Přednáška č. 9. Systematická mineralogie. Princip klasifikace silikátů na základě jejich struktur.
|
|
- Josef Dvořák
- před 5 lety
- Počet zobrazení:
Transkript
1 Přednáška č. 9 Systematická mineralogie. Princip klasifikace silikátů na základě jejich struktur. Systematický přehled nejdůležitějších minerálů z třídy silikátů. Přehled technického použití vybraných minerálů a jejich výskyt.
2 Inosilikáty Základem struktury jsou tetraedry SiO 4 spojené přes vrcholové kyslíky do řetězců. Tyto řetězce mohou být jednoduché nebo dvojité a dále jedno-, dvoj- a vícečlánkové (v závislosti na délce základního motivu). Mezi nejběžnější inosilikáty patří pyroxeny (jednoduchý dvojčlánkový řetězec) a amfiboly (dvojitý dvojčlánkový řetězec).
3 Inosilikáty Tetraedry [SiO 4 ] 4 jsou uspořádány do nekonečných řetězců, nejčastěji jednoduchých nebo dvojitých. Řetězce jsou ve struktuře uloženy navzájem rovnoběžně. Tetraedry jsou kolem osy řetězce různě natočeny, takže ve směru řetězců se opakují různě dlouhé skupiny tetraedrů. Nejčastějšími kationty jsou Fe 2+, Mg 2+, Mn 2+, Al 3+, Ca 2+ a Na +. Některé inosilikáty obsahují i cizí anionty jako (OH) a F. Inosilikáty často vytvářejí sloupcovité, stébelnaté až vláknité krystaly protažené ve směru řetězců, které obvykle tvoří nepravidelně, rovnoběžně nebo paprsčitě uspořádané agregáty. Rovnoběžně s řetězci probíhají velmi často plochy štěpnosti. Mezi inosilikáty patří především: a) pyroxeny Inosilikáty s jednoduchými dvojčlánkovými řetězci (ve směru řetězců se periodicky opakuje skupina dvou tetraedrů [Si 2 O 6 ] 4 ). Jsou monoklinické (2/m) a rombické (2/m2/m2/m).
4 Inosilikáty Tetraedry [SiO 4 ] 4 jsou uspořádány do nekonečných řetězců, nejčastěji jednoduchých nebo dvojitých. Řetězce jsou ve struktuře uloženy navzájem rovnoběžně. Tetraedry jsou kolem osy řetězce různě natočeny, takže ve směru řetězců se opakují různě dlouhé skupiny tetraedrů. Nejčastějšími kationty jsou Fe 2+, Mg 2+, Mn 2+, Al 3+, Ca 2+ a Na +. Některé inosilikáty obsahují i cizí anionty jako (OH) a F. Inosilikáty často vytvářejí sloupcovité, stébelnaté až vláknité krystaly protažené ve směru řetězců, které obvykle tvoří nepravidelně, rovnoběžně nebo paprsčitě uspořádané agregáty. Rovnoběžně s řetězci probíhají velmi často plochy štěpnosti. Mezi inosilikáty patří především: b) amfiboly Inosilikáty s dvojitými dvojčlánkovými řetězci (skupina [Si 4 O 11 ] 6 ). Jsou monoklnické (2/m) a rombické (2/m2/m2/m). Velmi složitá skupina sestávající z několika izomorfních řad s velkým počtem krajních členů.
5 Inosilikáty Tetraedry [SiO 4 ] 4 jsou uspořádány do nekonečných řetězců, nejčastěji jednoduchých nebo dvojitých. Řetězce jsou ve struktuře uloženy navzájem rovnoběžně. Tetraedry jsou kolem osy řetězce různě natočeny, takže ve směru řetězců se opakují různě dlouhé skupiny tetraedrů. Nejčastějšími kationty jsou Fe 2+, Mg 2+, Mn 2+, Al 3+, Ca 2+ a Na +. Některé inosilikáty obsahují i cizí anionty jako (OH) a F. Inosilikáty často vytvářejí sloupcovité, stébelnaté až vláknité krystaly protažené ve směru řetězců, které obvykle tvoří nepravidelně, rovnoběžně nebo paprsčitě uspořádané agregáty. Rovnoběžně s řetězci probíhají velmi často plochy štěpnosti. Mezi inosilikáty patří především: c) pyroxenoidy Inosilikáty s jednoduchými vícečlánkovými (troj, pěti, šesti, sedmičlánkovými) řetězci (skupiny [Si 3 O 9 ] 6, [Si 5 O 15 ] 10, [Si 6 O 18 ] 12, [Si 7 O 21 ] 14 ). Většinou jsou triklinické.
6 Inosilikáty Pyroxeny a amfiboly patří k významným horninotvorným minerálům magmatických a silněji metamorfovaných hornin. V důsledku podobné struktury jsou často vzájemně makroskopicky natolik podobné, že jejich rozlišení může činit obtíže. Hlavní rozpoznávací znaky pyroxenů a amfibolů jsou: pyroxeny amfiboly habitus krystalů většinou krátce sloupcovité většinou dlouze sloupcovité, stébelnaté, jehličkovité příčný průřez krystalů štěpnost většinou osmiúhelníkový nebo čtvercový podle {110} dobrá, štěpné plochy svírají úhel cca 90, bývají stupňovité. většinou šestiúhelníkovitý nebo kosočtverečný podle {110} dokonalá, štěpné plochy svírají úhel cca 120. Často skelný lesk na štěpných plochách. v mikroskopu většinou bezbarvé nebo nahnědlé, bez pleochroizmu nebo jen slabý pleochroizmus, úhel zhášení často výrazně zbarvené, hlavně zeleně, výrazný pleochroizmus, úhel zhášení 0 24.
7 Inosilikáty s jednoduchými řetězci tetraedrů [SiO 3 ] 2- - pyroxeny b Diopsid: CaMg [Si 2 O 6 ] a sinβ Diopsid (001) modrá = Si fialová = M1 (Mg) žlutá = M2 (Ca)
8 Inosilikáty s jednoduchými řetězci tetraedrů [SiO 3 ] 2- - pyroxeny Minerály této skupiny mohou být izomorfní směsi asi dvaceti koncových členů. Obecný vzorec pyroxenů lze psát ve tvaru: XYZ 2 O 6 X atomy Na +, Li +, Ca +2, Mg +2, Fe +2 nebo Mn +2 a odpovídá strukturní pozici M2. Y atomy Mn +2, Fe +2, Mg +2, Fe +3, Al +3, Cr +3, Ti +3 a odpovídá strukturní pozici M1. Z je tetraedrická pozice v silkátovém řetězci a je obsazována atomy Si +4 a Al +3. Kationty v pozici X (M2) mají zpravidla větší iontový poloměr než kationty v pozici Y. Podle uvedené klasifikace se pyroxeny člení do několika skupin na základě svého chemického složení. Pro potřeby základního přehledu můžeme ve skupině pyroxenů vyčlenit tři podskupiny: (a) Mg Fe-pyroxeny (b) Ca-pyroxeny (c) alkalické pyroxeny.
9 Inosilikáty s jednoduchými řetězci tetraedrů [SiO 3 ] 2- - pyroxeny Přehled pyroxenů: a) Mg Fe pyroxeny: řada Mg 2 Si 2 O 6 (enstatit) - Fe 2 Si 2 O 6 (ferrosilit) Pyroxen s převahou enstatitové složky se vyskytuje v bazických a ultrabazických horninách (gabra, nority, pyroxenit) a ve vysoce metamorfovaných horninách (granulity). Ferrosilit je vzácný.
10 Inosilikáty s jednoduchými řetězci tetraedrů [SiO 3 ] 2- - pyroxeny Přehled pyroxenů: a) Mg Fe pyroxeny: řada Mg 2 Si 2 O 6 (enstatit)
11 Inosilikáty s jednoduchými řetězci tetraedrů [SiO 3 ] 2- - pyroxeny Přehled pyroxenů: b) Ca-pyroxeny: řada CaMgSi 2 O 6 (diopsid) - CaFeSi 2 O 6 (hedenbergit) plus augit (Ca, Na) (Mg, Fe, Al, Ti) (Si,Al) 2 O 6 Diopsidické pyroxeny jsou typické pro kontaktně metamorfované karbonátové horniny a pro metamorfované horninyfacie granátických amfibolitů bohatši na Mg. Pyroxeny s převahou hedenbergitové složky se uplatňují hlavně v kontaktně a regionálně metamorfovaných horninách bohatých Fe (erlány, skarny), méně často gabrech, syenitech a pegmatitech. Augity mívají zpravidla velmi komplikované složení a tvoří nejrůznější přechody mezi koncovými členy (např. eagirinaugit, Ti - augit). Je to minerál bazických a ultrabazických intruzív (gabra) a efuzív (bazalty, pyroklastické horniny), běžný je v alkalických horninách. Při metamorfóze se mění (uralitizace) na amfiboly.
12 Inosilikáty s jednoduchými řetězci tetraedrů [SiO 3 ] 2- - pyroxeny Přehled pyroxenů: b) Ca-pyroxeny: řada CaMgSi 2 O 6 (diopsid) - CaFeSi 2 O 6 (hedenbergit) plus augit (Ca, Na) (Mg, Fe, Al, Ti) (Si,Al) 2 O 6
13 Inosilikáty s jednoduchými řetězci tetraedrů [SiO 3 ] 2- - pyroxeny Přehled pyroxenů: b) Ca-pyroxeny: řada CaMgSi 2 O 6 (diopsid) - CaFeSi 2 O 6 (hedenbergit) plus augit (Ca, Na) (Mg, Fe, Al, Ti) (Si,Al) 2 O 6
14 Inosilikáty s jednoduchými řetězci tetraedrů [SiO 3 ] 2- - pyroxeny Přehled pyroxenů: b) Ca-pyroxeny: řada CaMgSi 2 O 6 (diopsid) - CaFeSi 2 O 6 (hedenbergit) plus augit (Ca, Na) (Mg, Fe, Al, Ti) (Si,Al) 2 O 6
15 Inosilikáty s jednoduchými řetězci tetraedrů [SiO 3 ] 2- - pyroxeny Přehled pyroxenů: c) alkalické pyroxeny: NaAlSi 2 O 6 (jadeit) Mísitelnost s aegirinem omezená. Patří do skupiny alkalických pyroxenů. Typický minerál vysokotlakých hornin (vzniká reakcí nefelín + albit = 2 jadeit) např. glaukofanity. Použití pro umělecké předměty. NaFe +3 Si 2 O 6 (aegirin) Typický nerost alkalických hornin jako jsou nefelinické syenity a jejich efuzíva, častý je i ve fonolitech, pikritech a těšínitech. LiAlSi 2 O 6 (spodumen)
16 Inosilikáty s jednoduchými řetězci tetraedrů [SiO 3 ] 2- - pyroxeny Přehled pyroxenů: c) alkalické pyroxeny: NaFe +3 Si 2 O 6 (aegirin)
17 Inosilikáty s jednoduchými řetězci tetraedrů [SiO 3 ] 2- - pyroxeny Vlastnosti Nejčastěji v zrnitých až krátce stébelnatých agregátech, automorfně omezené sloupcovité nebo tlustě až tence tabulkovité xx vytvářejí hlavně klinopyroxeny. Běžné je (polysyntetické) dvojčatění klinopyroxenů podle (100), méně běžné podle dalších zákonů. Hojné jsou mikroskopické orientované lamelární odmíšeniny ortopyroxenů v krystalech klinopyroxenů a opačně. Pyroxeny jsou (makroskopicky) neprůhlené, nejčastěji černé až hnědé, zelené, šedozelené. Tvrdost 5 7, hustota 3,0 3,7 g.cm 3. Všechny pyroxeny mají dobrou štěpnost podle vertikálního prizmatu [110], štěpné plochy svírají úhel blízký 90º. Štěpné plochy bývají stupňovité.
18 Inosilikáty s jednoduchými řetězci tetraedrů [SiO 3 ] 2- - pyroxeny Výskyt Významné horninotvorné minerály některých magmatických hornin, zejména intermediárních, bazických a ultrabazických (syenity, andezity, diority, gabra, nority, bazalty, peridotity atd.). Mohou vytvářet až monominerální horniny (pyroxenity). Hojně se vyskytují i v silněji metamorfovaných horninách (mramory, erlany, skarny, eklogity, granulity atd.). Pyroxeny jako vysokoteplotní minerály za nižších pt podmínek snadno podléhají přeměnám na serpentinové minerály ( enstatit), chlority ( augit), amfiboly ( cpx i opx, tzv. uralitizace).
19 Inosilikáty s jednoduchými řetězci tetraedrů [SiO 3 ] 2- - pyroxeny Význam Praktický význam v technickém smyslu většinou nemají, s výjimkou spodumenu, který je důležitou rudou Li. Enstatit je výjimečně používán na výrobu žáruvzdorné keramiky.
20 Inosilikáty s dvojiými řetězci tetraedrů [Si 4 O 11 ] 4- - amfiboly b Tremolit: Ca 2 Mg 5 [Si 8 O 22 ] (OH) 2 a sinβ Tremolit (001) modrá = Si fialová = M1 růžová = M2 světle modrá = M3 ( Mg) žlutá = M4 (Ca)
21 Inosilikáty s dvojiými řetězci tetraedrů [Si 4 O 11 ] 4- - amfiboly Jedná se o rozsáhlou skupinu horninotvorných minerálů, jejichž složení je zpravidla poměrně komplikované a vyjadřuje se pomocí velkého množství koncových členů. Obecný vzorec amfibolů je A 0-1 B 2 C VI 5 TIV 8 O 22 (OH,F,Cl) 2, kde pozici T můžou obsazovat atomy Si, Fe, Al, Cr, pozici C atomy Al, Cr, Ti, Fe +3, Mg, Fe +2 a Mn, pozici B pak Fe +2, Mg, Mn, Ca a Na a pozici A atomy Na, K a Li. Základem struktury amfibolů jsou dvojité řetězce tetraedrů [SiO 4 ] 4, uložené vzájemně rovnoběžně ve směru vertikály. Ve směru protažení se periodicky opakuje skupina čtyř tetraedrů [Si 4 O 11 ] 6 (dvojčlánkový řetězec). Část Si 4+ v tetraedrech může být nahrazena Al 3+. Mezi řetězci jsou určitým způsobem uloženy kationty W, X, Y. Amfiboly jsou monoklinické, výjimečně rombické.
22 Inosilikáty s dvojiými řetězci tetraedrů [Si 4 O 11 ] 4- - amfiboly V současné mineralogické literatuře je popsáno cca 75 (!!!) koncových členů této skupiny se široce rozvinutým izomorfním zastupováním prvků. Nomenklatura amfibolů je proto neobyčejně komplikovaná. Zjednodušeně můžeme amfiboly rozdělit na tři podskupiny: (a) Mg Fe amfiboly (b) Ca-amfiboly (c) alkalické amfiboly.
23 Inosilikáty s dvojiými řetězci tetraedrů [Si 4 O 11 ] 4- - amfiboly Přehled amfibolů: antofylit (Mg,Fe) 7 Si 8 O 22 (OH) 2 Vyskytuje se jako sekundární minerál - produkt přeměny minerálů ultrabazických hornin a jako rekční lem na kontaktu s intruzívy. Je také minerálem Mg bohatých hornin facie granátických amfibolitů. tremolit Ca 2 Mg 5 Si 8 O 22 (OH) 2 Je produktem regionální metamorfózy, kdy vzniká z olivínu a pyroxenů. Častý je také v desilikovaných pegmatitech a na žilách alpské parageneze. Zcela běžný je v metamorfovaných mramorech a dolomitech. obecný amfibol složení je zpravidla kombinací pargasitu, tschermakitu, hastingsitu a dalších koncových členů Pojem obecný amfibol se požívá pro běžné horninotvorné amfiboly. Zpravidla se jedná o kombinaci několika krajních členů Ca nebo Na-Ca amfibolů. Variety vulkanických hornin zpravidla podstatněji obsahují Fe +3. Jedná se o běžné horninotvorné amfiboly přítomné ve vyvřelých (syenity, diority, gabra, hornblendity) a metamorfovaných horninách(amfibolity, ruly).
24 Inosilikáty s dvojiými řetězci tetraedrů [Si 4 O 11 ] 4- - amfiboly Přehled amfibolů: antofylit (Mg,Fe) 7 Si 8 O 22 (OH) 2
25 Inosilikáty s dvojiými řetězci tetraedrů [Si 4 O 11 ] 4- - amfiboly Vlastnosti Amfiboly vytvářejí nejčastěji sloupcovité, stébelnaté až jehličkovité agregáty, méně často dobře omezené krátce až dlouze sloupcovité xx s kosočtverečným nebo šestiúhelníkovým průřezem. Poměrně hojné jsou plstnaté formy amfibolů, tzv. amfibolové azbesty (hl. riebeckit, antofylit, aktinolit, tremolit). Časté je dvojčatěni monoklinických amfibolů podle (100), jednoduché nebo polysyntetické. Amfiboly jsou neprůhledné, nejčastěji černé, černohnědé, zelené. Jsou dokonale štěpné podle {110}, úhel štěpných ploch je blízký 120. Na štěpných plochách bývají výrazně skelně lesklé. Tvrdost většinou 5 6, hustota 2,9 3,6 g.cm 3.
26 Inosilikáty s dvojiými řetězci tetraedrů [Si 4 O 11 ] 4- - amfiboly Výskyt Významné horninotvorné minerály. Vyskytují se ve většině magmatických hornin, jsou běžné v kontaktně i regionálně metamorfovaných horninách. Podmínkou pro vznik amfibolů je přítomnost vody v krystalizačním prostředí. Jsou důležitými indikátory pt podmínek vzniku hornin. Rozkladnými produkty amfibolů jsou nejčastěji chlorit, epidot a mastek.
27 Inosilikáty s dvojiými řetězci tetraedrů [Si 4 O 11 ] 4- - amfiboly Význam Praktické využití mají především amfibolové azbesty. Jsou nehořlavé, chemicky i mechanicky odolné, někdy je lze i spřádat. Mají tepelně, akusticky a elektricky izolační vlastnosti a jsou relativně levné. Používají se na výrobu brzdových destiček, elektrických a tepelných izolací, střešních desek (eternit), protipožárních zábran, nehořlavých a chemicky odolných textilií, filtrů, zvukových izolací atd. V současné době se amfibolové azbesty přestávají používat v obytných a veřejných prostorách pro jejich údajné karcinogenní účinky, přesto je jejich průmyslová spotřeba značná.
28 Ideální pyroxenové řetězce s pravidelným opakováním dvojic tetraedrů po 5.2 A jsou deformovány pokud pozice M1 okupují jiné kationty Pyroxenoidy 17.4 A 5.2 A 7.1 A 12.5 A Pyroxen Wollastonit (Ca M1) Rhodonit MnSiO 3 Pyroxmangit (Mn, Fe)SiO 3
29 Inosilikáty s jednoduchými řetězci tetraedrů [SiO 3 ] 2- - wollastonit Chemický vzorec: CaSiO 3 Forma výskytu: Jehlicovité nebo vláknité, často radiálně paprsčité agragáty, někdy též zrnitý nebo celistvý. Fyzikální vlastnosti: T = 5-5,5; H = 2,8-2,9; barva bílá, šedá nebo bezbarvý, lesk skelný, perleťový nebo hedvábný, štěpnost dokonalá podle (100) a (001), dobrá podle (-101) a (-201). Při 1120 C přechází na pseudowollastonit. Složení : Zpravidla bývá velmi čistý, může mít malý podíl Fe nebo Mn. Vznik a výskyt: Typický kontaktní minerál erlánů, skarnů nebo mramorů, často tvoří až monominerální horninu. Vzniká reakcí kalcitu a křemene za současného uvolnění CO 2. Naleziště: Žulová, Vápenná, Bludov, Nedvědice (kontaktní horniny) Použití: ve stavebnictví Diagnostické znaky: agregace, štěpnost
30 Inosilikáty s jednoduchými řetězci tetraedrů [SiO 3 ] 2- - wollastonit
31 Fylosilikáty: tetraedry [SiO 4 ] 4- vázány do dvojrozměrných sítí Většina fylosilikátů má destičkovitý nebo lístkovitý habitus s dokonalou štěpností, což je dáno přítomností nekonečných sítí ve struktuře, jejichž součástí jsou i Si tetraedry. Jednotlivé sítě jsou pak mezi sebou vázány do vrstev poměrně slabými silami. Ve fylosilikátech se mohou vrstvy kombinovat různým způsobem. Klad jednotlivých vrstev může být různý, takže vzniká prostor pro vznik různých polytypů. Vazba mezi vrstevnými komplexy sítí může být různá - jedná se buď o slabé elektrostatické síly spojené přítomností (OH) skupin, nebo může být mezi komplexy sítí umístěn tzv. mezivrstevní kation (zpravidla Na, K, Ca). Tím počet možných kombinací uspořádání struktur opět narůstá. Identifikace fylosilikátů na základě běžných fyzikálních vlastností nebo i chemismu je zpravidla velmi obtížná a je proto třeba využít RTG difrakčních technik. Pomocí nich je možno snadno zjistit mezivrstevní vzdálenost - tedy velikost základního motivu ve směru osy c. Tato vzdálenost (bazálních strukturních rovin) se u běžných fylosilikátů pohybuje od 7 do m.
32 Skupina serpentinu Do této skupiny patří několik minerálů, z nichž nejběžnější jsou chrysotil a antigorit. Mezivrstevní vzdálenost bývá 7-7, m. Chemický vzorec: Mg 6 Si 4 O 10 (OH) 8 Forma výskytu: Antigorit tvoří destičkovité krystaly a šupinkovité agregáty, chrysotil tvoří celistvé nebo vláknité agregáty, často je ve formě azbestu. Fyzikální vlastnosti: T kolem 4, H = 2,5-2,6; barva obou žlutavá, zelenavá, hnědozelená, lesk skelný nebo perleťový, antigorit je dokonale štěpný podle báze. Složení a struktura: Antigorit - vrstvy ve tvaru vlnitého plechu. Chrysotil - vrstvy stočené do válců nebo trubiček (makroskopicky pak vlákna). Vznik a výskyt: Oba minerály jsou produktem přeměny olivínu a tvoří z více jak 90% serpentinity (metamorfovaná ultrabazika). Naleziště: Borek u Golčova Jeníkova, Hrubšice, Věžná (hadce) Použití: chrysotil se využívá jako azbest Diagnostické znaky: lístkovité nebo vláknité agregáty, barva
33 Skupina serpentinu Do této skupiny patří několik minerálů, z nichž nejběžnější jsou chrysotil a antigorit.
34 Skupina serpentinu Do této skupiny patří několik minerálů, z nichž nejběžnější jsou chrysotil a antigorit.
35 Jílové minerály Obecné označení minerálů, které tvoří podstatnou část jílů (významě jsou zastoupeny i v půdách) a jsou i zodpovědné za jejich typické vlastnosti - plasticitu, bobtnavost a sorpční schopnosti. Existuje jich celá řada s různými typy struktur a jednotlivé strukturní typy se navzájem kombinují za vzniku tzv. smíšených struktur. KAOLINIT Al 4 Si 4 O 10 (OH) 8 Forma výskytu: Tvoří tenké pseudohexagonální destičky a šupinky, agregáty jsou zpravidla celistvé nebo zemité. Fyzikální vlastnosti: T = 1-2; H = 2,6; barva bílá, žlutá, hnědavá, ve vlhku je plastický. Složení a struktura: Bývá zpravidla poměrně čistý, mívá hlavně mechanické nečistoty. Vznik a výskyt: Vzniká zvětráváním živců v kyselém prostředí. Je běžný na pegmatitech, v kyselých granitoidech a při intenzivním zvětrávání tvoří rozsáhlá ložiska. Naleziště: Horní Bříza, Lažánky u Veverské Bytíšky, Karlovarsko Použití: surovina keramického průmyslu!!! Diagnostické znaky: plasticita
36 Jílové minerály Obecné označení minerálů, které tvoří podstatnou část jílů (významě jsou zastoupeny i v půdách) a jsou i zodpovědné za jejich typické vlastnosti - plasticitu, bobtnavost a sorpční schopnosti. Existuje jich celá řada s různými typy struktur a jednotlivé strukturní typy se navzájem kombinují za vzniku tzv. smíšených struktur. KAOLINIT Al 4 Si 4 O 10 (OH) 8
37 MASTEK Mg 3 Si 4 O 10 (OH) 2 Forma výskytu: Tabulkovité, jemně zrnité až celistvé agregáty. Fyzikální vlastnosti: T = 1; H = 2,7-2,8; barva bílá, světle zelená, lesk mastný nebo perleťový. Dokonalá štěpnost podle (001). Složení a struktura: Může obsahovat malé množství Al, Ti a Fe. Vznik a výskyt: Produkt hydrotermální alterace ultrabazik a serpentinitů, kdy vzniká z olivínu a pyroxenu. Objevuje se v pegmatitech a na některých hydrotermálních žilách. Je podstatnou složkou mastkových břidlic. Naleziště: Smrčina a Zadní Hutisko u Sobotína (krupníky), Drahonín (pegmatit) Použití: Používá se jako přísada např. do papíru nebo keramiky Diagnostické znaky: tvrdost
38 MASTEK Mg 3 Si 4 O 10 (OH) 2
39 Skupina slíd Slídy jsou fylosilikáty 2:1 s mezivrstevním kationtem, krystalizující v monoklinické symetrii. Mezi jednotlivými koncovými členy je možná omezená iontová substituce. MUSKOVIT KAl 2 (AlSi 3 O 10 )(OH) 2 Forma výskytu: Krystaly jsou tabulkovité nebo šupinkovité, dvojčata podle (001). Fyzikální vlastnosti: T = 2-2,5; H = 2,76-2,88; bývá bezbarvý, světle šedý nebo nazelenalý, perleťový lesk. Šupinky jsou pružné, štěpnost dokonalá podle báze. Složení a struktura: Zpravidla zastupuje vždy malé množství Fe, Mg a Ti, v pozici mezivrstevního kationtu může částečně zastupovat Na, Li nebo Ca. Mezivrstevní vzdálenost bývá kolem m. Vznik a výskyt: Je důležitým horninotvorným minerálem v kyselých granitoidech (žula, pegmatit), metamorfitech (fylit, svor) i sedimentech (slepence). Naleziště: Otov, Bory, Maršíkov (pegmatity), Přibyslavice u Čáslavi (žuly), svory v Jeseníkách Použití: v elektrotechnice Diagnostické znaky: barva, štěpnost
40 Skupina slíd Slídy jsou fylosilikáty 2:1 s mezivrstevním kationtem, krystalizující v monoklinické symetrii. Mezi jednotlivými koncovými členy je možná omezená iontová substituce. MUSKOVIT KAl 2 (AlSi 3 O 10 )(OH) 2
41 BIOTIT K(Mg,Fe) 3 (AlSi 3 O 10 )(OH) 2 Forma výskytu: Tabulkovité krystaly s pseudohexagonálním průřezem, dvojčatné srůsty podle (001). Agregáty lupenité nebo masívní. Fyzikální vlastnosti: T = 2,5-3; H = 2,8-3,2; barva tmavě hnědá až černá, lesk perleťový, dokonalá bazální štěpnost. Vznik a výskyt: Běžný minerál vyvřelých hornin (granodiorit, diorit, syenit, pegmatity) a běžný i v metamorfovaných horninách (svor, rula). Zvětráváním se mění na chlority nebo smektity (jílové minerály). Naleziště: Bory, Věžná (pegmatity), Blansko (granodiority), Diagnostické znaky: barva, štěpnost
42 BIOTIT K(Mg,Fe) 3 (AlSi 3 O 10 )(OH) 2
43 LEPIDOLIT K(Li,Al) 3 (AlSi 3 O 10 )(OH) 2 Forma výskytu: Zpravidla šupinkaté až jemnozrnné agregáty. Fyzikální vlastnosti: T = 2,5-4; H = 2,8-2,9, barva bílá, červená, zelená nebo fialová, lesk perleťový, dokonalá bazální štěpnost. Složení: Komplikované, do struktury vstupují prvky jako Na, Rb, Cs, F, Cl. Vznik a výskyt: Výhradně vázán na speciální typy Li pegmatitů. Naleziště: Rožná (typová lokalita), Dobrá Voda, Nová Ves (pegmatity) Použití: surovina Li Diagnostické znaky: barva, parageneze
44 LEPIDOLIT K(Li,Al) 3 (AlSi 3 O 10 )(OH) 2
45 Skupina chloritů Chemický vzorec: (Mg,Fe) 3 (Si,Al) 4 O 10 (OH) 2. (Mg,Fe) 3 (OH) 6 Forma výskytu: Tabulkovité krystaly nebo masivní, lupenité příp. zemité agregáty. Fyzikální vlastnosti: T = 2-2,5; H = 2,6-3,3, barva zpravidla v odstínech zelené, hnědé až černé, lesk matný, štěpnost podle báze dokonalá. Složení: Složení jednotlivých krajních členů je velmi rozmanité, obecně převažují chlority s Mg, Fe a Al, vzácnější jsou chlority s prvky jako Mn, Cr, Ni. Vznik a výskyt: Chlorit je běžný minerál zelených břidlic, běžný v magmatických horninách, kde vzniká přeměnou biotitu, pyroxenů a amfibolů. Je běžný na alpských žilách. Naleziště: Mirošov, Markovice (alpská paragenze), ložiska ve šternbersko - hornobenešovském pruhu Použití: minoritní ruda Fe Diagnostické znaky: barva, agregace
46 Skupina chloritů
47 Děkuji za pozornost.
Mineralogie I Prof. RNDr. Milan Novák, CSc.
Mineralogie I Prof. RNDr. Milan Novák, CSc. Mineralogický systém - silikáty Osnova přednášky: 1. Sorosilikáty 2. Cyklosilikáty 3. Inosilikáty 4. Shrnutí 1. Sorosilikáty skupina epidotu Málo významná skupina,
VíceMineralogie II. Prof. RNDr. Milan Novák, CSc. Mineralogický systém silikáty II. Osnova přednášky: 1. Cyklosilikáty 2. Inosilikáty pyroxeny 3.
Mineralogie II Prof. RNDr. Milan Novák, CSc. Mineralogický systém silikáty II Osnova přednášky: 1. Cyklosilikáty 2. Inosilikáty pyroxeny 3. Shrnutí 1. Cyklosilikáty Poměrně malá ale důležitá skupina silikátů,
VíceSOROSILIKÁTY Málo významná skupina, mají nízký stupeň polymerizace, dva spojené tetraedry Si2O7, někdy jsou ve struktuře přítomny SiO4 i Si2O7.
Mineralogie I Milan Novák Ústav geologických věd, PřF MU v Brně MINERALOGICKÝ SYSTÉM 2 SOROSILIKÁTY Málo významná skupina, mají nízký stupeň polymerizace, dva spojené tetraedry Si2O7, někdy jsou ve struktuře
VíceSystematická mineralogie
Systematická mineralogie Silikáty - základní klasifikace na základě struktur. Systematický přehled nejdůležitějších minerálů ze skupiny silikátů. Přehled technického použití vybraných minerálů a jejich
VíceFylosilikáty: tetraedry [SiO 4 ] 4- vázány do dvojrozměrných sítí
Přednáška č. 7 Silikáty - základní klasifikace na základě struktur. Systematický přehled nejdůležitějších minerálů ze skupiny silikátů. Přehled technického použití vybraných minerálů a jejich výskyt. Fylosilikáty:
VíceSilikáty. cca 1050 minerálů, tj. 26 % známých minerálů (údaj k r. 2002)
Přednáška č. 6 Silikáty - základní klasifikace na základě struktur. Systematický přehled nejdůležitějších minerálů ze skupiny silikátů. Přehled technického použití vybraných minerálů a jejich výskyt. Silikáty
VíceOptické vlastnosti horninotvorných minerálů II
Optické vlastnosti horninotvorných minerálů II Pro studenty přednášek Mineralogie I a Mikroskopie minerálů a hornin sestavil Václav Vávra Obsah prezentace slídy biotit 3 slídy muskovit 18 skupina olivínu
VíceMikroskopie minerálů a hornin
Mikroskopie minerálů a hornin Přednáška 4 Serpentinová skupina, glaukonit, wollastonit, sádrovec, rutil, baryt, fluorit Skupina serpentinu Význam a výskyt Tvar a omezení Barva, pleochroismus v bazických,
VíceMineralogie I. Prof. RNDr. Milan Novák, CSc. Mineralogický systém - silikáty Osnova přednášky: 1. Strukturní a chemický základ pro klasifikaci
Mineralogie I Prof. RNDr. Milan Novák, CSc. Mineralogický systém - silikáty Osnova přednášky: 1. Strukturní a chemický základ pro klasifikaci silikátů 2. Nesosilikáty 3. Shrnutí 1. Co je minerál? Anorganická
VíceMineralogie. pro Univerzitu třetího věku VŠB-TUO, HGF. 4. Systematická mineralogie. Silikáty
Mineralogie pro Univerzitu třetího věku VŠB-TUO, HGF 4. Systematická mineralogie Silikáty Ing. Jiří Mališ, Ph.D. jiri.malis@vsb.cz, tel. 4171, kanc. J441 Silikáty (křemičitany) cca 1050 minerálů, tj. 26
VíceGeologie-Minerály I.
Geologie-Minerály I. Připravil: Ing. Jan Pecháček Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Fyzikální vlastnosti minerálů: a) barva
VíceZákladní horninotvorné minerály
Základní horninotvorné minerály Optická mikroskopie v geologii Vyučují: V. Vávra N. Doláková Křemen (SiO 2 ) Morfologie: Tvoří xenomorfní zrna, pouze ve výlevných horninách může být automotfně omezený
VíceOptické vlastnosti horninotvorných minerálů IV
Optické vlastnosti horninotvorných minerálů IV Pro studenty přednášek Mineralogie I a Mikroskopie minerálů a hornin sestavil Václav Vávra 1 Obsah prezentace titanit 3 karbonáty 11 epidot 18 klinozoisit
VíceMineralogie Křemžska. Pro Jihočeský Mineralogický Klub Jirka Zikeš Jihočeský mineralogický klub
Mineralogie Křemžska Pro Jihočeský Mineralogický Klub Jirka Zikeš 12. 7. 2010 Vymezení zájmového území Pojem Křemžská kotlina se v mineralogii spojuje často pouze s výskytem hadců. V okolí Křemže je však
VíceOptické vlastnosti horninotvorných minerálů I
Optické vlastnosti horninotvorných minerálů I Pro studenty předmětů Mineralogie I a Mikroskopie minerálů a hornin Sestavil Václav Vávra Obsah prezentace křemen obraz 3 ortoklas obraz 16 mikroklin obraz
VíceAkcesorické minerály
Akcesorické minerály Prof. RNDr. Milan Novák, CSc. Al 2 SiO 5 modifikace a další Al-bohaté minerály Osnova přednášky: 1. Úvod 2. Skupina Al 2 SiO 5 3. Alterace Al 2 SiO 5 4. Příbuzné minerály 5. Další
VíceOptické vlastnosti horninotvorných minerálů III
Optické vlastnosti horninotvorných minerálů III Pro studenty Mineralogie I a Mikroskopie minerálů a hornin sestavil Václav Vávra Obsah prezentace rombické amfiboly 3 monoklinické amfiboly 5 skupina granátu
VíceGeologie Horniny vyvřelé a přeměněné
Geologie Horniny vyvřelé a přeměněné Připravil: Ing. Jan Pecháček Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 c) BAZICKÉ: Melafyr -
VícePoužití: méně významná ruda mědi, šperkařství.
Cu3(CO3)2(OH) Sloupcovité nebo tabulkovité krystaly, agregáty práškovité nebo kůrovité. Fyzikální vlastnosti: T = 3,5-4; ρ = 3,77 g.cm -3 Barva modrá až černě modrá, vryp modrý. Lesk na krystalech vyšší
VíceMetamorfóza, metamorfované horniny
Metamorfóza, metamorfované horniny Přednáška 6 RNDr. Aleš Vaněk, Ph.D. č. dveří: 234, FAPPZ e-mail: vaneka@af.czu.cz 1 Metamorfóza (metamorfismus) - přeměna hornin účinkem teploty, tlaku a chemicky aktivních
VíceVliv metody přepočtu chemických analýz amfibolů na jejich klasifikaci
Vliv metody přepočtu chemických analýz amfibolů na jejich klasifikaci Rešeršní část k bakalářské práci Vypracoval: Libor Veverka Vedoucí práce: RNDr. Václav Vávra, Ph.D. Obsah 1. Skupina amfibolů 3 1.1.
VíceÚvod do praktické geologie I
Úvod do praktické geologie I Hlavní cíle a tematické okruhy Určování hlavních horninotvorných minerálů a nejběžnějších typů hornin Pochopení geologických procesů, kterými jednotlivé typy hornin vznikají
VícePřehled hornin vyvřelých
Přehled hornin vyvřelých KYSELÉ více jak 65% křemičitanové složky, až 50 nezvětraného křemene, 40-50% živců (Kživce, nebo kyselé plagioklasy) barevné součástky vždycky ve vedlejších složkách (biotit, amfibol,
VíceMikroskopie minerálů a hornin
Mikroskopie minerálů a hornin Cesta ke správnému určení a pojmenování hornin Přednáší V. Vávra Cíle předmětu 1. bezpečně určovat hlavní horninotvorné minerály 2. orientovat se ve vedlejších a akcesorických
Vícea) žula a gabro: zastoupení hlavních nerostů v horninách (pozorování pod lupou)
Metodický list Biologie Významné horniny Pracovní list 1 1. Vyvřelé horniny: a) žula a gabro: zastoupení hlavních nerostů v horninách (pozorování pod lupou) přítomen +, nepřítomen hornina amfibol augit
VícePřírodopis 9. Přehled minerálů KŘEMIČITANY
Přírodopis 9 14. hodina Přehled minerálů KŘEMIČITANY Mgr. Jan Souček Základní škola Meziměstí V. Křemičitany Křemičitany (silikáty) jsou sloučeniny oxidu křemičitého (SiO 2 ). Tyto minerály tvoří největší
VíceMineralogický systém skupina VIII - křemičitany
Mineralogický systém skupina VIII - křemičitany Autor: Mgr. Vlasta Hlobilová Datum (období) tvorby: 16. 10. 2012 Ročník: devátý Vzdělávací oblast: přírodopis Anotace: Žáci se seznámí s vybranými zástupci
VíceMineralogie I. Prof. RNDr. Milan Novák, CSc. Mineralogický systém - silikáty. Osnova přednášky:
Mineralogie I Prof. RNDr. Milan Novák, CSc. Mineralogický systém - silikáty Osnova přednášky: 1. Fylosilikáty 2. Tektosilikáty 3. Shrnutí 4. Shrnutí silikáty 1. Fylosilikáty Velmi významná skupina silikátů,
VíceTestové otázky ke zkoušce z předmětu Mineralogie
Testové otázky ke zkoušce z předmětu Mineralogie 1) Krystal můžeme definovat jako: homogenní anizotropní diskontinuum. Co znamená slovo homogenní? 2) Krystal můžeme definovat jako: homogenní anizotropní
VícePřednáška č. 8. Systematická mineralogie. Princip klasifikace silikátů na základě jejich struktur.
Přednáška č. 8 Systematická mineralogie. Princip klasifikace silikátů na základě jejich struktur. Systematický přehled nejdůležitějších minerálů z třídy silikátů. Přehled technického použití vybraných
VíceMetamorfované horniny
Metamorfované horniny metamorfóza-- soubor procesů (fyzikálních, chemických, strukturních), při při nichžse horniny přizpůsobují nově nastalým vnějším podmínkám (především teplota a tlak) a) rekrystalizace
VíceNAKLÁDÁNÍ S NEBEZPEČNÝM ODPADEM ZE STAVEB, PROBLEMATIKA AZBESTU V KAMENIVU
NAKLÁDÁNÍ S NEBEZPEČNÝM ODPADEM ZE STAVEB, PROBLEMATIKA AZBESTU V KAMENIVU Činnost o oblasti životního prostředí Činnost od roku 2009 Aktivity v oblasti nakládání s azbesty: Průzkumy výskytu nebezpečných
VíceHlavní činitelé přeměny hornin. 1. stupeň za teploty 200 C a tlaku 200 Mpa. 2.stupeň za teploty 400 C a tlaku 450 Mpa
Přeměna hornin Téměř všechna naše pohraniční pohoří jako Krkonoše, Šumava, Orlické hory jsou tvořena vyvřelými a hlavně přeměněnými horninami. Před několika desítkami let se dokonce žáci učili říkanku"žula,
VíceGeologie Horniny vyvřelé
Geologie Horniny vyvřelé Připravil: Ing. Jan Pecháček Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 strana 2 strana 3 HORNINY - jsou to
Více135GEMZ Jan Valenta Katedra geotechniky K135 (5. patro budova B) Místnost B502
135GEMZ Jan Valenta Katedra geotechniky K135 (5. patro budova B) Místnost B502 Konzultační hodiny: Katedra geotechniky K135 (5. patro budova B) - Geologie - Mechanika zemin - Zakládání staveb - Podzemní
VíceMASARYKOVA UNIVERZITA. Středoškolská odborná činnost
MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV GEOLOGICKÝCH VĚD Středoškolská odborná činnost Brno 2018 Vojtěch Bůbela RAMANOVA SPEKTROSKOPIE JAKO ÚČINNÁ METODA PRO ODLIŠENÍ TYPŮ AZBESTŮ Autor: Vojtěch
VíceNÁZEV NEFRIT JADEIT. houževnatý a pevný vlastnosti Obecné tvary, agregáty. kryptokrystalický, břidlicovitý, jen kusový, celistvý.
1 PŘÍLOHY ODDÍL V TEXTU 2.2.1 2.2.2 2.2.3 2.2.4 NÁZEV NEFRIT JADEIT Barva zelená, šedozelená zelenavě bílá, šedá, zelená, žlutavá Vryp Bílý bílý Lesk Matný skelný, mastný Transparence Průsvitný průsvitný
VíceUrčování hlavních horninotvorných minerálů
Určování hlavních horninotvorných minerálů Pro správné určení horniny je třeba v prvé řadě poznat texturu a strukturu horninového vzorku a poté rozeznat základní minerály, které horninu tvoří. Každá hornina
VíceMETAMORFOVANÉ HORNINY
Cvičení V METAMORFOVANÉ HORNINY - žádné bezprostřední poznatky o jejich genezi - poznání pouze výsledků metamorfních procesů - intenzita metamorfózy obecně lepší mechanicko-fyzikální vlastnosti (ocenění
VíceStruktura a textura hornin. Cvičení 1GEPE + 1GEO1
Struktura a textura hornin Cvičení 1GEPE + 1GEO1 1 Nejdůležitějším vizuálním znakem všech typů hornin je jejich stavba. Stavba představuje součet vzájemných vztahů všech stavebních prvků (agregátů krystalů,
VíceMineralogie systematická /soustavná/
Mineralogie systematická /soustavná/ - je dílčí disciplínou mineralogie - studuje a popisuje charakteristické znaky a vlastnosti jednotlivých minerálů a třídí je do přirozené soustavy (systému) Minerál
VíceEnvironmentální geomorfologie
Nováková Jana Environmentální geomorfologie Chemické zvětrávání Zemská kůra vrstva žulová (= granitová = Sial) vrstva bazaltová (čedičová = Sima, cca 70 km) Názvy granitová a čedičová vrstva neznamenají
VícePlatforma pro spolupráci v oblasti formování krajiny
Platforma pro spolupráci v oblasti formování krajiny CZ.1.07/2.4.00/31.0032 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem ČR. 1 Metamorfované horniny Pavlína Pancová
VíceCyklus přednášek z mineralogie pro Jihočeský mineralogický klub. Jihočeský Mineralogický Klub
Cyklus přednášek z mineralogie pro Jihočeský mineralogický klub Jihočeský Mineralogický Klub Témata přednášek 1. Minerály a krystaly 2. Fyzikální vlastnosti nerostů 3. Chemické vlastnosti nerostů 4. Určování
VíceZáklady geologie pro geografy František Vacek
Základy geologie pro geografy František Vacek e-mail: fvacek@natur.cuni.cz; konzultační hodiny: Po 10:30-12:00 (P 25) Co je to geologie? věda o Zemi -- zabýváse se fyzikální, chemickou, biologickou a energetickou
VíceMonazit. (Ce,La,Th)PO 4
Monazit (Ce,La,Th)PO 4 Monazit-(Ce) Monazit-(La) Monazit-(Nd) Izostrukturní minerály Brabantit CaTh(PO 4 ) 2 Huttonit ThSiO 4 Gasparit-(Ce) (Ce,La,Nd)AsO 4 Směsný člen - cheralit (Ce,Th,Ca,)(P,Si)O 4 (Th
VíceG3121,G3121k - Poznávání minerálů a hornin
G3121,G3121k - Poznávání minerálů a hornin Vyučující: doc. Zdeněk Losos, doc. Jindřich Štelcl Rozsaha forma výuky: podzimní semestr: 2 hodiny týdně, praktická cvičení Určeno: bakalářský program geologie
VíceMAGMATICKÉ HORNINY - VYVŘELINY
Systém magmatických hornin Cvičení III MAGMATICKÉ HORNINY - VYVŘELINY Vznik: chladnutím, tuhnutím a krystalizací silikátové taveniny (magmatu nabývá interakcí se zemskou kůrou různého složení) Diferenciace
VícePETROGRAFICKÝ ROZBOR VZORKU GRANODIORITU Z LOKALITY PROSETÍN I (vzorek č. ÚGN /85/)
Ústav geoniky AVČR, v. v. i. Oddělení laboratorního výzkumu geomateriálů Studentská 1768 70800 Ostrava-Poruba Smlouva o dílo č. 753/11/10 Zadavatel: Výzkumný ústav anorganické chemie, a.s. Ústí nad Labem
VíceOXIDY A HYDROXIDY. Systém oxidů - starší učebnice (např. Slavík a kol. 1974) řadí oxidy podle rostoucího podílu kyslíku ve vzorci
OXIDY A HYDROXIDY Oxidy jsou sloučeniny O 2- s prvky kovovými i nekovovými. Ke skupině minerálů - oxidů jsou řazeny také přírodní hydroxidy a oxi-hydroxidy (např. Fe O /OH/). Systém oxidů - starší učebnice
VícePoznávání minerálů a hornin. Vulkanické horniny
Poznávání minerálů a hornin Vulkanické horniny Klasifikace vulkanických hornin Pro klasifikaci vulkanitů hraje chemické složení významnou roli. Klasifikace těchto hornin je totiž v porovnání s plutonity
VíceVýuková pomůcka pro cvičení ze geologie pro lesnické a zemědělské obory. Úvod do mineralogie
Úvod do mineralogie Specializovaná věda zabývající se minerály (nerosty) se nazývá mineralogie. Patří mezi základní obory geologie. Geologie je doslovně věda o zemi (z řec. gé = země, logos = slovo) a
VícePoznávání minerálů a hornin. Cvičení 2 Fyzikální vlastnosti minerálů
Poznávání minerálů a hornin Cvičení 2 Fyzikální vlastnosti minerálů Jak poznáváme minerály? Pouze oči a zkušenosti (bez přístrojů): Může snadno dojít k omylu, určení je pouze orientační posouzení základních
VícePETROLOGIE =PETROGRAFIE
MINERALOGIE PETROLOGIE =PETROGRAFIE věda zkoumající horniny ze všech hledisek: systematická hlediska - určení a klasifikace genetické hlediska: petrogeneze (vlastní vznik) zákonitosti chemismu (petrochemie)
VíceMetamorfované horniny
Metamorfované horniny Libovolná hornina se může během geologického vývoje dostat do odlišných podmínek, než které existovaly při jejím vzniku. Na odlišné teploty, tlaky, případně složení reaguje hornina
VíceALLANIT-(Ce) A MINERÁLY PRVKŮ VZÁCNÝCH ZEMIN VZNIKLÉ JEHO ALTERACÍ VE VLASTĚJOVICÍCH
Tomáš Kadlec, Stínadla 1041, 584 01 Ledeč nad Sázavou, E-mail: tomas.kadlec@eurovia.cz ALLANIT-(Ce) A MINERÁLY PRVKŮ VZÁCNÝCH ZEMIN VZNIKLÉ JEHO ALTERACÍ VE VLASTĚJOVICÍCH Allanit-(Ce) {CaCe}{Al 2 Fe 2+
VíceKolekce 20 hornin Kat. číslo 104.0085
Kolekce 20 hornin Kat. číslo 104.0085 Strana 1 z 14 SBÍRKA 20 SYSTEMATICKY SEŘAZENÝCH HORNIN PRO VYUČOVACÍ ÚČELY Celou pevnou zemskou kůru a části zemského pláště tvoří horniny, přičemž jen 20 až 30 km
VíceMINERÁLY. Environmentáln. lní geologie sylabus 2 Ladislav Strnad HORNINOTVORNÉ MINERÁLY
MINERÁLY - HORNINOTVORNÉ - - MINERÁLY - Environmentáln lní geologie sylabus 2 Ladislav Strnad MINERÁL JE anorganická homogenní přírodnina, složená z prvků nebo jejich sloučenin o stálém chemickém složení,
VíceMineralogie. 2. Vlastnosti minerálů. pro Univerzitu třetího věku VŠB-TUO, HGF. Ing. Jiří Mališ, Ph.D. jiri.malis@vsb.cz, tel. 4171, kanc.
Mineralogie pro Univerzitu třetího věku VŠB-TUO, HGF 2. Vlastnosti minerálů Ing. Jiří Mališ, Ph.D. jiri.malis@vsb.cz, tel. 4171, kanc. J441 Fyzikální vlastnosti minerálů Minerály jako fyzikální látky mají
VíceZÁKLADY GEOLOGIE. Úvod přednáška 1. RNDr. Aleš Vaněk, Ph.D. č. dveří: 234, FAPPZ
ZÁKLADY GEOLOGIE Úvod přednáška 1 RNDr. Aleš Vaněk, Ph.D. č. dveří: 234, FAPPZ e-mail: vaneka@af.czu.cz Požadavky ke zkoušce 1) Účast na cvičeních, poznávačka základních minerálů a hornin = zápočet 2)
VícePřednáška č. 7. Systematická mineralogie. Vybrané minerály z třídy: Oxidů, karbonátů, sulfátů a fosfátů
Přednáška č. 7 Systematická mineralogie. Vybrané minerály z třídy: Oxidů, karbonátů, sulfátů a fosfátů Třída oxidů Oxidy tvoří skupinu minerálů s relativně vysokou tvrdostí a hustotou a vyskytují se zpravidla
VíceDruhy magmatu. Alkalické ( Na, K, Ca, Al, SiO 2 )
Magmatické horniny Druhy magmatu Alkalické ( Na, K, Ca, Al, SiO 2 ) Alkaklicko vápenaté Podle obsahu SiO 2: kyselé ( > 65 %) neutrální (52-65 %) bazické (44-52 %) ultrabazické (< 44 %) Láva AA Klesá hustota
VícePETROGRAFIE METAMORFITŮ
1 PETROGRAFIE METAMORFITŮ doc. RNDr. Jiří Zimák, CSc. Katedra geologie PřF UP Olomouc, tř. Svobody 26, 77146 Olomouc, tel. 585634533, e-mail: zimak@prfnw.upol.cz (říjen 2005) OBSAH Úvod 1. Vznik metamorfitů
VíceMINERÁLY II Minerály II
MINERÁLY II Součástí projektu Geovědy vedle workshopů, odborných exkurzí a tvorby výukových materiálů je i materiální vybavení škol, které se do tohoto projektu přihlásily. Situace ve výbavě školních kabinetů
VíceMINERÁLY (NEROSTY) PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST
MINERÁLY (NEROSTY) PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST VY_52_INOVACE_263 VZDĚLÁVACÍ OBLAST: ČLOVĚK A PŘÍRODA VZDĚLÁVACÍ OBOR: PŘÍRODOPIS ROČNÍK: 9 CO JE MINERÁL
VíceHORNINY. Lucie Coufalová
HORNINY Lucie Coufalová Hornina Soubor minerálů v tuhém stavu Horniny se navzájem liší svým minerálním složením, fyzikálními vlastnostmi a stářím Většina hornin se skládá ze dvou či více minerálů Monominerální
VíceÚvod do mineralogie pro TM
7. přednáška - Mineralogie pro TM I Úvod do mineralogie pro TM Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 7. přednáška - Mineralogie pro TM I Osnova přednášky Postup při
VícePřírodopis 9. Přehled minerálů SIRNÍKY
Přírodopis 9 11. hodina Přehled minerálů SIRNÍKY Mgr. Jan Souček Základní škola Meziměstí II. Sirníky sulfidy Soli kyseliny sirovodíkové (H 2 S). Slučují se jeden nebo dva atomy kovu s jedním nebo několika
VíceRozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162
ZŠ Určeno pro Sekce Předmět Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 Téma / kapitola Dělnická 9. tř. ZŠ základní Přírodopis
VícePřírodopis 9. Přehled minerálů UHLIČITANY, SÍRANY, FOSFOREČNANY. Mgr. Jan Souček Základní škola Meziměstí. 15. hodina
Přírodopis 9 15. hodina Přehled minerálů UHLIČITANY, SÍRANY, FOSFOREČNANY Mgr. Jan Souček Základní škola Meziměstí VI. Uhličitany Uhličitany jsou soli kyseliny uhličité. Mají výrazně nekovový vzhled. Nejdůležitější
Více- krystalické nebo sklovité horniny vzniklé ochlazením chladnutím, tuhnutím a krystalizací silikátové taveniny - magmatu
Úvod do petrografie, základní textury a struktury hornin Petrografie obor geologie zabývající se popisem a systematickou klasifikací hornin, zejména pomocí mikroskopického studia Stavba hornin Pod pojem
VíceHORNINA: Agregáty (seskupení) různých minerálů, popř. organické hmoty, od minerálů se liší svojí látkovou a strukturní heterogenitou
Přednáška č.5 MINERÁL: (homogenní, anizotropní, diskontinuum.) Anorganická homogenní přírodnina, složená z prvků nebo jejich sloučenin o stálém chemickém složení, uspořádaných do krystalové mřížky (tvoří
VíceTYPY HORNIN A JEJICH CHEMISMUS
TYPY HORNIN A JEJICH CHEMISMUS Vliv na utváření primární struktury krajiny Tento studijní materiál vznikl v rámci projektu OP VK Inovace výuky geografických studijních oborů (CZ.1.07/2.2.00/15.0222) Projekt
VícePřednáška č. 4. Reálné krystaly přirozený vývin krystalových tvarů (habitus minerálů, zákonité a nahodilé krystalové srůsty).
Přednáška č. 4 Reálné krystaly přirozený vývin krystalových tvarů (habitus minerálů, zákonité a nahodilé krystalové srůsty). Optická krystalografie nejdůležitější optické vlastnosti minerálů a metody jejich
VíceVY_32_INOVACE_04.11 1/9 3.2.04.11 Vyvřelé, přeměněné horniny Vyvřelé magmatické horniny
1/9 3.2.04.11 Vyvřelé magmatické horniny cíl objasnit jejich vlastnosti, výskyt a vznik - vyjmenovat základní druhy - popsat jejich složení - znát základní zástupce magma utuhne pod povrchem hlubinné vyvřeliny
VíceČíslo klíčové aktivity: V/2
Název projektu: Pořadové číslo projektu: Název klíčové aktivity: Číslo klíčové aktivity: V/2 Název DUM: Číslo DUM: Vzdělávací předmět: Tematická oblast: Jméno autora: Anotace: Klíčová slova: Metodické
VícePRVKY. Kovy skupiny mědi Cu, Ag, Au
PRVKY Z známých prvků (viz. periodická tabulka) se jich jenom málo vyskytuje v elementárním stavu jako minerály. Je to dáno především silnou slučivostí mnohých prvků s kyslíkem nebo sírou. ROZDĚLENÍ: -
VícePřednáška č. 10. Systematická mineralogie. Princip klasifikace silikátů na základě jejich struktur.
Přednáška č. 10 Systematická mineralogie. Princip klasifikace silikátů na základě jejich struktur. Systematický přehled nejdůležitějších minerálů z třídy silikátů. Přehled technického použití vybraných
VíceJak jsme na tom se znalostmi z geologie?
Jména: Škola: Jak jsme na tom se znalostmi z geologie? 1) Popište vznik hlubinných vyvřelých hornin? 2) Co původně byly kopce Velký Roudný a Uhlířský vrch na Bruntálsku? Velký Roudný Uhlířský vrch 3) Hrubý
VíceKrystaly v přírodě (vzhled reálných krystalů)
Krystaly v přírodě (vzhled reálných krystalů) Doposud jsme se většinou zabývali dokonalými krystaly, to jest krystaly se zcela dokonalou strukturou i vnějším omezením. Reálné krystaly se od tohoto ideálu
VíceMendelova univerzita v Brně. Lesnická a dřevařská fakulta GEOLOGIE. Aleš Bajer, Aleš Kučera, Valerie Vranová
Mendelova univerzita v Brně Lesnická a dřevařská fakulta GEOLOGIE Aleš Bajer, Aleš Kučera, Valerie Vranová 1 Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018
VíceMateriál slouží pro práci ve skupinách. Jde o pracovní list, žáci při práci mohou používat atlas hornin a nerostů. Autor
VY 32_INOVACE_02_02_VL Téma Horniny a nerosty Anotace Materiál slouží pro práci ve skupinách. Jde o pracovní list, žáci při práci mohou používat atlas hornin a nerostů. Autor Mgr. Kateřina Svobodová Jazyk
VícePetrologie G Metamorfóza a metamorfní facie
Petrologie G3021 14. Metamorfóza a metamorfní facie 3. Metamorfóza a metamorfní facie Osnova: Metamorfní zóny, indexové minerály izogrády Metamorfní facie Geotektonická pozice metamorfózy 1. Metamorfní
VíceMalý atlas minerálů. jméno minerálu chemické složení zařazení v systému minerálů. achát
Malý atlas minerálů. achát Acháty vznikají v dutinách vyvřelých hornin. Jsou tvořené soustřednými vrstvičkami různě zbarvených odrůd křemene a chalcedonu, které vyplňují dutinu achátová pecka. Nauč se
VíceCyklus přednášek z mineralogie pro Jihočeský mineralogický klub. Jihočeský Mineralogický Klub
Cyklus přednášek z mineralogie pro Jihočeský mineralogický klub Jihočeský Mineralogický Klub Témata přednášek 1. Minerály a krystaly 2. Fyzikální vlastnosti nerostů 3. Chemické vlastnosti nerostů 4. Určování
VíceFyzikální krystalografie, makrodiagnostické fyzikální vlastnosti minerálů.
Přednáška č. 4 Chemická krystalografie, stavba atomu, chemické vazby, koordinační čísla a polyedry, význam geometrického a chemického faktoru u různých typů izomorfie. Polymorfie a polytypie. Fyzikální
VíceMetamorfované horniny. - žádné bezprostřední poznatky o jejich genezi. - poznání pouze výsledků metamorfních procesů
Metamorfované horniny - žádné bezprostřední poznatky o jejich genezi - poznání pouze výsledků metamorfních procesů - čím vyšší intenzita metamorfózy obecně lepší mechanicko- fyzikální vlastnosti (ocenění
VíceMinerály jejich fyzikální a chemické vlastnosti. Horniny magmatické, sedimentární, metamorfované
Horninotvorné minerály Magmatické horniny Hlavní témata dnešní přednášky Co jsou to minerály a horniny Minerály jejich fyzikální a chemické vlastnosti Systém minerálů Vznik minerálů Přehled hlavních horninotvorných
VícePRVKY. Kovy skupiny mědi Cu, Ag, Au
PRVKY Ze známých prvků (viz. periodická tabulka) se jich jenom málo vyskytuje v elementárním stavu jako minerály. Je to dáno především silnou slučivostí mnohých prvků s kyslíkem nebo sírou, případně Cl
VíceFyzikální vlastnosti: štěpnost dle klence, tvrdost 3.5, hustota 3 g/cm 3. Je různě zbarven - bílý, šedý, naţloutlý, má skelný lesk.
7.7. Karbonáty (uhličitany) Karbonáty patří mezi běţné minerály zemské kůry. Jejich vzorce odvodíme od kyseliny uhličité H 2 CO 3. Můţeme je rozdělit podle strukturních typů, nebo na bezvodé a vodnaté.
VícePůdotvorné faktory, pedogeneze v přirozených lesích. Pavel Šamonil
Půdotvorné faktory, pedogeneze v přirozených lesích 1 Pavel Šamonil Autorství fotografií a obrázků: Fotografie v hnědém rámu: Šamonil Ostatní fotografie a obrázky: dle příslušné citace 2 Co je půda? Apollo
VícePřírodopis 9. Fyzikální vlastnosti nerostů. Mgr. Jan Souček Základní škola Meziměstí. 8. hodina
Přírodopis 9 8. hodina Fyzikální vlastnosti nerostů Mgr. Jan Souček Základní škola Meziměstí Hustota (g/cm 3.) udává, kolikrát je objem nerostu těžší než stejný objem destilované vody. Velkou hustotu má
VíceMeteority, meteory, meteoroidy
Meteority, meteory, meteoroidy David Čapek capek@asu.cas.cz Astronomický ústav AV, Ondřejov Osnova: 1. Minerály meteoritů 2. Typy meteoritů a klasifikace 3. Poznávání meteoritů (na amatérské úrovni) 4.
Vícehorniny jsou seskupením minerálů nebo organických zbytků, příp. přírodními vulkanickými skly, které vznikají rozličnými geologickými procesy
Horniny horniny jsou seskupením minerálů nebo organických zbytků, příp. přírodními vulkanickými skly, které vznikají rozličnými geologickými procesy od od minerálůse liší liší látkovou a strukturní nesourodostí
VíceJe to věda, nauka o horninách, zkoumá vznik, složení, vlastnosti a výskyt hornin.
PETROLOGIE Je to věda, nauka o horninách, zkoumá vznik, složení, vlastnosti a výskyt hornin. HORNINA = anorganická heterogenní (nestejnorodá) přírodnina, tvořena nerosty, složení nelze vyjádřit chemickým
VíceTYPY HORNIN A JEJICH CHEMISMUS. Vliv na utváření primární struktury krajiny (předběžná verse) Sestavili J. Divíšek a M. Culek
TYPY HORNIN A JEJICH CHEMISMUS Vliv na utváření primární struktury krajiny (předběžná verse) Sestavili J. Divíšek a M. Culek Vliv geologického podloží Různý způsob zvětrávání hornin Př. pískovce hornina
VíceSULFÁTY (SÍRANY) - krystaluje v soustavě rombické, na krátce sloupcovitých krystalech vyvinuta prizmata a pinakoidy. Agregáty jsou zrnité.
SULFÁTY (SÍRANY) Sulfáty můžeme odvodit od kyseliny sírové H 2 SO 4. Tyto minerály jsou nekovového vzhledu a většinou měkké, někdy rozpustné ve vodě. Dělíme je na bezvodé a vodnaté. a) bezvodé sulfáty
VíceVZNIK SOPKY, ZÁKLADNÍ POJMY
MAGMATISMUS VZNIK SOPKY, ZÁKLADNÍ POJMY obecně je za sopku považována vyvýšenina na zemském povrchu tvořená sopečným materiálem, v rámci které dochází k výstupu magmatu na zemský povrch mezi základní prvky
Více6. Metamorfóza a metamorfní facie
6. Metamorfóza a metamorfní facie 3. Metamorfóza a metamorfní facie Osnova: Metamorfní zóny, indexové minerály izogrády Metamorfní facie Geotektonická pozice metamorfózy 1. Metamorfní zóny, indexové minerály
VícePřednáška č. 6. Systematická mineralogie. Vybrané minerály z třídy: Sulfidů, halogenidů a karbonátů
Přednáška č. 6 Systematická mineralogie. Vybrané minerály z třídy: Sulfidů, halogenidů a karbonátů Třída sulfidů Převážně rudní minerály, které jsou charakteristické svými fyzikálními vlastnostmi (vysokým
Více