = 69 %, Al 2 0 3 =14%) Rozložení prvků nerovnoměrné

Více

Přírodopis 9. Přehled minerálů UHLIČITANY, SÍRANY, FOSFOREČNANY. Mgr. Jan Souček Základní škola Meziměstí. 15. hodina

Přírodopis 9. Přehled minerálů UHLIČITANY, SÍRANY, FOSFOREČNANY. Mgr. Jan Souček Základní škola Meziměstí. 15. hodina Přírodopis 9 15. hodina Přehled minerálů UHLIČITANY, SÍRANY, FOSFOREČNANY Mgr. Jan Souček Základní škola Meziměstí VI. Uhličitany Uhličitany jsou soli kyseliny uhličité. Mají výrazně nekovový vzhled. Nejdůležitější

Více

NAKLÁDÁNÍ S NEBEZPEČNÝM ODPADEM ZE STAVEB, PROBLEMATIKA AZBESTU V KAMENIVU

NAKLÁDÁNÍ S NEBEZPEČNÝM ODPADEM ZE STAVEB, PROBLEMATIKA AZBESTU V KAMENIVU NAKLÁDÁNÍ S NEBEZPEČNÝM ODPADEM ZE STAVEB, PROBLEMATIKA AZBESTU V KAMENIVU Činnost o oblasti životního prostředí Činnost od roku 2009 Aktivity v oblasti nakládání s azbesty: Průzkumy výskytu nebezpečných

Více

MINERÁLY. Environmentáln. lní geologie sylabus 2 Ladislav Strnad HORNINOTVORNÉ MINERÁLY

MINERÁLY. Environmentáln. lní geologie sylabus 2 Ladislav Strnad HORNINOTVORNÉ MINERÁLY MINERÁLY - HORNINOTVORNÉ - - MINERÁLY - Environmentáln lní geologie sylabus 2 Ladislav Strnad MINERÁL JE anorganická homogenní přírodnina, složená z prvků nebo jejich sloučenin o stálém chemickém složení,

Více

Mineralogie a petrografie

Mineralogie a petrografie Příručka pro učitele Pracovní listy správné odpovědi Mineralogie a petrografie pro 9. ročník ZŠ Mgr. Filip Kolbábek PRACOVNÍ LIST č. 1 (správné odpovědi) Prvky Téma: Prvky Pracovní list 1A Úkol č. 1 Spoj

Více

MASARYKOVA UNIVERZITA. Středoškolská odborná činnost

MASARYKOVA UNIVERZITA. Středoškolská odborná činnost MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV GEOLOGICKÝCH VĚD Středoškolská odborná činnost Brno 2018 Vojtěch Bůbela RAMANOVA SPEKTROSKOPIE JAKO ÚČINNÁ METODA PRO ODLIŠENÍ TYPŮ AZBESTŮ Autor: Vojtěch

Více

Přednáška č. 4. Reálné krystaly přirozený vývin krystalových tvarů (habitus minerálů, zákonité a nahodilé krystalové srůsty).

Přednáška č. 4. Reálné krystaly přirozený vývin krystalových tvarů (habitus minerálů, zákonité a nahodilé krystalové srůsty). Přednáška č. 4 Reálné krystaly přirozený vývin krystalových tvarů (habitus minerálů, zákonité a nahodilé krystalové srůsty). Optická krystalografie nejdůležitější optické vlastnosti minerálů a metody jejich

Více

Fyzikální vlastnosti: štěpnost dle klence, tvrdost 3.5, hustota 3 g/cm 3. Je různě zbarven - bílý, šedý, naţloutlý, má skelný lesk.

Fyzikální vlastnosti: štěpnost dle klence, tvrdost 3.5, hustota 3 g/cm 3. Je různě zbarven - bílý, šedý, naţloutlý, má skelný lesk. 7.7. Karbonáty (uhličitany) Karbonáty patří mezi běţné minerály zemské kůry. Jejich vzorce odvodíme od kyseliny uhličité H 2 CO 3. Můţeme je rozdělit podle strukturních typů, nebo na bezvodé a vodnaté.

Více

Mineralogie 4. Přehled minerálů -oxidy

Mineralogie 4. Přehled minerálů -oxidy Mineralogie 4 Přehled minerálů -oxidy 4. Oxidy - sloučeniny různých prvků s kyslíkem - vodu buď neobsahují - bezvodé oxidy - nebo ji obsahují vázanou ve své struktuře - vodnaté oxidy (zpravidla jsou amorfní)

Více

ALLANIT-(Ce) A MINERÁLY PRVKŮ VZÁCNÝCH ZEMIN VZNIKLÉ JEHO ALTERACÍ VE VLASTĚJOVICÍCH

ALLANIT-(Ce) A MINERÁLY PRVKŮ VZÁCNÝCH ZEMIN VZNIKLÉ JEHO ALTERACÍ VE VLASTĚJOVICÍCH Tomáš Kadlec, Stínadla 1041, 584 01 Ledeč nad Sázavou, E-mail: tomas.kadlec@eurovia.cz ALLANIT-(Ce) A MINERÁLY PRVKŮ VZÁCNÝCH ZEMIN VZNIKLÉ JEHO ALTERACÍ VE VLASTĚJOVICÍCH Allanit-(Ce) {CaCe}{Al 2 Fe 2+

Více

VY_32_INOVACE_04.11 1/9 3.2.04.11 Vyvřelé, přeměněné horniny Vyvřelé magmatické horniny

VY_32_INOVACE_04.11 1/9 3.2.04.11 Vyvřelé, přeměněné horniny Vyvřelé magmatické horniny 1/9 3.2.04.11 Vyvřelé magmatické horniny cíl objasnit jejich vlastnosti, výskyt a vznik - vyjmenovat základní druhy - popsat jejich složení - znát základní zástupce magma utuhne pod povrchem hlubinné vyvřeliny

Více

Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162

Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 ZŠ Určeno pro Sekce Předmět Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 Téma / kapitola Dělnická 9. tř. ZŠ základní Přírodopis

Více

Poznávání minerálů a hornin. Cvičení 2 Fyzikální vlastnosti minerálů

Poznávání minerálů a hornin. Cvičení 2 Fyzikální vlastnosti minerálů Poznávání minerálů a hornin Cvičení 2 Fyzikální vlastnosti minerálů Jak poznáváme minerály? Pouze oči a zkušenosti (bez přístrojů): Může snadno dojít k omylu, určení je pouze orientační posouzení základních

Více

GEOLOGIE. Stavbou Země, jejím sloţením, tvarem se zabývají geologické vědy:

GEOLOGIE. Stavbou Země, jejím sloţením, tvarem se zabývají geologické vědy: GEOLOGIE NAŠE ZEMĚ VE VESMÍRU Naše Země je součástí vesmíru. Ten vznikl tzv. teorii velkého třesku před 10-15mld. Let. Vesmír je tvořen z galaxii hvězdné soustavy (mají tvar disku a tvoří je miliardy hvězd).

Více

TYPY HORNIN A JEJICH CHEMISMUS

TYPY HORNIN A JEJICH CHEMISMUS TYPY HORNIN A JEJICH CHEMISMUS Vliv na utváření primární struktury krajiny Tento studijní materiál vznikl v rámci projektu OP VK Inovace výuky geografických studijních oborů (CZ.1.07/2.2.00/15.0222) Projekt

Více

Úvod do mineralogie pro TM

Úvod do mineralogie pro TM 7. přednáška - Mineralogie pro TM I Úvod do mineralogie pro TM Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 7. přednáška - Mineralogie pro TM I Osnova přednášky Postup při

Více

Materiál odebraný v opuštěném lomu s označením 146C a 146D

Materiál odebraný v opuštěném lomu s označením 146C a 146D Příloha číslo I. ZÁKLADNÍ OPTICKÁ MIKROSKOPIE I. A Materiál odebraný v opuštěném lomu s označením 146C a 146D Makroskopický popis: světlá, šedá až šedozelená místy narůžovělá jemnozrnná hornina granitoidního

Více

Přednáška č. 6. Systematická mineralogie. Vybrané minerály z třídy: Sulfidů, halogenidů a karbonátů

Přednáška č. 6. Systematická mineralogie. Vybrané minerály z třídy: Sulfidů, halogenidů a karbonátů Přednáška č. 6 Systematická mineralogie. Vybrané minerály z třídy: Sulfidů, halogenidů a karbonátů Třída sulfidů Převážně rudní minerály, které jsou charakteristické svými fyzikálními vlastnostmi (vysokým

Více

Přírodopis 9. Přehled minerálů PRVKY

Přírodopis 9. Přehled minerálů PRVKY Přírodopis 9 10. hodina Přehled minerálů PRVKY Mgr. Jan Souček Základní škola Meziměstí I. Prvky V přírodě existuje přes 20 minerálů tvořených samostatnými prvky. Dělí se na kovy: měď (Cu), stříbro (Ag),

Více

SULFÁTY (SÍRANY) - krystaluje v soustavě rombické, na krátce sloupcovitých krystalech vyvinuta prizmata a pinakoidy. Agregáty jsou zrnité.

SULFÁTY (SÍRANY) - krystaluje v soustavě rombické, na krátce sloupcovitých krystalech vyvinuta prizmata a pinakoidy. Agregáty jsou zrnité. SULFÁTY (SÍRANY) Sulfáty můžeme odvodit od kyseliny sírové H 2 SO 4. Tyto minerály jsou nekovového vzhledu a většinou měkké, někdy rozpustné ve vodě. Dělíme je na bezvodé a vodnaté. a) bezvodé sulfáty

Více

Materiál slouží pro práci ve skupinách. Jde o pracovní list, žáci při práci mohou používat atlas hornin a nerostů. Autor

Materiál slouží pro práci ve skupinách. Jde o pracovní list, žáci při práci mohou používat atlas hornin a nerostů. Autor VY 32_INOVACE_02_02_VL Téma Horniny a nerosty Anotace Materiál slouží pro práci ve skupinách. Jde o pracovní list, žáci při práci mohou používat atlas hornin a nerostů. Autor Mgr. Kateřina Svobodová Jazyk

Více

Metamorfované horniny. - žádné bezprostřední poznatky o jejich genezi. - poznání pouze výsledků metamorfních procesů

Metamorfované horniny. - žádné bezprostřední poznatky o jejich genezi. - poznání pouze výsledků metamorfních procesů Metamorfované horniny - žádné bezprostřední poznatky o jejich genezi - poznání pouze výsledků metamorfních procesů - čím vyšší intenzita metamorfózy obecně lepší mechanicko- fyzikální vlastnosti (ocenění

Více

- krystalické nebo sklovité horniny vzniklé ochlazením chladnutím, tuhnutím a krystalizací silikátové taveniny - magmatu

- krystalické nebo sklovité horniny vzniklé ochlazením chladnutím, tuhnutím a krystalizací silikátové taveniny - magmatu Úvod do petrografie, základní textury a struktury hornin Petrografie obor geologie zabývající se popisem a systematickou klasifikací hornin, zejména pomocí mikroskopického studia Stavba hornin Pod pojem

Více