3.3 Kalorimetrie. stránka 51. nebo [C] = J K 1. nebo. [c] = J kg 1 K 1

Rozměr: px
Začít zobrazení ze stránky:

Download "3.3 Kalorimetrie. stránka 51. nebo [C] = J K 1. nebo. [c] = J kg 1 K 1"

Transkript

1 3.3 Kalorimetrie KALORIMETRIE: Část experimentální fyziky, která se zabývá měřením tepla při různých fyzikálních, chemických, popř. biologických dějích. TEPLO - Q: Veličina určená energií přijatou, popř. odevzdanou tělesem při tepelné výměně. TEPELNÁ VÝMĚNA: Fyzikální děj, při němž se mění vnitřní energie tělesa (soustavy) jinak než konáním práce. Při tepelné výměně přechází energie z tělesa teplejšího na těleso chladnější. Tepelná výměna se uskutečňuje vedením (vzájemnými srážkami částic látky), zářením (prostřednictvím elektromagnetického záření) a prouděním (prostřednictvím tekutiny proudící z míst s vyšší teplotou do míst s nižší teplotou). KALORIMETR: Přístroj pro měření tepla, tepelné kapacity, měrné tepelné kapacity, popř. dalších kalorimetrických veličin. Nejčastější je směšovací kalorimetr, jehož základem je tepelně izolovaná nádoba opatřená teploměrem a míchačkou. TEPELNÁ KAPACITA TĚLESA - C: Veličina, která odpovídá teplu, jehož přijetím, popř. odevzdáním se teplota tělesa změní o 1 K (nebo o 1 C): nebo [C] = J K 1 TEPELNÁ KAPACITA PLYNU: Vzhledem ke značné stlačitelnosti plynu rozlišujeme tepelnou kapacitu plynu při stálém tlaku C p a tepelnou kapacitu plynu při stálém objemu C V. Poněvadž při stálém tlaku se část dodaného tepla spotřebuje na změnu objemu, což je spojeno s konáním práce, je C p > C V. MĚRNÁ TEPELNÁ KAPACITA TĚLESA - c: Látková konstanta, která odpovídá teplu, jímž se teplota tělesa z dané látky o hmotnosti 1 kg zvýší o 1 K (nebo 1 C): nebo [c] = J kg 1 K 1 stránka 51

2 MĚRNÁ TEPELNÁ KAPACITA PLYNU: Rozlišujeme měrnou tepelnou kapacitu plynu při stálém tlaku c p a měrnou tepelnou kapacitu při stálém objemu c V : (m je hmotnost plynu, Q p je teplo přijaté plynem při stálém tlaku, T je změna termodynamické teploty plynu) (m je hmotnost plynu, Q V je teplo přijaté plynem při stálém objemu, T je změna termodynamické teploty plynu). Platí c p > c V. MOLÁRNÍ TEPELNÁ KAPACITA - c m : Veličina, která odpovídá teplu, jímž se při tepelné výměně zvýší teplota 1 molu chemicky stejnorodého tělesa o 1 K (nebo 1 C): [c m ] = J mol 1 K 1 Molární tepelná kapacita plynu při stálém tlaku: Molární tepelná kapacita plynu při stálém objemu: Veličiny c mp a c mv spolu souvisejí Mayerovým vztahem: nebo c mp = c mv + R (R je molární plynová konstanta, M m je molární hmotnost) stránka 52

3 KALORIMETRICKÁ ROVNICE: Vztah vyjadřující zákon zachování energie při tepelné výměně, při níž těleso o hmotnosti m 1 a měrné tepelné kapacitě c 1 zahřáté na teplotu t 1 předává energii tělesu o hmotnosti m 2 a měrné tepelné kapacitě c 2, které má teplotu t 2 (t 2 < t 1 ). Tepelnou výměnou se tělesa ochladí, popř. ohřejí na teplotu t. Platí: c 1 m 1 (t 1 t) = c 2 m 2 (t t 2 ) Pro směšovací kalorimetr platí: c 1 m 1 (t 1 t) = c 2 m 2 (t t 2 ) + C k (t t 2 ) (C k je tepelná kapacita kalorimetru) TEPELNÁ VODIVOST: Vlastnost látky, která umožňuje přenos vnitřní energie vedením tepla. Platí: (λ je součinitel tepelné vodivosti, S je obsah plochy, kterou se přenáší teplo, τ je doba, t je změna teploty, d je tloušťka vrstvy) PŘESTUP TEPLA: Tepelná výměna mezi tekutinou a stěnou z pevné látky. Q = αsτ(t 1 t 2 ) (α je součinitel přestupu tepla, S je obsah plochy, kterou se přestup tepla uskutečňuje,τ je doba, t 1 je teplota tekutiny, t 2 je teplota stěny, která je ve styku s tekutinou) PROSTUP TEPLA: Tepelná výměna mezi dvěma tekutinami o teplotách t 1 a t 2 (t 1 > t 2 ), mezi nimiž je stěna z pevné látky o tloušťce d. Pro prostup tepla platí obdobný vztah jako pro přestup tepla: Q = ksτ(t 1 t 2 ) Veličina k je součinitel prostupu tepla, pro který platí: (α 1, α 2 jsou součinitele přestupu tepla tekutinou, λ je součinitel tepelné vodivosti pevné látky) stránka 53

4 3.4 Termodynamika TERMODYNAMICKÁ SOUSTAVA: Těleso nebo skupina těles oddělených od okolí (myšleně nebo skutečně), jejichž stav zkoumáme. Termodynamická soustava může být: izolovaná (nedochází k výměně energie s okolím), neizolovaná (dochází k výměně energie s okolím), uzavřená (nedochází k výměně částic s okolím), otevřená (dochází k výměně částic s okolím), adiabaticky izolovaná (nedochází k tepelné výměně s okolím). TERMODYNAMICKÝ DĚJ: Časový sled stavů termodynamické soustavy. ROVNOVÁŽNÝ STAV: Stav termodynamické soustavy, do kterého soustava samovolně přejde v neměnných vnějších podmínkách. V rovnovážném stavu jsou stavové veličiny konstantní. STAVOVÁ VELIČINA: Veličina, která charakterizuje stav termodynamické soustavy. Nejdůležitější stavové veličiny jsou: tlak - p, objem - V, termodynamická teplota - T. STAVOVÁ ZMĚNA: Fyzikální děj, při němž termodynamická soustava přejde z počátečního stavu do určitého výsledného stavu. VNITŘNÍ ENERGIE - U: Energie tělesa nebo soustavy těles, která zahrnuje různé druhy energií souvisejících s částicovou stavbou soustavy. Je určena energií pohybu a vzájemného silového působení částic soustavy. Závisí jen na termodynamickém stavu soustavy a nezávisí na tom, jak se soustava do tohoto stavu dostala. PRVNÍ TERMODYNAMICKÝ ZÁKON: Změna vnitřní energie soustavy U je rovna součtu práce W vykonané okolními tělesy působícími na soustavu silami a tepla Q odevzdaného okolními tělesy soustavě: U = W + Q Jestliže soustava koná práci (např. když plyn při zahřívání zvětšuje svůj objem), je práce vykonaná soustavou W' = W a platí: Q = U + W' V diferenciálním tvaru platí: dq = du + dw' Jestliže je soustava izolovaná od okolí, je Q = 0 a soustava koná práci na úkor vnitřní energie: U = W' Jestliže je soustavě dodávána energie tepelnou výměnou a soustava nekoná práci (např. při zahřívání plynu v uzavřené nádobě), je W = 0 a dodaným teplem se jen zvětšuje vnitřní energie soustavy: U = Q. Jestliže se nemění vnitřní energie ( U = 0), soustava koná práci na úkor dodaného tepla (W' = Q). stránka 54

5 DRUHÝ TERMODYNAMICKÝ ZÁKON: Není možné sestrojit periodicky pracující tepelný stroj, který by jen přijímal teplo od určitého tělesa (ohřívače) a vykonával stejně velkou práci. Nebo: Při tepelné výměně těleso o vyšší teplotě nemůže samovolně přijímat teplo od tělesa s nižší teplotou. TŘETÍ TERMODYNAMICKÝ ZÁKON: Látku nelze konečným počtem termodynamických dějů ochladit na teplotu 0 K. TEPELNÁ ROVNOVÁHA: Stav termodynamické soustavy, při němž je ve všech částech soustavy stejná teplota. STAVOVÁ ROVNICE PRO IDEÁLNÍ PLYN: Rovnice vyjadřující vztah mezi stavovými veličinami - termodynamickou teplotou T, tlakem p a objemem V ideálního plynu v rovnovážném stavu. Pro n molů ideálního plynu platí: pv = nrt Veličina R je molární plynová konstanta: R = kn A = 8, J mol 1 K 1 Pro ideální plyn o hmotnosti m platí: Pro N částic pv = NkT. Pro dva různé stavy téhož plynu platí: Pro reálný plyn platí van der Waalsova rovnice (obr. 3-2): Veličiny a, b jsou konstanty závislé na druhu plynu: (p k je kritický tlak, V k je kritický objem, tzn. tlak a objem při kritické teplotě T k ) stránka 55

6 Obr. 3-2 KRITICKÝ STAV: Stav látky určený kritickým tlakem p k, kritickým objemem V k a kritickou teplotou T k, při němž mizí rozdíl mezi kapalným a plynným skupenstvím. IZOTERMICKÝ DĚJ: Děj v ideálním plynu, který probíhá při stálé teplotě. Pro teplo Q T přijaté plynem při izotermickém ději charakterizovaném teplotou T platí (pro 1 mol plynu): (R je molární plynová konstanta, V 1, V 2, resp. p 1, p 2 jsou počáteční a konečný objem, resp. tlak) BOYLŮV-MARIOTTŮV ZÁKON: Při izotermickém ději s ideálním plynem stálé hmotnosti je součin tlaku p a objemu V plynu stálý: pv = konst. IZOTERMA: Graf vyjadřující tlak plynu stálé hmotnosti jako funkci jeho objemu při izotermickém ději (obr. 3-3). Obr. 3-3 stránka 56

7 IZOBARICKÝ DĚJ: Děj v ideálním plynu, který probíhá při stálém tlaku. Pro teplo Q p přijaté plynem při izobarickém ději platí: Q p = C p (T 2 T 1 ) Současně plyn koná práci: (C p je tepelná kapacita plynu při stálém tlaku, V 1, V 2, popř. T 1, T 2 jsou počáteční a konečný objem, popř. teplota) GAY-LUSSACŮV ZÁKON: Při izobarickém ději s ideálním plynem stálé hmotnosti je objem V plynu přímo úměrný jeho termodynamické teplotě T: V = konst. T IZOBARA: Graf funkce vyjadřující objem plynu stálé hmotnosti jako funkci jeho termodynamické teploty, popř. tlak plynu jako funkci jeho objemu při izobarickém ději (obr. 3-4). Obr. 3-4 IZOCHORICKÝ DĚJ: Děj v ideálním plynu, který probíhá při stálém objemu. Pro teplo Q V přijaté plynem při izochorickém ději platí: Q V = C V (T 2 T 1 ) (C V je tepelná kapacita plynu při stálém objemu, T 1, T 2 jsou počáteční a konečná teplota plynu) Při izochorickém ději plyn práci nekoná: W' = 0. Přijaté teplo se spotřebovává na přírůstek vnitřní energie: Q V = U. CHARLESŮV ZÁKON: Při izochorickém ději s ideálním plynem stálé hmotnosti je tlak plynu přímo úměrný jeho termodynamické teplotě. p = konst. T stránka 57

8 IZOCHORA: Graf vyjadřující tlak plynu stálé hmotnosti jako funkci jeho termodynamické teploty nebo jeho objemu při izochorickém ději (obr. 3-5). Obr. 3-5 ADIABATICKÝ DĚJ: Děj s ideálním plynem, při němž mezi plynem a okolím neprobíhá tepelná výměna (Q = 0). Práce vykonaná plynem při adiabatickém ději je rovna úbytku vnitřní energie plynu: W' = U = C V (T 2 T 1 ) (C V je kapacita plynu při stálém objemu, T 1, T 2 jsou počáteční a konečná teplota plynu) POISSONŮV ZÁKON: Zákon, který platí pro adiabatický děj s ideálním plynem stálé hmotnosti: pv κ = konst. Veličina κ je Poissonova konstanta: (c p - měrná tepelná kapacita při stálém tlaku, c V - měrná tepelná kapacita při stálém objemu) Hodnota κ > 1; s rostoucím počtem atomů v molekule se zmenšuje. Pro plyn s jednoatomovými molekulami κ = 5/3, s dvouatomovými molekulami κ = 7/5. stránka 58

9 ADIABATA: Graf vyjadřující tlak plynu stálé hmotnosti jako funkci jeho objemu při adiabatickém ději (obr. 3-6). Obr. 3-6 POLYTROPICKÝ DĚJ: Děj v plynu, při němž dochází k částečné tepelné výměně s okolím, přičemž je tepelná kapacita plynu konstantní. Platí: pv n = konst. (n - polytropický součinitel: 1 < n < κ) POLYTROPA: Graf vyjadřující tlak plynu stálé hmotnosti jako funkci jeho objemu při polytropickém ději. Polytropa leží mezi izotermou a adiabatou. KRUHOVÝ DĚJ: Děj, při němž je konečný stav soustavy totožný s počátečním stavem. Může-li kruhový děj probíhat oběma směry, aniž by v okolních tělesech nastaly změny, je kruhový děj vratný. CARNOTŮV CYKLUS: Vratný kruhový děj, který se skládá ze dvou izotermických dějů a dvou adiabatických dějů. Jeho účinnost η max je hranicí účinnosti reálných tepelných strojů. Závisí jen na podílu termodynamických teplot T 1 ohřívače a T 2 chladiče a nezávisí na pracovní látce. Pro účinnost tepelného stroje platí: Obr. 3-7 stránka 59

10 TEPELNÝ STROJ: Zařízení, v němž se s pracovní látkou uskutečňuje kruhový děj. Základní typy tepelných strojů: spalovací motor (pracovní látkou je plyn vznikající spalováním paliva uvnitř motoru - např. zážehový motor, vznětový motor, proudový motor, raketový motor), parní motor (pracovní látkou je vodní pára - např. parní stroj, parní turbína). 3.5 Změny skupenství SKUPENSKÉ TEPLO - L: Teplo, které přijme nebo odevzdá homogenní těleso o hmotnosti m určitého skupenství při změně skupenství za stálé teploty a tlaku. MĚRNÉ SKUPENSKÉ TEPLO - l: Skupenské teplo vztažené na jednotku hmotnosti m dané látky: [l] = J kg 1 Podle druhu změny skupenství rozlišujeme měrné skupenské teplo tání, tuhnutí, vypařování, kondenzace, sublimace a desublimace. TÁNÍ: Přechod pevného tělesa ze skupenství pevného ve skupenství kapalné. TEPLOTA TÁNÍ: Teplota, při níž nastává tání. Teplota tání při normálním tlaku (p n = 1, Pa) je normální teplota tání. TUHNUTÍ: Přechod kapalného tělesa ze skupenství kapalného ve skupenství pevné. TEPLOTA TUHNUTÍ: Teplota, při které nastává při daném tlaku tuhnutí krystalické látky. SUBLIMACE: Přímý přechod pevného skupenství látky ve skupenství plynné. DESUBLIMACE: Přímý přechod plynného skupenství látky ve skupenství pevné. VYPAŘOVÁNÍ: Přechod kapalného skupenství látky ve skupenství plynné. KAPALNĚNÍ, KONDENZACE: Přechod plynného skupenství látky ve skupenství kapalné. PÁRA: Plynné skupenství látky při nižší teplotě, než je teplota odpovídající kritickému stavu. VAR: Zvláštní případ vypařování, při němž se kapalina vypařuje nejen na povrchu, ale i uvnitř. Var nastává, když tlak sytých par se rovná vnějšímu tlaku nad volným povrchem kapaliny. TEPLOTA VARU: Teplota, při níž nastává var při daném tlaku. stránka 60

11 FÁZOVÝ DIAGRAM: Graf zobrazený do soustavy souřadnic s osami T a p, v němž každý bod roviny fázového diagramu znázorňuje určitý stav látky. Ve fázovém diagramu na obr. 3-8 je k t křivka tání, k p křivka syté páry a k s sublimační křivka. Obr. 3-8 TROJNÝ BOD: Bod fázového diagramu (obr. 3-8), v němž se stýkají křivky k t, k s, k p. Znázorňuje rovnovážný stav pevné, kapalné a plynné fáze téže látky. KRITICKÝ BOD: Bod fázového diagramu (K na obr. 3-8), který odpovídá kritickému stavu látky. Při něm mizí rozdíl mezi kapalným a plynným skupenstvím. ABSOLUTNÍ VLHKOST VZDUCHU - Φ: Veličina určená hmotností vodní páry obsažené v objemové jednotce vzduchu: Maximální hodnota absolutní vlhkosti vzduchu za dané teploty je rovna hustotě ρ s syté páry ve vzduchu v g m 3 : Φ max = ρ s RELATIVNÍ VLHKOST VZDUCHU - ϕ: Poměr absolutní vlhkosti vzduchu při dané teplotě a absolutní vlhkosti vzduchu Φ max, při níž je za této teploty vodní pára ve vzduchu párou sytou (obvykle se udává v procentech): ROSNÝ BOD: Stav, při kterém se vodní pára ve vzduchu stane sytou a začne kondenzovat. TEPLOTA ROSNÉHO BODU: Teplota, při které se původně přehřátá vodní pára ve vzduchu stane sytou párou. VLHKOMĚR (hygrometr): přístroj pro měření relativní vlhkosti vzduchu. HYGROGRAF: Přístroj, který zaznamenává v podobě grafu relativní vlhkost jako funkci času. stránka 61

12 4 MECHANICKÉ KMITÁNÍ A VLNĚNÍ 4.1 Kinematika harmonického pohybu KMITÁNÍ: Fyzikální děj s periodickou časovou závislostí veličin, kterými je kmitání popisováno. KMITAVÝ POHYB: Pohyb s periodickým průběhem, při kterém se hmotný bod pohybuje v okolí rovnovážné polohy. HARMONICKÝ KMITAVÝ POHYB: Pohyb s periodickým průběhem charakterizovaný veličinami, které se s časem mění podle funkce sinus, popř. kosinus. KMITAVÝ POHYB NETLUMENÝ: Harmonický kmitavý pohyb, při němž největší výchylka hmotného bodu z rovnovážné polohy zůstává konstantní. OKAMŽITÁ VÝCHYLKA - y: Vzdálenost hmotného bodu od rovnovážné polohy v daném okamžiku. V případě, že hmotný bod kmitá ve směru osy souřadnic y, je okamžitá výchylka souřadnicí kmitajícího hmotného bodu v čase t. Při harmonickém kmitavém pohybu: Obr. 4-1 AMPLITUDA VÝCHYLKY - y m : Největší výchylka hmotného bodu z rovnovážné polohy. Označuje se také termínem výkmit. ÚHLOVÁ FREKVENCE - ω: Veličina definovaná vztahem: FÁZE KMITAVÉHO POHYBU - ϕ: Veličina POČÁTEČNÍ FÁZE - ϕ 0 : Fáze kmitavého pohybu v čase t = 0. PERIODA KMITAVÉHO POHYBU - T: Doba, za kterou kmitající hmotný bod vykoná jeden kmit. stránka 62

13 FREKVENCE KMITAVÉHO POHYBU (kmitočet) - f: Počet kmitů, které kmitající hmotný bod vykoná za jednotku času: Jednotkou frekvence je hertz - Hz: [f] = Hz = s 1 RYCHLOST KMITAVÉHO POHYBU - v: Okamžitá hodnota rychlosti hmotného bodu, který koná kmitavý pohyb. Při harmonickém kmitavém pohybu ve směru osy y je rychlost kmitavého pohybu vyjádřena jako souřadnice vektoru okamžité rychlosti v čase t (při ϕ 0 = 0): AMPLITUDA RYCHLOSTI KMITAVÉHO POHYBU - v m : Největší hodnota okamžité rychlosti při kmitavém pohybu. Při harmonickém kmitavém pohybu dosahuje hmotný bod amplitudy rychlosti při průchodu rovnovážnou polohou: v m = ωy m ZRYCHLENÍ KMITAVÉHO POHYBU - a: Okamžitá hodnota zrychlení kmitavého pohybu hmotného bodu. Při harmonickém kmitavém pohybu: AMPLITUDA ZRYCHLENÍ KMITAVÉHO POHYBU - a m : Největší hodnota zrychlení kmitavého pohybu hmotného bodu. Při harmonickém pohybu má zrychlení největší hodnotu v amplitudě výchylky: SLOŽENÉ KMITÁNÍ: Výsledné kmitání, které vzniká složením (superpozicí) dvou a více kmitání. Nejčastěji skládáme kmitání, jehož složky mají: a) stejný směr, b) směry navzájem kolmé. stránka 63

14 SLOŽENÉ KMITÁNÍ SE SLOŽKAMI STEJNÉHO SMĚRU: Nejdůležitější případy jsou: a) složky mají stejnou frekvenci (f 1 = f 2 ; izochronní kmitání), b) složky mají různou frekvenci (f 1 f 2 ), c) složky mají blízké frekvence (f 1 f 2 ). a) Je-li f 1 = f 2, je výsledné kmitání harmonické, jen když jsou složky rovněž harmonické. Amplituda výchylky složeného kmitání závisí jednak na amplitudách výchylky složek, jednak na počátečních fázích složek. Pro (k = 0, 1, 2,...): y m = y m1 + y m2 Pro : Obr. 4-2 b) Při různé frekvenci (f 1 f 2 ) vzniká složené kmitání neharmonické, které je periodické jen v případě, že úhlové frekvence složek jsou v poměru celých čísel (ω 1 : ω 2 = k 1 : k 2 ). Pro y m1 = y m2 = y m a ϕ 1 = ϕ 2 = 0 platí: Pro periodu T a frekvenci f výsledného kmitání platí: stránka 64

15 T = k 1 T 1 = k 2 T 2 Obr. 4-3 c) Jestliže f 1 f 2, vznikají rázy. RÁZY: Zvláštní případ složeného kmitání, jehož složky mají blízké frekvence. Toto kmitání není harmonické, avšak při malém rozdílu frekvencí složek je jeho průběh blízký harmonickému průběhu kmitání s pomalu se měnící amplitudou. Pro y m1 = y m2 = y m a ϕ 1 = ϕ 2 = 0 platí: Obr. 4-4 V případě rázů akustického kmitání používáme označení zázněje. stránka 65

16 SLOŽENÉ KMITÁNÍ SE SLOŽKAMI V KOLMÝCH SMĚRECH: Pro souřadnice složek platí: x = x m sin (ω 1 t + ϕ 1 ) y = y m sin (ω 2 t + ϕ 2 ) Výsledná výchylka r v čase t je určena vektorovým součtem složek (obr. 4-5): Obr. 4-5 Poznámka: Veličiny r a ϕ představují polární souřadnice výsledné výchylky. Zvláštní případy: a) Složky mají stejnou úhlovou frekvenci (ω 1 = ω 2 ). Obecně vzniká elipsa: Jestliže ϕ = kπ (k = 0, 1, 2,...) vzniká přímka: (pro k sudé) (pro k liché) Jestliže ϕ = (2k + 1) π/2 a y m = x m = r, vzniká kružnice: stránka 66

17 V ostatních případech vzniká elipsa. Obr. 4-6 b) Úhlové frekvence jsou v poměru malých celých čísel. Souřadnice okamžité výchylky jako funkce času vytváří Lissajousovu křivku. LISSAJOUSOVA KŘIVKA: Uzavřená křivka, která je výsledkem superpozice dvou kmitání probíhajících v navzájem kolmých směrech, jejichž frekvence jsou v poměru celých čísel. Křivka vzniká spojením bodů, jejichž souřadnice je rovna souřadnici okamžité výchylky výsledného kmitání. Tvar křivek je také ovlivněn rozdílem počátečních fází složek ( ϕ ). Nejsou-li frekvence v poměru celých čísel, vzniká neuzavřená křivka. Obr. 4-7 HARMONICKÁ ANALÝZA: Metoda studia složeného kmitání založená na poznatku, že libovolná periodická funkce může být rozložena na řadu harmonických složek (Fourierova řada). stránka 67

18 4.2 Dynamika harmonického pohybu MECHANICKÝ OSCILÁTOR: Mechanická soustava, která po vychýlení z rovnovážné polohy kmitá (např. pružina o tuhosti k, na níž je zavěšeno těleso o hmotnosti m; tuto soustavu označujeme také termínem pružinový oscilátor). Příčinou kmitání je síla (např. síla pružnosti), jejíž velikost je přímo úměrná velikosti výchylky mechanického oscilátoru z rovnovážné polohy a má opačný směr než výchylka, tzn. míří do rovnovážné polohy: HMOTNOST MECHANICKÉHO OSCILÁTORU - m: Základní parametr mechanického oscilátoru. Zpravidla je soustředěn v jedné části oscilátoru (např. v tělese pružinového oscilátoru). TUHOST MECHANICKÉHO OSCILÁTORU - k: Základní parametr mechanického oscilátoru, který je určen poměrem velikosti síly F působící na oscilátor a velikosti výchylky y, kterou síla způsobí: VLASTNÍ KMITÁNÍ OSCILÁTORU: Kmitání mechanického oscilátoru, které nastane po jeho vychýlení z rovnovážné polohy, jestliže mu dále již není z vnějšku dodávána energie. ÚHLOVÁ FREKVENCE VLASTNÍHO KMITÁNÍ - ω 0 : Úhlová frekvence vlastního kmitání netlumeného mechanického oscilátoru, která závisí jen na parametrech oscilátoru: PERIODA VLASTNÍHO KMITÁNÍ - T 0 : Perioda kmitání mechanického oscilátoru určená jen jeho parametry. U mechanického oscilátoru tvořeného pružinou o tuhosti k s tělesem o hmotnosti m: FREKVENCE VLASTNÍHO KMITÁNÍ - f 0 : Reciproká hodnota periody vlastního kmitání: stránka 68

19 TLUMENÝ KMITAVÝ POHYB MECHANICKÉHO OSCILÁTORU: Kmitavý pohyb mechanického oscilátoru ovlivněný odporem prostředí. Celková síla působící na mechanický oscilátor je vyjádřena vztahem: (b je konstanta úměrnosti mezi odporovou silou a rychlostí tělesa) Pro okamžitou výchylku tlumeného kmitání platí: (y 0 je amplituda výchylky v počátečním okamžiku, δ je součinitel tlumení, t je čas, ϕ 0 je počáteční fáze) Amplituda výchylky tlumeného kmitavého pohybu je klesající funkcí času: Úhlová frekvence ω tlumeného kmitání je menší než úhlová frekvence netlumeného kmitání ω 0 : Obr. 4-8 SOUČINITEL TLUMENÍ - δ: Veličina vyjadřující vliv prostředí na kmitavý pohyb mechanického oscilátoru: (b je konstanta úměrnosti mezi odporovou silou a rychlostí tělesa, m je hmotnost tělesa) APERIODICKÝ POHYB: Tlumený kmitavý pohyb, při němž je součinitel tlumení větší než úhlová frekvence vlastního kmitání mechanického oscilátoru (ω 0 < δ). Mechanický oscilátor se nepohybuje periodicky a asymptoticky se blíží k rovnovážné poloze. KRITICKÉ TLUMENÍ: Tlumený kmitavý pohyb mechanického oscilátoru, při němž je součinitel tlumení roven úhlové frekvenci vlastního kmitání mechanického oscilátoru (ω 0 = δ). Oscilátor se nerozkmitá, v nejkratším čase dosáhne rovnovážné polohy. stránka 69

20 NUCENÉ KMITÁNÍ: Netlumené kmitání mechanického oscilátoru, jehož příčinou je vnější harmonicky proměnná síla F v (F v = F m sin Ωt, kde F m je amplituda vnější síly a Ω je úhlová frekvence vnější síly), která působí na oscilátor. REZONANCE: Nucené kmitání, při němž amplituda výchylky dosahuje maximální hodnoty. Nastává v případě, když úhlová frekvence Ω vnější síly je rovna rezonanční úhlové frekvenci ω r oscilátoru (Ω = ω r ). REZONANČNÍ ÚHLOVÁ FREKVENCE - ω r : Úhlová frekvence tlumeného mechanického oscilátoru, při níž nastává rezonance: REZONANČNÍ KŘIVKA: Graf amplitudy výchylky jako funkce frekvence harmonické síly působící na mechanický oscilátor při nuceném kmitání. Obr. 4-9 KYVADLO: Mechanický oscilátor tvořený tuhým tělesem o hmotnosti m, které je otáčivé kolem vodorovné osy procházející mimo hmotný střed tělesa. Jestliže zanedbáme tlumení pohybu kyvadla, pak po malém vychýlení z rovnovážné polohy koná harmonický pohyb s periodou: (J je moment setrvačnosti kyvadla vzhledem k ose, kolem níž kmitá, d je vzdálenost těžiště kyvadla od osy otáčení, g je tíhové zrychlení) stránka 70

21 MATEMATICKÉ KYVADLO: Model kyvadla tvořený tělesem zanedbatelných rozměrů (hmotný bod), zavěšeným na vlákně délky l, jehož hmotnost můžeme zanedbat. Pro úhlovou frekvenci ω 0, periodu T 0 a frekvenci f 0 vlastního kmitání matematického kyvadla platí: SPŘAŽENÉ MECHANICKÉ OSCILÁTORY: Mechanické oscilátory, mezi nimiž je vzájemná vazba (zprostředkovaná např. silou pružnosti nebo silou tření) umožňující přenos energie z jednoho oscilátoru do druhého oscilátoru (rezonátoru). Jestliže jeden oscilátor kmitá, přenáší se energie kmitavého pohybu postupně do rezonátoru a amplituda kmitání oscilátoru i rezonátoru se periodicky mění. Vznikají rázy (obr. 4-10). Obr stránka 71

22 4.3 Mechanické vlnění MECHANICKÉ VLNĚNÍ: Děj, při němž se kmitání šíří látkovým prostředím. Toto prostředí je složeno z velkého množství částic, mezi nimiž existuje vazba. Nucené kmitání jedné částice se postupně přenáší na další částice a vzniká děj, který z hlediska kinematiky charakterizuje změna fáze kmitání jednotlivých částic a z hlediska dynamiky je děj charakterizován přenosem energie. POSTUPNÉ VLNĚNÍ: Mechanické vlnění, při němž se kmitání ze zdroje vlnění postupně přenáší do bodů vzdálenějších od zdroje. Postupným vlněním se přenáší energie kmitavého pohybu ze zdroje do prostředí, které zdroj obklopuje. Nenastává však přenos látky. POSTUPNÉ VLNĚNÍ PŘÍČNÉ: Druh postupného mechanického vlnění, při němž hmotné body prostředí, kterým se vlnění šíří, kmitají ve směru kolmém ke směru šíření vlnění. Vzniká v tělesech, která jsou pružná při změně tvaru (pevná tělesa, povrch kapalin). Obr POSTUPNÉ VLNĚNÍ PODÉLNÉ: Druh postupného mechanického vlnění, při němž hmotné body prostředí kmitají ve směru šíření vlnění. Vzniká v prostředí, které je pružné při změně objemu (pevné látky, kapaliny a plyny). Tímto vlněním se šíří zvuk. Obr RYCHLOST VLNĚNÍ - v: Velikost rychlosti, kterou se mechanické vlnění šíří v daném prostředí. Rozlišujeme fázovou rychlost vlnění v f, což je rychlost, s níž se určitá fáze kmitání bodu prostředí přenáší k následujícím bodům, a grupová rychlost v g, kterou se prostředím přenáší energie vlnění složeného z několika vlnění o různých fázových rychlostech. PERIODA VLNĚNÍ - T: Nejkratší doba, po jejímž uplynutí se v daném bodě prostředí opakuje periodický průběh kmitání. U harmonického vlnění odpovídá perioda vlnění periodě kmitání zdroje. stránka 72

23 FREKVENCE VLNĚNÍ - f: Reciproká hodnota periody vlnění: VLNOVÁ DÉLKA - λ: Vzdálenost, do níž se vlnění rozšíří za periodu vlnění: Také nejmenší vzdálenost mezi dvěma body, které kmitají se stejnou fází. Je definována pro harmonickou vlnu. VLNOČET - σ: Reciproká hodnota vlnové délky: Určuje počet vlnových délek připadajících na jednotku délky (1 m). HARMONICKÁ VLNA: Časově i prostorově periodická vlna, jejíž charakteristické veličiny jsou vyjádřeny funkcí sinus, popř. kosinus. ROVNICE POSTUPNÉ VLNY: Rovnice vyjadřující hodnotu okamžité výchylky y bodu prostředí, kterým se šíří postupné harmonické vlnění, jako funkci času t a polohy (vzdálenosti x od zdroje vlnění): (y m je amplituda výchylky, T je perioda) AMPLITUDA POSTUPNÉ VLNY - y m : Největší výchylka bodu prostředí, kterým se šíří postupné vlnění. FÁZE VLNY - ϕ: Argument funkce sinus v rovnici postupné vlny. Pro t = 0 je. Pro body ve vzájemné vzdálenosti x = kλ, kde k = 1, 2, 3,... má fáze vlnění hodnotu ϕ = k2π a okamžitá výchylka těchto bodů je stejná. stránka 73

24 INTENZITA VLNĚNÍ - I: Podíl středního výkonu P přenášeného vlněním plochou kolmou ke směru šíření vlnění a obsahu plochy S: (v je rychlost vlnění) Veličina w je střední hustota energie: (ρ je hustota prostředí) INTERFERENCE VLNĚNÍ: Skládání dvou a více vlnění v určité oblasti prostředí, kterým se mechanické vlnění šíří. Body prostředí kmitají s okamžitými výchylkami určenými skládáním (superpozicí) okamžitých výchylek jednotlivých vlnění. Interference dvou harmonických vln: Interferencí vzniká výsledné vlnění: Obr stránka 74

25 INTERFERENČNÍ MAXIMUM: Případ interference dvou vlnění stejné frekvence (popř. stejné vlnové délky v daném prostředí), při níž dosahuje amplituda výsledného vlnění maximální hodnoty. Nastává tehdy, když je splněna podmínka: (d je dráhový rozdíl vlnění, k = 0, 1, 2,...). Amplituda výsledného vlnění: Pro y m1 = y m2 = y m je Y m = 2y m. Obr. 4-14a INTERFERENČNÍ MINIMUM: Případ interference vlnění, při níž dosahuje amplituda výsledného vlnění minimální hodnoty. Nastává tehdy, když pro dráhový rozdíl d je splněna podmínka: Amplituda výsledného vlnění: Pro y m1 = y m2 = y m je Y m = 0. Obr. 4-14b stránka 75

26 STOJATÉ VLNĚNÍ: Vlnění, které vzniká při interferenci dvou stejných vlnění (vlnění mají stejnou amplitudu výchylky, frekvenci a vlnovou délku), která postupují proti sobě. Jestliže počátek O soustavy souřadnic (Oxyz) je v bodě, v němž se obě vlnění setkávají v čase t = 0 s nulovým fázovým posuvem (obr. 4-15), jsou vlnění popsána rovnicemi (vlnění 1 se šíří vpravo a vlnění 2 vlevo): Pro výsledné vlnění platí: Body prostředí, v němž vzniká stojaté vlnění, kmitají s amplitudou výchylky která je funkcí polohy (souřadnice x) bodu., Obr KMITNA: Bod stojatého vlnění, v němž kmitání dosahuje maximální amplitudy výchylky. Pro kmitnu platí: (k = 0, 1, 2,...) stránka 76

27 UZEL: Bod stojatého vlnění, v němž je amplituda výchylky stále nulová a bod je trvale v klidu. Pro uzel platí: (k = 0, 1, 2,...) CHVĚNÍ: Stojaté vlnění, které vzniká v tělesech (např. ve tvaru tyče) v důsledku interference vlnění postupujícího jedním směrem a vlnění odraženého od hraniční plochy tělesa (např. konce tyče) a postupujícího opačným směrem. Chvění vzniká jen při určitých frekvencích, které jsou celistvými násobky základní frekvence f z určené geometrickými rozměry tělesa. Vyšší harmonické frekvence f k jsou určeny upevněním tyče. Základní případy: a) Oba konce tyče jsou pevné: (k = 1, 2, 3,...) b) Pevný střed a volné konce tyče: (k = 1, 2, 3,...) c) Jeden konec pevný a druhý volný (platí pro podélné chvění): (k = 1, 2, 3,...) stránka 77

28 Obr VLNOPLOCHA: Plocha, na níž leží body, do kterých vlnění ze zdroje dospělo za tutéž dobu. Body vlnoplochy kmitají se stejnou fází. Obecně má tvar koule (kulová vlnoplocha). Při velké vzdálenosti od zdroje považujeme vlnoplochu za část roviny (rovinná vlnoplocha). PAPRSEK: Přímka určující směr šíření vlnění, kolmá k vlnoploše. ODRAZ VLNĚNÍ: Děj na rozhraní dvou prostředí, při němž se vlnění dopadající na rozhraní vrací zpět do prostředí z něhož k rozhraní dospělo. ÚHEL DOPADU - α: Úhel sevřený paprskem dopadajícího vlnění a kolmicí dopadu. ÚHEL ODRAZU - α : Úhel sevřený paprskem odraženého vlnění a kolmicí dopadu. KOLMICE DOPADU: Přímka kolmá k rozhraní dvou prostředí v místě dopadu vlnění. ROVINA DOPADU: Rovina určená paprskem dopadajícího vlnění a kolmicí dopadu. stránka 78

29 ZÁKON ODRAZU VLNĚNÍ: Úhel odrazu vlnění je roven úhlu dopadu vlnění: Odražený paprsek zůstává v rovině dopadu. Obr LOM VLNĚNÍ: Děj na rozhraní dvou prostředí, při němž vlnění přechází do druhého prostředí a v něm se šíří jiným směrem. ÚHEL LOMU - β: Úhel sevřený lomeným paprskem a kolmicí dopadu v daném bodě rozhraní. ZÁKON LOMU VLNĚNÍ: Poměr sinu úhlu dopadu k sinu úhlu lomu je pro daná dvě prostředí veličina konstantní a rovná se poměru rychlostí vlnění v obou prostředích: Lomený paprsek zůstává v rovině dopadu. Jestliže v 1 > v 2 nastává lom ke kolmici (α > β; obr. 4-18a). Jestliže v 1 < v 2 nastává lom od kolmice (α < β; obr. 4-18b) Obr HUYGENSŮV PRINCIP: Princip, který umožňuje konstrukci vlnoplochy v určitém okamžiku, je-li známa její poloha a tvar v některém předcházejícím okamžiku: Každý bod vlnoplochy, do něhož dospělo vlnění v určitém časovém okamžiku, je zdrojem elementárního vlnění, které se z něho šíří v elementárních vlnoplochách. Vlnoplocha v dalším časovém okamžiku je vnější obalová plocha všech elementárních vlnoploch. stránka 79

30 DOPPLERŮV JEV: Jev, který vzniká při relativním pohybu zdroje vlnění a pozorovatele. Pozorovatel při něm zjišťuje jinou frekvenci, než je frekvence zdroje vlnění. Základní případy: a) Zdroj Z vlnění o frekvenci f je v klidu, přijímač vlnění P 1 se pohybuje rychlostí u směrem ke zdroji vlnění a přijímač vlnění P 2 se stejnou rychlostí od zdroje vzdaluje (obr. 4-19). Přijímač P 1 zachytí více vln a registruje vyšší frekvenci vlnění f 1 a přijímač P 2 zaznamená nižší frekvenci f 2 : Obr b) Zdroj Z vlnění se pohybuje rychlostí w a přijímače vlnění P 1 a P 2 jsou v klidu (obr. 4-20): Obr stránka 80

31 4.4 Zvukové vlnění AKUSTIKA: Část nauky o vlnění, která se zabývá fyzikálními ději spojenými se vznikem, šířením a vnímáním zvuku. ZVUK: Mechanické vlnění v látkovém prostředí, které je schopno vyvolat v lidském uchu sluchový vjem. Lidské ucho vnímá zvuky o frekvencích 16 Hz až 16 khz. ULTRAZVUK: Mechanické vlnění o frekvenci větší než 16 khz. INFRAZVUK: Mechanické vlnění o frekvenci menší než 16 Hz. TÓN: Zvuk s periodickým průběhem. JEDNODUCHÝ TÓN: Zvuk s harmonickým průběhem. SLOŽENÝ TÓN: Periodický zvuk se složitějším průběhem, který vzniká složením jednoduchého základního tónu a určitého počtu vyšších harmonických tónů, jejichž amplitudy s rostoucí frekvencí obvykle klesají. ZÁKLADNÍ TÓN: Tón harmonického průběhu, který je složkou složeného tónu a má nejnižší frekvenci. Označuje se také jako první harmonický tón. VYŠŠÍ HARMONICKÉ TÓNY: Tóny harmonického průběhu, které jsou složkami složeného tónu a jejichž frekvence jsou celistvými násobky frekvence základního tónu. HUDEBNÍ ZVUK: Zvuk s periodickým průběhem (tóny a akordy). VÝŠKA TÓNU: Základní charakteristika tónu určená jeho frekvencí. V hudební akustice umožňuje stanovit polohu tónu ve stupnici. ABSOLUTNÍ VÝŠKA TÓNU: Frekvence základního tónu hudebního zvuku. RELATIVNÍ VÝŠKA TÓNU: Poměr frekvence daného tónu k frekvenci tónu, který je zvolen za základ. V hudební akustice je to tón o frekvenci 440 Hz (hudební označení a 1 ). HUDEBNÍ INTERVAL: Poměr frekvencí tónů v tónové stupnici. Hudební intervaly se označují latinsky vyjádřeným pořadovým číslem tónu v tónové stupnici vzhledem k prvnímu tónu stupnice (primě). Nejjednodušší je hudební interval mezi primou a osmým tónem hudební stupnice (oktávou), jehož relativní výška je 2. TÓNOVÁ STUPNICE: Soustava tónů tvořená obvykle 12 hudebními intervaly (půltóny) s přesně definovanými relativními výškami. U klávesových nástrojů se používá tzv. temperované ladění, u kterého je relativní výška půltónu = 1,06. stránka 81

32 BARVA TÓNU: Charakteristická vlastnost složeného tónu, umožňující rozlišit dva složené tóny se stejnou frekvencí základního tónu. Je určena počtem a amplitudami vyšších harmonických tónů, které tvoří složený tón. RYCHLOST ZVUKU: Velikost rychlosti šíření zvuku v daném prostředí při určité teplotě. Je značně ovlivněna vlastnostmi prostředí a jeho teplotou. Rychlost zvuku ve vzduchu při teplotě t: INTENZITA ZVUKU: Intenzita zvukového vlnění určená poměrem výkonu zvukového vlnění a obsahem plochy, kterou vlnění prochází. Je přímo úměrná energii kmitání, které zvukové vlnění v daném bodě vzbuzuje. Závisí na druhé mocnině amplitudy výchylky a na druhé mocnině frekvence zvuku. HLASITOST ZVUKU: Subjektivní hodnocení zvukového vjemu, který vzniká působením zvukového vlnění na sluchový orgán ucha. PRÁH SLYŠENÍ: Nejmenší intenzita zvuku, kterou je schopen vnímat pozorovatel s normálním sluchem. Pro tón o frekvenci Hz má hodnotu I 0 = W m 2. PRÁH BOLESTI: Nejmenší hodnota intenzity zvuku, který vyvolá pocit bolesti. Při frekvenci Hz mu odpovídá intenzita zvuku 10 W m 2. HLADINA INTENZITY ZVUKU - L: V decibelech vyjádřený poměr intenzit zvuku: (I je intenzita zvuku, I 0 je základní (prahová) intenzita zvuku). Prahu slyšení odpovídá hladina 0 db, prahu bolesti 130 db. OZVĚNA: Jev, který vzniká v případě, že pozorovatel slyší zvuk šířící se přímo od zdroje a zvuk odražený od překážky v takové vzdálenosti, že oba zvuky vnímá odděleně. DOZVUK: Jev způsobený odrazem zvuku v uzavřeném prostoru, kdy pozorovatel slyší zvuk odražený od stěn ještě potom, co z původního zdroje přestalo zvukové vlnění vycházet. stránka 82

33 5 ELEKTŘINA A MAGNETISMUS 5.1 Elektrické pole ELEKTROSTATIKA: Část nauky o elektromagnetickém poli, zabývající se jevy v soustavě elektricky nabitých částic nebo těles, která jsou v klidu vzhledem k dané inerciální soustavě. ELEKTRICKÝ NÁBOJ - Q: Skalární fyzikální veličina charakterizující kvantitativně vlastnost elektricky nabitého tělesa, popř. částice. Jednotkou je coulomb - C: [Q] = C = A s ELEMENTÁRNÍ ELEKTRICKÝ NÁBOJ - e: Nejmenší možný elektrický náboj, který již dále nelze rozdělit: e = 1, C Může být kladný +e (náboj protonu, popř. pozitronu) nebo záporný e (náboj elektronu). Každý elektrický náboj je celistvým násobkem elementárního elektrického náboje. Náboj 1 C je přibližně 6, e. BODOVÝ ELEKTRICKÝ NÁBOJ: Fyzikální abstrakce hmotného bodu nesoucího náboj Q. ELEKTRICKÁ SÍLA - F e : Vektorová fyzikální veličina kvantitativně vyjadřující vzájemné působení elektricky nabitých těles. COULOMBŮV ZÁKON: Dva bodové náboje v klidu se navzájem přitahují nebo odpuzují stejně velkými elektrickými silami opačného směru. Velikost elektrické síly je přímo úměrná velikosti nábojů Q 1, Q 2 a nepřímo úměrná druhé mocnině jejich vzdálenosti r: Veličina k je konstanta úměrnosti, která závisí na vlastnostech prostředí, v němž na sebe náboje působí: (ε je permitivita prostředí) Ve vakuu: (ε 0 je permitivita vakua) 8, N m 2 C N m 2 C 2 stránka 83

34 Vektorové vyjádření Coulombova zákona: (r 0 je jednotkový polohový vektor s počátečním bodem v hmotném bodě o náboji Q 1 a směřující k náboji Q 2 ) PERMITIVITA PROSTŘEDÍ - ε: Skalární veličina, která charakterizuje prostředí, v němž dochází ke vzájemnému působení elektricky nabitých těles: (ε 0 je permitivita vakua, ε r je relativní permitivita) PERMITIVITA VAKUA - ε 0 : Skalární elektrická konstanta: ε 0 = 8, N 1 m 2 C 2 RELATIVNÍ PERMITIVITA PROSTŘEDÍ - ε r : Veličina definovaná vztahem: Charakterizuje elektrické vlastnosti prostředí, v němž působí elektrické síly. Pro vakuum a přibližně pro vzduch ε r = 1, pro všechna ostatní prostředí ε r > 1. Udává, kolikrát je elektrická síla menší, než by byla ve vakuu. DIELEKTRIKUM: Látka, která nevede elektrický proud. Označuje se také jako izolant. ELEKTROVÁNÍ TĚLES: Děj, při němž látka (izolant) získá těsným dotykem s jinou látkou elektrický náboj. Elektrování se zpravidla uskutečňuje třením izolantu (plastické materiály, sklo) vhodným materiálem (tkanina, kůže, srst), přičemž podle druhu látek se jedna nabíjí kladným elektrickým nábojem a druhá stejně velkým nábojem záporným. ELEKTRICKÉ POLE: Silové pole, v němž na tělesa s nábojem působí elektrická síla. ELEKTROSTATICKÉ POLE: Elektrické pole elektricky nabitých těles, popř. částic, které jsou vzhledem k dané inerciální vztažné soustavě v klidu. stránka 84

35 INTENZITA ELEKTRICKÉHO POLE - E: Vektorová veličina, která charakterizuje elektrické silové působení v určitém bodě elektrického pole. Lze ji určit jako podíl elektrické síly F e, která v toto bodě působí na kladný bodový náboj, a velikosti tohoto náboje q: V radiálním silovém poli bodového náboje Q má velikost: (ε 0 je permitivita prostředí, ε r je relativní permitivita, r je vzdálenost od náboje Q) V homogenním silovém poli: (U je napětí mezi body na siločáře homogenního elektrické pole, jejichž vzájemná vzdálenost je d) SILOČÁRA ELEKTRICKÉHO POLE: Myšlená čára procházející určitým bodem elektrického pole, jejíž tečna v tomto bodě určuje směr intenzity E. ELEKTRICKÉ POLE RADIÁLNÍ: Elektrické pole bodového náboje Q. Siločáry radiálního elektrického pole jsou přímky, které z bodového náboje vycházejí (je-li kladný), nebo do něj vstupují (je-li záporný). ELEKTRICKÉ POLE HOMOGENNÍ: Elektrické pole, v němž má intenzita E ve všech bodech pole stejnou velikost i směr. Elektrické siločáry homogenního elektrického pole jsou navzájem rovnoběžné. HUSTOTA NÁBOJE - ρ: Skalární veličina charakterizující rozložení náboje Q v uvažovaném objemu V: Pro rovnoměrně rozložený náboj platí: stránka 85

36 PLOŠNÁ HUSTOTA NÁBOJE - σ: Skalární veličina charakterizující rozložení náboje Q na ploše (např. na povrchu vodiče) o obsahu S: Na povrchu koule je: Na hranách a hrotech je velká. POLARIZACE DIELEKTRIKA: Vznik, popř. prostorové uspořádání vázaných elektrických dipólů v dielektriku, které se nachází v elektrickém poli. ELEKTRICKÝ DIPÓL: Molekula dielektrika, v níž jsou navzájem posunuté nosiče náboje, takže vzniká soustava kladného a záporného náboje umístěných obvykle v malé vzdálenosti od sebe. Např. molekula dielektrika, v níž jsou navzájem posunuté nosiče náboje, může tvořit elektrický dipól samovolně (polární dielektrikum), nebo dipól vzniká teprve působením vnějšího elektrického pole. ELEKTROSTATICKÁ INDUKCE: Přemístění volných nosičů náboje v izolovaném vodiči působením vnějšího elektrického pole, které je příčinou vzniku indukovaného náboje na povrchu vodiče. ELEKTRICKÁ INDUKCE - D: Vektorová veličina, která charakterizuje v určitém bodě elektrické pole. Je definovaná vztahem: D = ε 0 E + P (ε 0 je permitivita vakua, E je intenzita elektrického pole, P je elektrická polarizace). V izotropním prostředí: D = εe (ε je permitivita prostředí) ELEKTRICKÁ POLARIZACE - P: Vektorová veličina, která charakterizuje polarizaci dielektrika v daném místě elektrického pole. stránka 86

37 GAUSSOVA VĚTA: Jeden ze základních zákonů teorie elektromagnetického pole (zákon celkového náboje). Určuje tok intenzity E elektrického pole uzavřenou plochou o obsahu S, která obklopuje náboj Q v prostředí o permitivitě ε. V elementární podobě je pro vakuum vyjádřena vztahy: Vektorové vyjádření: (Q c je celkový náboj v obasti ohraničené uzavřenou plochou) ELEKTRICKÁ PRÁCE - W e : Práce, kterou vykoná elektrická síla při přemístění tělesa, popř. částice s nábojem v elektrickém poli. Je rovna úbytku jeho potenciální energie. ELEKTRICKÝ POTENCIÁL - ϕ: Skalární veličina definovaná jako podíl elektrické potenciální energie E p kladného bodového náboje a tohoto náboje Q: Jednotkou elektrického potenciálu je volt - V: V radiálním poli: [ϕ] = V = J C 1 = m 2 kg s 3 A 1 V homogenním poli mezi dvěma rovnoběžnými vodivými deskami s opačným nábojem ve vzájemné vzdálenosti d: ϕ = xe (x je vzdálenost od záporně nabité desky; x d) Při přemístění náboje Q z místa o potenciálu ϕ 1 na místo o potenciálu ϕ 2 vykoná elektrická síla práci: W = E p1 E p2 = Q(ϕ 1 ϕ 2 ) stránka 87

38 ELEKTRICKÉ NAPĚTÍ - U: Rozdíl potenciálů mezi dvěma body elektrického pole: Jednotkou elektrického napětí je volt - V: [U] = V = J C 1 Vektorové vyjádření: Při přemístění náboje Q mezi místy, mezi nimiž je napětí U, se vykoná práce: W = QU EKVIPOTENCIÁLNÍ PLOCHA: Množina bodů elektrického pole o stejném potenciálu. Označuje se také hladina potenciálu. V radiálním poli má tvar koule se středem v bodovém náboji, který elektrické pole vytváří. V homogenním poli má tvar roviny kolmé k elektrickým siločárám. KAPACITA VODIČE - C: Skalární veličina, která vyjadřuje schopnost vodiče přijmout při dané hodnotě potenciálu určitý náboj Q. Je definována vztahem: Jednotkou kapacity je farad - F: [C] = F = C V 1 Kapacita koule o poloměru r v prostředí o permitivitě ε: C = 4πε 0 ε rr KONDENZÁTOR: Soustava tvořená dvojicí navzájem izolovaných, obvykle plošných vodičů v malé vzájemné vzdálenosti. Deskový kondenzátor je tvořen dvěma rovnoběžnými deskami o obsahu plochy S ve vzájemné vzdálenosti d, oddělenými dielektrikem o permitivitě ε. Takový kondenzátor má kapacitu: Energie elektrického pole nabitého kondenzátoru: Pro deskový kondenzátor: stránka 88

39 KAPACITA SOUSTAVY KONDENZÁTORŮ: Celková kapacita soustavy navzájem spojených kondenzátorů. Základní případy: a) Kondenzátory spojené paralelně (obr. 5-1a): C = C 1 + C 2 + C b) Kondenzátory spojené do série (obr. 5-1b): Obr. 5-1a Obr. 5-1b PŘECHODNÝ DĚJ: Děj, který nastane po připojení kondenzátoru ke zdroji stejnosměrného napětí U 0, popř. při jeho odpojení od zdroje (obr. 5-2). Kondenzátor se postupně nabíjí, popř. vybíjí přes rezistor o odporu R a napětí kondenzátoru se mění podle exponenciální funkce (obr. 5-3) Pro okamžitou hodnotu nabíjecího proudu v čase t platí: Obr. 5-2 stránka 89

40 Obr. 5-3 Pro napětí v obvodu platí: Veličina τ je časová konstanta obvodu: τ = RC V čase τ je u R = 0,37U 0 a u C = 0,63U 0. Při vybíjení kondenzátoru prochází obvodem proud: Proud v počátečním okamžiku: Pro napětí při vybíjení kondenzátoru platí: stránka 90

41 5.2 Obvody elektrického proudu ELEKTRICKÝ PROUD: Uspořádaný pohyb volných nosičů náboje v látkách, popř. ve vakuu, jehož příčinou je působení elektrického pole na nosiče náboje. ELEKTRICKÝ PROUD - I: Skalární fyzikální veličina kvantitativně charakterizující elektrický proud. Základní veličina SI. Projdou-li zvolenou plochou (např. průřezem vodiče) za dobu t nosiče náboje o celkovém náboji Q, je velikost proudu: Jednotkou elektrického proudu je ampér - A. ELEKTRICKÝ OBVOD: Soustava elektrických zdrojů napětí, spotřebičů, popř. dalších elektrotechnických součástek spojených navzájem vodiči. ELEKTRICKÝ ZDROJ NAPĚTÍ: Zařízení pracující na různých fyzikálních principech, které v elektrickém obvodu udržuje rozdíl potenciálů a tím podmiňuje elektrický proud. Je zdrojem elektrické energie. ELEKTROMOTORICKÉ NAPĚTÍ ZDROJE - U e : Napětí na svorkách elektrického zdroje, kterým neprochází elektrický proud (zdroj naprázdno). Je určeno podílem práce W z neelektrostatických sil při přenosu nosičů náboje uvnitř zdroje a celkového přeneseného náboje Q: ÚČINNOST ELEKTRICKÉHO ZDROJE - η z : Poměr práce W v elektrickém obvodu připojeném k elektrickému zdroji a práce W z neelektrostatických sil zdroje: (P je výkon v elektrickém obvodu, P z je výkon zdroje) ELEKTRICKÝ SPOTŘEBIČ: Obvodový prvek elektrického obvodu, v němž se elektrická energie mění v jinou formu energie. stránka 91

42 AMPÉRMETR: Přístroj pro měření proudu, v němž se využívá různých fyzikálních principů (např. magnetických účinků proudu) k převodu velikosti proudu na mechanickou výchylku ručky přístroje, popř. na číselný údaj (digitální ampérmetr). Má malý odpor a do elektrického obvodu se zapojuje sériově ke spotřebiči. Obr. 5-4 VOLTMETR: Přístroj pro měření napětí. Je založen na stejném principu jako ampérmetr. Má velký odpor a do elektrického obvodu se připojuje paralelně k bodům, mezi nimiž je třeba změřit napětí. Obr. 5-5 ELEKTRONOVÁ VODIVOST KOVŮ: Vlastnost kovů, která je dána tím, že kovy obsahují velké množství volných elektronů (vodivostní elektrony). Po připojení zdroje elektrického napětí vytvářejí volné elektrony elektrický proud: I = N v evs (N v je hustota vodivostních elektronů, e je elementární elektrický náboj, v je střední rychlost elektronů, S je plocha průřezu vodiče) OHMŮV ZÁKON: Elektrický proud I v lineárním vodiči (má konstantní elektrický odpor) je přímo úměrný napětí U na vodiči. Je-li odpor vodiče R, má Ohmův zákon tvar: Pro uzavřený elektrický obvod se zdrojem elektromotorického napětí U e o vnitřním odporu R i platí: ELEKTRICKÝ ODPOR: Vlastnost látky, popř. obvodové součástky z ní vyrobené, která se projevuje zmenšením procházejícího proudu. stránka 92

43 ELEKTRICKÝ ODPOR - R: Skalární veličina, která charakterizuje elektrický odpor vodivého tělesa v elektrickém obvodu. Je definován vztahem: Jednotkou elektrického odporu je ohm - Ω: [R] = Ω = V A 1 = m 2 kg s 3 A 2 VNITŘNÍ ODPOR ZDROJE - R i : Veličina, která charakterizuje zdroj napětí z hlediska jeho vlivu na procházející proud. Zdroje s malým vnitřním odporem jsou tvrdé zdroje napětí (napětí na svorkách se mění se zatížením málo) a zdroje s velkým vnitřním odporem jsou měkké zdroje napětí. SVORKOVÉ NAPĚTÍ - U: Napětí na svorkách zdroje, ze kterého je odebírán proud I (zatížený zdroj). Je vždy menší než elektromotorické napětí zdroje U e : U = U e R i I (R i je vnitřní odpor zdroje) ELEKTRICKÁ VODIVOST: Vlastnost látky, popř. obvodové součástky z ní vyrobené, která je dána existencí volných nosičů náboje. Po vytvoření elektrického pole v látce se tyto nosiče stávají nositeli elektrického proudu. Podle druhu těchto nosičů náboje se rozlišuje vodivost elektronová, děrová (v polovodičích) a iontová (v elektrolytech). NOSIČ NÁBOJE: Nabitá částice (elektron, díra, iont), která se může stát nositelem elektrického proudu. ELEKTRICKÁ VODIVOST - G: Skalární veličina, která charakterizuje elektrickou vodivost vodivého tělesa v elektrickém obvodu. Je definována vztahem: Jednotkou elektrické vodivosti je siemens - S: [G] = S = Ω 1 = A V 1 = m 2 kg 1 s 3 A 2 REZISTOR: Prvek elektrického obvodu s předem stanoveným, popř. s měnitelným odporem. Má různé konstrukční provedení, např. rezistor drátový nebo vrstvový. stránka 93

44 SPOJENÍ REZISTORŮ: Soustava rezistorů vytvářející elektrickou síť. Základní spojení rezistorů je sériové (za sebou) a paralelní (vedle sebe). a) Sériové spojení rezistorů. Celkový odpor: Všemi rezistory prochází stejný proud: Pro napětí platí: I = I 1 = I 2 =... = I n U = U 1 + U U n Obr. 5-6 b) Paralelní spojení rezistorů. Převrácená hodnota celkového odporu je: Pro vodivost platí: Pro proud platí: I = I 1 + I I n Napětí na všech rezistorech je stejné: U = U 1 = U 2 =... = U n stránka 94

45 Obr. 5-7 REOSTAT: Rezistor s nastavitelným kontaktem, který umožňuje měnit jeho odpor R. Používá se k regulaci proudu v elektrickém obvodu. Obr. 5-8 POTENCIOMETR: Rezistor s nastavitelným kontaktem, který se používá k nastavení požadované hodnoty elektrického napětí. Obr. 5-9 ODPOROVÁ DEKÁDA: Soustava rezistorů s přesnými hodnotami odporu, uspořádaná do skupin zpravidla po deseti a technicky upravená tak, aby bylo možné nastavit s potřebnou přesností celkový odpor soustavy. stránka 95

46 PŘEDŘADNÍK: Rezistor připojený sériově k jinému prvku elektrického obvodu (např. k voltmetru), aby se v požadovaném poměru snížilo napětí na tomto prvku. U voltmetru se předřadníkem zvětšuje měřicí rozsah. Aby se rozsah voltmetru o vnitřním odporu R V zvětšil n-krát, musí mít předřadník odpor: R p = (n 1)R V Obr BOČNÍK: Rezistor připojený paralelně k jinému prvku elektrického obvodu (např. k ampérmetru), aby se zmenšil proud procházející tímto prvkem. U ampérmetru se bočníkem zvětšuje měřicí rozsah. Aby se rozsah ampérmetru o vnitřním odporu R A zvětšil n-krát, musí mít bočník odpor: Obr VOLTAMPÉROVÁ CHARAKTERISTIKA: Graf závislosti elektrického proudu I procházejícího pasivním prvkem elektrického obvodu na napětí U na tomto prvku (I = f(u)), popř. závislost U na I (U = f(i)). U lineárního pasivního prvku je voltmapérovou charakteristikou přímka a jeho odpor je konstantní. Voltampérová charakteristika nelineárního pasivního prvku je křivka a jeho odpor závisí na procházejícím proudu, popř. na připojeném napětí. PASIVNÍ PRVEK: Prvek elektrického obvodu, který není zdrojem elektromotorického napětí. stránka 96

47 REZISTIVITA - ρ: Skalární veličina charakterizující elektrický odpor látky. Odpovídá odporu tělesa z dané látky délky 1 m o obsahu příčného řezu 1 m 2. Používá se také název měrný elektrický odpor. Jednotkou rezistivity je ohmmetr - Ω m: [ρ ] = Ω m = m 3 kg s 3 A 2 Vodič délky l o obsahu plochy průřezu S má odpor: KONDUKTIVITA - γ: Skalární veličina charakterizující elektrickou vodivost látky. Platí: Používá se také termín měrná elektrická vodivost. Jednotkou konduktivity je siemens na metr S. m 1 : [γ] = S m 1 = m 3 kg 1 s 3 A 2 TEPLOTNÍ SOUČINITEL ELEKTRICKÉHO ODPORU - α: Skalární veličina která charakterizuje závislost elektrického odporu látky na teplotě. Odpor R kovového vodiče, jehož teplota se zvýší o t je určen vztahem R = R 0 (1 + α t) (R 0 je elektrický odpor při počáteční teplotě t 0 ). Pro čisté kovy při běžných teplotách má teplotní součinitel odporu hodnotu: α K 1 Příklady teplotního součinitele odporu (při teplotě 20 C): hliník 4, K 1, měď 3, K 1, platina 3, K 1, stříbro 3, K 1, wolfram 4, K 1, zlato 3, K 1 SUPRAVODIVOST: Jev spočívající v náhlém zmenšení měrného odporu látky až na zanedbatelnou hodnotu při snížení teploty pod kritickou teplotu T k supravodiče. Tato teplota se u různých supravodičů liší a má hodnotu řádově 10 1 K. PRVNÍ KIRCHHOFFŮV ZÁKON: Algebraický součet proudů v libovolném uzlu elektrického obvodu se rovná nule: stránka 97

Mechanické kmitání a vlnění

Mechanické kmitání a vlnění Mechanické kmitání a vlnění Pohyb tělesa, který se v určitém časovém intervalu pravidelně opakuje periodický pohyb S kmitavým pohybem se setkáváme např.: Zařízení, které volně kmitá, nazýváme mechanický

Více

UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie

UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie PŘEDMĚT: FYZIKA ROČNÍK: SEXTA VÝSTUP UČIVO MEZIPŘEDM. VZTAHY, PRŮŘEZOVÁ TÉMATA, PROJEKTY, KURZY POZNÁMKY Zná 3 základní poznatky kinetické teorie látek a vysvětlí jejich praktický význam Vysvětlí pojmy

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

Mol. fyz. a termodynamika

Mol. fyz. a termodynamika Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli

Více

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO 1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu

Více

Fyzika - Sexta, 2. ročník

Fyzika - Sexta, 2. ročník - Sexta, 2. ročník Fyzika Výchovné a vzdělávací strategie Kompetence komunikativní Kompetence k řešení problémů Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Vlnění Vhodíme-li na klidnou vodní hladinu kámen, hladina se jeho dopadem rozkmitá a z místa rozruchu se začnou

Více

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky Harmonický kmitavý pohyb a) vysvětlení harmonického kmitavého pohybu b) zápis vztahu pro okamžitou výchylku c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky d) perioda

Více

ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0

ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0 Kmity základní popis kmitání je periodický pohyb, při kterém těleso pravidelně prochází rovnovážnou polohou mechanický oscilátor zařízení vykonávající kmity Základní veličiny Perioda T [s], frekvence f=1/t

Více

ELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník

ELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník ELEKTROSTATIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník Elektrický náboj Dva druhy: kladný a záporný. Elektricky nabitá tělesa. Elektroskop a elektrometr. Vodiče a nevodiče

Více

Profilová část maturitní zkoušky 2017/2018

Profilová část maturitní zkoušky 2017/2018 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2017/2018 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: FYZIKA

Více

Okruhy k maturitní zkoušce z fyziky

Okruhy k maturitní zkoušce z fyziky Okruhy k maturitní zkoušce z fyziky 1. Fyzikální obraz světa - metody zkoumaní fyzikální reality, pojem vztažné soustavy ve fyzice, soustava jednotek SI, skalární a vektorové fyzikální veličiny, fyzikální

Více

4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul

4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul Fyzika 20 Otázky za 2 body. Celsiova teplota t a termodynamická teplota T spolu souvisejí známým vztahem. Vyberte dvojici, která tento vztah vyjadřuje (zaokrouhleno na celá čísla) a) T = 253 K ; t = 20

Více

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Molekulová fyzika, termika 2. ročník, sexta 2 hodiny týdně Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Více

Kmitání mechanického oscilátoru Mechanické vlnění Zvukové vlnění

Kmitání mechanického oscilátoru Mechanické vlnění Zvukové vlnění Mechanické kmitání a vlnění Kmitání mechanického oscilátoru Mechanické vlnění Zvukové vlnění Kmitání mechanického oscilátoru Kmitavý pohyb Mechanický oscilátor = zařízení, které kmitá bez vnějšího působení

Více

Elektromagnetický oscilátor

Elektromagnetický oscilátor Elektromagnetický oscilátor Již jsme poznali kmitání mechanického oscilátoru (závaží na pružině) - potenciální energie pružnosti se přeměňuje na kinetickou energii a naopak. T =2 m k Nejjednodušší elektromagnetický

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ I. MECHANICKÉ KMITÁNÍ 8.1 Kmitavý pohyb a) mechanické kmitání (kmitavý pohyb) pohyb, při kterém kmitající těleso zůstává stále v okolí určitého bodu tzv. rovnovážné polohy

Více

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A MECHANICKÉ KMITÁNÍ Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A Kinematika kmitavého pohybu Mechanický oscilátor - volně kmitající zařízení Rovnovážná poloha Výchylka Kinematika kmitavého pohybu Veličiny charakterizující

Více

Jestliže rozkmitáme nějakou částici pevného, kapalného anebo plynného prostředí, tak síly pružnosti přenesou tento kmitavý pohyb na částici sousední

Jestliže rozkmitáme nějakou částici pevného, kapalného anebo plynného prostředí, tak síly pružnosti přenesou tento kmitavý pohyb na částici sousední Jestliže rozkmitáme nějakou částici pevného, kapalného anebo plynného prostředí, tak síly pružnosti přenesou tento kmitavý pohyb na částici sousední a ta jej zase předá svému sousedovi. Částice si tedy

Více

Gymnázium, Havířov - Město, Komenského 2 MATURITNÍ OTÁZKY Z FYZIKY Školní rok: 2012/2013

Gymnázium, Havířov - Město, Komenského 2 MATURITNÍ OTÁZKY Z FYZIKY Školní rok: 2012/2013 1. a) Kinematika hmotného bodu klasifikace pohybů poloha, okamžitá a průměrná rychlost, zrychlení hmotného bodu grafické znázornění dráhy, rychlosti a zrychlení na čase kinematika volného pádu a rovnoměrného

Více

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud v kovech Elektrický proud = usměrněný pohyb

Více

ELEKTRICKÝ PROUD V KOVECH. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník

ELEKTRICKÝ PROUD V KOVECH. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník ELEKTRICKÝ PROUD V KOVECH Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník Elektrický proud Uspořádaný pohyb volných částic s nábojem Směr: od + k ( dle dohody - ve směru kladných

Více

Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9

Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9 Obsah 1 Kmitavý pohyb 1 Kinematika kmitavého pohybu 3 Skládání kmitů 6 4 Dynamika kmitavého pohybu 7 5 Přeměny energie v mechanickém oscilátoru 9 6 Nucené kmity. Rezonance 10 1 Kmitavý pohyb Typy pohybů

Více

MATURITNÍ TÉMATA Z FYZIKY

MATURITNÍ TÉMATA Z FYZIKY MATURITNÍ TÉMATA Z FYZIKY Školní rok 2016 / 2017 Struktura zkoušky: příprava ke zkoušce trvá 15 minut; ústní zkouška trvá 15 minut - její součástí je i řešení fyzikálních úloh Pomůcky: Matematické, fyzikální

Více

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých

Více

Molekulová fyzika a termika. Přehled základních pojmů

Molekulová fyzika a termika. Přehled základních pojmů Molekulová fyzika a termika Přehled základních pojmů Kinetická teorie látek Vychází ze tří experimentálně ověřených poznatků: 1) Látky se skládají z částic - molekul, atomů nebo iontů, mezi nimiž jsou

Více

Elektromagnetismus. - elektrizace třením (elektron = jantar) - Magnetismus magnetovec přitahuje železo zřejmě první záznamy o používání kompasu

Elektromagnetismus. - elektrizace třením (elektron = jantar) - Magnetismus magnetovec přitahuje železo zřejmě první záznamy o používání kompasu Elektromagnetismus Historie Staré Řecko: Čína: elektrizace třením (elektron = jantar) Magnetismus magnetovec přitahuje železo zřejmě první záznamy o používání kompasu Hans Christian Oersted objevil souvislost

Více

Maturitní témata profilová část

Maturitní témata profilová část SEZNAM TÉMAT: Kinematika hmotného bodu mechanický pohyb, relativnost pohybu a klidu, vztažná soustava hmotný bod, trajektorie, dráha klasifikace pohybů průměrná a okamžitá rychlost rovnoměrný a rovnoměrně

Více

FYZIKA II. Petr Praus 6. Přednáška elektrický proud

FYZIKA II. Petr Praus 6. Přednáška elektrický proud FYZIKA II Petr Praus 6. Přednáška elektrický proud Osnova přednášky Elektrický proud proudová hustota Elektrický odpor a Ohmův zákon měrná vodivost driftová rychlost Pohyblivost nosičů náboje teplotní

Více

T0 Teplo a jeho měření

T0 Teplo a jeho měření Teplo a jeho měření 1 Teplo 2 Kalorimetrie Kalorimetr 3 Tepelná kapacita 3.1 Měrná tepelná kapacita Měrná tepelná kapacita při stálém objemu a stálém tlaku Poměr měrných tepelných kapacit 3.2 Molární tepelná

Více

MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D19_Z_OPAK_KV_Mechanicke_kmitani_T Člověk a příroda Fyzika Mechanické kmitání Opakování

Více

Vnitřní energie, práce a teplo

Vnitřní energie, práce a teplo Vnitřní energie, práce a teplo Zákon zachování mechanické energie V izolované soustavě těles je v každém okamžiku úhrnná mechanická energie stálá. Mění se navzájem jen potenciální energie E p a kinetická

Více

15. Elektrický proud v kovech, obvody stejnosměrného elektrického proudu

15. Elektrický proud v kovech, obvody stejnosměrného elektrického proudu 15. Elektrický proud v kovech, obvody stejnosměrného elektrického proudu 1. Definice elektrického proudu 2. Jednoduchý elektrický obvod a) Ohmův zákon pro část elektrického obvodu b) Elektrický spotřebič

Více

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul

Více

(test version, not revised) 9. prosince 2009

(test version, not revised) 9. prosince 2009 Mechanické kmitání (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 9. prosince 2009 Obsah Kmitavý pohyb Kinematika kmitavého pohybu Skládání kmitů Dynamika kmitavého pohybu Přeměny energie

Více

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=

Více

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček: Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

TEMATICKÝ PLÁN 6. ročník

TEMATICKÝ PLÁN 6. ročník TEMATICKÝ PLÁN 6. ročník Týdenní dotace: 1,5h/týden Vyučující: Mgr. Tomáš Mlejnek Ročník: 6. (6. A, 6. B) Školní rok 2018/2019 FYZIKA pro 6. ročník ZŠ PROMETHEUS, doc. RNDr. Růžena Kolářová, CSc., PaeDr.

Více

Molekulová fyzika a termika:

Molekulová fyzika a termika: Molekulová fyzika a termika: 1. Měření teploty: 2. Délková roztažnost a Objemová roztažnost látek 3. Bimetal 4. Anomálie vody 5. Částicová stavba látek, vlastnosti látek 6. Atomová hmotnostní konstanta

Více

ELEKTRICKÝ NÁBOJ A ELEKTRICKÉ POLE POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

ELEKTRICKÝ NÁBOJ A ELEKTRICKÉ POLE POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D12_Z_OPAK_E_Elektricky_naboj_a_elektricke_ pole_t Člověk a příroda Fyzika Elektrický

Více

Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012

Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012 Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012 1. Kinematika pohybu hmotného bodu pojem hmotný bod, vztažná soustava, určení polohy, polohový vektor trajektorie, dráha, rychlost (okamžitá,

Více

Mechanické kmitání (oscilace)

Mechanické kmitání (oscilace) Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje

Více

Přehled veličin elektrických obvodů

Přehled veličin elektrických obvodů Přehled veličin elektrických obvodů Ing. Martin Černík, Ph.D Projekt ESF CZ.1.7/2.2./28.5 Modernizace didaktických metod a inovace. Elektrický náboj - základní vlastnost některých elementárních částic

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Elektřina a magnetismus - elektrický náboj tělesa, elektrická síla, elektrické pole, kapacita vodiče - elektrický proud v látkách, zákony

Více

Fyzika II mechanika zkouška 2014

Fyzika II mechanika zkouška 2014 Fyzika II mechanika zkouška 2014 Přirozené složky zrychlení Vztahy pro tečné, normálové a celkové zrychlení křivočarého pohybu, jejich odvození, aplikace (nakloněná rovina, bruslař, kruhový závěs apod.)

Více

Příklady kmitavých pohybů. Mechanické kmitání (oscilace)

Příklady kmitavých pohybů. Mechanické kmitání (oscilace) Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje

Více

Tabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta

Tabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : Fyzika Ročník: I.ročník - kvinta Fyzikální veličiny a jejich měření Fyzikální veličiny a jejich měření Soustava fyzikálních veličin a jednotek

Více

Základní poznatky. Teplota Vnitřní energie soustavy Teplo

Základní poznatky. Teplota Vnitřní energie soustavy Teplo Molekulová fyzika a termika Základní poznatky Základní poznatky Teplota Vnitřní energie soustavy Teplo Termika = část fyziky zabývající se studiem vlastností látek a jejich změn souvisejících s teplotou

Více

IDEÁLNÍ PLYN. Stavová rovnice

IDEÁLNÍ PLYN. Stavová rovnice IDEÁLNÍ PLYN Stavová rovnice Ideální plyn ) rozměry molekul jsou zanedbatelné vzhledem k jejich vzdálenostem 2) molekuly plynu na sebe působí jen při vzájemných srážkách 3) všechny srážky jsou dokonale

Více

Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule a i-učebnice

Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule a i-učebnice Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Práce a energie, tepelné jevy, elektrický proud, zvukové jevy Tercie 1+1 hodina týdně Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika

Více

FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy

FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy FYZIKA II Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy Osnova přednášky Energie magnetického pole v cívce Vzájemná indukčnost Kvazistacionární

Více

Elektrostatika _Elektrický náboj _Elektroskop _Izolovaný vodič v elektrickém poli... 3 Izolant v elektrickém poli...

Elektrostatika _Elektrický náboj _Elektroskop _Izolovaný vodič v elektrickém poli... 3 Izolant v elektrickém poli... Elektrostatika... 2 32_Elektrický náboj... 2 33_Elektroskop... 2 34_Izolovaný vodič v elektrickém poli... 3 Izolant v elektrickém poli... 3 35_Siločáry elektrického pole (myšlené čáry)... 3 36_Elektrický

Více

Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule

Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Práce a energie, tepelné jevy, elektrický proud, zvukové jevy Tercie 1+1 hodina týdně Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika

Více

Termodynamické zákony

Termodynamické zákony Termodynamické zákony Makroskopická práce termodynamické soustavy Již jsme uvedli, že změna vnitřní energie soustavy je obecně vyvolána dvěma ději: tepelnou výměnou mezi soustavou a okolím a konáním práce

Více

Maturitní okruhy Fyzika 2015-2016

Maturitní okruhy Fyzika 2015-2016 Maturitní okruhy Fyzika 2015-2016 Mgr. Ladislav Zemánek 1. Fyzikální veličiny a jejich jednotky. Měření fyzikálních veličin. Zpracování výsledků měření. - fyzikální veličiny a jejich jednotky - mezinárodní

Více

Základní otázky pro teoretickou část zkoušky.

Základní otázky pro teoretickou část zkoušky. Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.

Více

TESTY Závěrečný test 2. ročník Skupina A

TESTY Závěrečný test 2. ročník Skupina A 1. Teplota tělesa se zvýšila o o C. Analogicky tomu lze říci, že se a) snížila o K. b) zvýšila o 93,15 K c) snížila o 53,15 K d) zvýšila o K. Částice v látce se pohybují a) neustáleným a uspořádaným pohybem

Více

2. Vlnění. π T. t T. x λ. Machův vlnostroj

2. Vlnění. π T. t T. x λ. Machův vlnostroj 2. Vlnění 2.1 Vlnění zvláštní případ pohybu prostředí Vlnění je pohyb v soustavě velkého počtu částic navzájem vázaných, kdy částice kmitají kolem svých rovnovážných poloh. Druhy vlnění: vlnění příčné

Více

1.8. Mechanické vlnění

1.8. Mechanické vlnění 1.8. Mechanické vlnění 1. Umět vysvětlit princip vlnivého pohybu.. Umět srovnat a zároveň vysvětlit rozdíl mezi periodickým kmitavým pohybem jednoho bodu s periodickým vlnivým pohybem bodové řady. 3. Znát

Více

Tématický celek - téma. Magnetické vlastnosti látek Laboratorní úloha: Určení hmotnosti tělesa podle rovnoramenných vah

Tématický celek - téma. Magnetické vlastnosti látek Laboratorní úloha: Určení hmotnosti tělesa podle rovnoramenných vah 6. ročník květen Stavba látek Stavba látek Elektrické vlastnosti látek Magnetické vlastnosti látek Laboratorní úloha: Určení hmotnosti tělesa podle rovnoramenných vah Magnetické vlastnosti látek Měření

Více

ZVUKOVÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

ZVUKOVÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie ZVUKOVÉ JEVY Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Odraz zvuku Vznik ozvěny Dozvuk Několikanásobný odraz Ohyb zvuku Zvuk se dostává za překážky Překážka srovnatelná s vlnovou délkou Pružnost Působení

Více

9. Struktura a vlastnosti plynů

9. Struktura a vlastnosti plynů 9. Struktura a vlastnosti plynů Osnova: 1. Základní pojmy 2. Střední kvadratická rychlost 3. Střední kinetická energie molekuly plynu 4. Stavová rovnice ideálního plynu 5. Jednoduché děje v plynech a)

Více

ELEKTRICKÝ NÁBOJ A ELEKTRICKÉ POLE

ELEKTRICKÝ NÁBOJ A ELEKTRICKÉ POLE ELEKTRICKÝ NÁBOJ ELEKTRICKÉ POLE 1. Elektrický náboj, elektrická síla Elektrické pole je prostor v okolí nabitých těles nebo částic. Jako jiné druhy polí je to způsob existence hmoty. Elektrický náboj

Více

Základy molekulové fyziky a termodynamiky

Základy molekulové fyziky a termodynamiky Základy molekulové fyziky a termodynamiky Molekulová fyzika je částí fyziky, která zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného silového působení částic, z nichž jsou

Více

Obsah. 1 Vznik a druhy vlnění. 2 Interference 3. 5 Akustika 9. 6 Dopplerův jev 12. přenosu energie

Obsah. 1 Vznik a druhy vlnění. 2 Interference 3. 5 Akustika 9. 6 Dopplerův jev 12. přenosu energie Obsah 1 Vznik a druhy vlnění 1 2 Interference 3 3 Odraz vlnění. Stojaté vlnění 5 4 Vlnění v izotropním prostředí 7 5 Akustika 9 6 Dopplerův jev 12 1 Vznik a druhy vlnění Mechanické vlnění vzniká v látkách

Více

Vlnění. vlnění kmitavý pohyb částic se šíří prostředím. přenos energie bez přenosu látky. druhy vlnění: 1. a. mechanické vlnění (v hmotném prostředí)

Vlnění. vlnění kmitavý pohyb částic se šíří prostředím. přenos energie bez přenosu látky. druhy vlnění: 1. a. mechanické vlnění (v hmotném prostředí) Vlnění vlnění kmitavý pohyb částic se šíří prostředím přenos energie bez přenosu látky Vázané oscilátory druhy vlnění: Druhy vlnění podélné a příčné 1. a. mechanické vlnění (v hmotném prostředí) b. elektromagnetické

Více

Elektrický signál - základní elektrické veličiny

Elektrický signál - základní elektrické veličiny EVROPSKÝ SOCIÁLNÍ FOND Elektrický signál - základní elektrické veličiny PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206

Více

Přehled otázek z fyziky pro 2.ročník

Přehled otázek z fyziky pro 2.ročník Přehled otázek z fyziky pro 2.ročník 1. Z jakých základních poznatků vychází teorie látek + důkazy. a) Látka kteréhokoli skupenství se skládá z částic molekul, atomů, iontů. b) Částice se v látce pohybují,

Více

MINISTERSTVO ŠKOLSTVÍ MLÁDEŽE A TĚLOVÝCHOVY

MINISTERSTVO ŠKOLSTVÍ MLÁDEŽE A TĚLOVÝCHOVY MINISTERSTVO ŠKOLSTVÍ MLÁDEŽE A TĚLOVÝCHOVY Schválilo Ministerstvo školství mládeže a tělovýchovy dne 15. července 2003, čj. 22 733/02-23 s platností od 1. září 2002 počínaje prvním ročníkem Učební osnova

Více

Maturitní otázky z předmětu FYZIKA

Maturitní otázky z předmětu FYZIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu FYZIKA 1. Pohyby z hlediska kinematiky a jejich zákony Klasifikace pohybů z hlediska trajektorie a závislosti rychlosti

Více

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika VNITŘNÍ ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika Zákon zachování energie Ze zákona zachování mechanické energie platí: Ek + Ep = konst. Ale: Vnitřní energie tělesa Každé těleso má

Více

Maturitní otázky z fyziky Vyučující: Třída: Školní rok:

Maturitní otázky z fyziky Vyučující: Třída: Školní rok: Maturitní otázky z fyziky Vyučující: Třída: Školní rok: 1) Trajektorie, dráha, dráha 2) Rychlost 3) Zrychlení 4) Intenzita 5) Práce, výkon 6) Energie 7) Částice a vlny; dualita 8) Síla 9) Náboj 10) Proudění,

Více

Maturitní otázky z předmětu FYZIKA

Maturitní otázky z předmětu FYZIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu FYZIKA 1. Pohyby z hlediska kinematiky a jejich zákon Relativnost klidu a pohybu, klasifikace pohybů z hlediska

Více

Zvuk. 1. základní kmitání. 2. šíření zvuku

Zvuk. 1. základní kmitání. 2. šíření zvuku Zvuk 1. základní kmitání - vzduchem se šíří tlakové vzruchy (vzruchová vlna), zvuk je systémem zhuštěnin a zředěnin - podstatou zvuku je kmitání zdroje zvuku a tím způsobené podélné vlnění elastického

Více

Fyzika II, FMMI. 1. Elektrostatické pole

Fyzika II, FMMI. 1. Elektrostatické pole Fyzika II, FMMI 1. Elektrostatické pole 1.1 Jaká je velikost celkového náboje (kladného i záporného), který je obsažen v 5 kg železa? Předpokládejme, že by se tento náboj rovnoměrně rozmístil do dvou malých

Více

3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj

3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj 3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj a) tepelný děj přechod plynu ze stavu 1 do stavu tepelnou výměnou nebo konáním práce dále uvaž., že hmotnost plynu m = konst. a navíc

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 ELEKTRICKÝ NÁBOJ Mgr. LUKÁŠ FEŘT

Více

TEMATICKÝ PLÁN. Literatura: FYZIKA pro 6. ročník ZŠ PROMETHEUS, doc. RNDr. Růžena Kolářová, CSc., PaeDr. Jiří Bohuněk,

TEMATICKÝ PLÁN. Literatura: FYZIKA pro 6. ročník ZŠ PROMETHEUS, doc. RNDr. Růžena Kolářová, CSc., PaeDr. Jiří Bohuněk, TEMATICKÝ PLÁN Předmět: FYZIKA Týdenní dotace: 2h/týden Vyučující: Mgr. Jan Souček Vzdělávací program: ŠVP Umím, chápu, rozumím Ročník: 6. (6. A, 6. B) Školní rok 2016/2017 Literatura: FYZIKA pro 6. ročník

Více

Interference vlnění

Interference vlnění 8 Interference vlnění Umět vysvětlit princip interference Umět vysvětlit pojmy interferenčního maxima a minima 3 Umět vysvětlit vznik stojatého vlnění 4 Znát podobnosti a rozdíly mezi postupnýma stojatým

Více

elektrický náboj elektrické pole

elektrický náboj elektrické pole elektrický náboj a elektrické pole Charles-Augustin de Coulomb elektrický náboj a jeho vlastnosti Elektrický náboj je fyzikální veličina, která vyjadřuje velikost schopnosti působit elektrickou silou.

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

(test version, not revised) 16. prosince 2009

(test version, not revised) 16. prosince 2009 Mechanické vlnění (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 16. prosince 2009 Obsah Vznik a druhy vlnění Interference Odraz vlnění. Stojaté vlnění Vlnění v izotropním prostředí Akustika

Více

Jednotlivé body pouze kmitají kolem rovnovážných poloh. Tato poloha zůstává stálá.

Jednotlivé body pouze kmitají kolem rovnovážných poloh. Tato poloha zůstává stálá. MECHANICKÉ VLNĚNÍ Dosud jsme při studiu uvažovali pouze harmonický pohyb izolované částice (hmotného bodu nebo tělesa), která konala kmitavý pohyb kolem rovnovážné polohy Jestliže takový objekt bude součástí

Více

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s 1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření

Více

13 otázek za 1 bod = 13 bodů Jméno a příjmení:

13 otázek za 1 bod = 13 bodů Jméno a příjmení: 13 otázek za 1 bod = 13 bodů Jméno a příjmení: 4 otázky za 2 body = 8 bodů Datum: 1 příklad za 3 body = 3 body Body: 1 příklad za 6 bodů = 6 bodů Celkem: 30 bodů příklady: 1) Sportovní vůz je schopný zrychlit

Více

Fyzika opakovací seminář 2010-2011 tematické celky:

Fyzika opakovací seminář 2010-2011 tematické celky: Fyzika opakovací seminář 2010-2011 tematické celky: 1. Kinematika 2. Dynamika 3. Práce, výkon, energie 4. Gravitační pole 5. Mechanika tuhého tělesa 6. Mechanika kapalin a plynů 7. Vnitřní energie, práce,

Více

5.8 Jak se změní velikost elektrické síly mezi dvěma bodovými náboji v případě, že jejich vzdálenost a) zdvojnásobíme, b) ztrojnásobíme?

5.8 Jak se změní velikost elektrické síly mezi dvěma bodovými náboji v případě, že jejich vzdálenost a) zdvojnásobíme, b) ztrojnásobíme? 5.1 Elektrické pole V úlohách této kapitoly dosazujte e = 1,602 10 19 C, k = 9 10 9 N m 2 C 2, ε 0 = 8,85 10 12 C 2 N 1 m 2. 5.6 Kolik elementárních nábojů odpovídá náboji 1 µc? 5.7 Novodurová tyč získala

Více

Teplota a její měření

Teplota a její měření Teplota a její měření Teplota a její měření Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_03_01 Teplota, Celsiova a Kelvinova teplotní stupnice, převodní vztahy, příklady. Tepelná výměna, měrná

Více

FYZIKA II Otázky ke zkoušce

FYZIKA II Otázky ke zkoušce FYZIKA II Otázky ke zkoušce 1. Formy fyzikálního pohybu. Hmotný bod, trajektorie, dráha, zákon pohybu, vztažná soustava. Pohyb hmotného bodu podél přímky: vektor posunutí, rychlost posunutí, okamžitá rychlost,

Více

ZÁVĚREČNÉ OPAKOVÁNÍ z FYZIKY. Témata 7. ročník:

ZÁVĚREČNÉ OPAKOVÁNÍ z FYZIKY. Témata 7. ročník: Opakování bude obsahovat následující body: ZÁVĚREČNÉ OPAKOVÁNÍ z FYZIKY Každý žák si vybere jedno téma (okruh) Vysvětlení daného tématu na každou kapitolu procvičování (v podobě doplňování, výpočtů a otázek

Více

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program 1 VY_32_INOVACE_01_13 fyzika 6. Elektrické vlastnosti těles Výklad učiva PowerPoint 6 4 2 VY_32_INOVACE_01_14 fyzika 6. Atom Výklad učiva

Více

Rezistor je součástka kmitočtově nezávislá, to znamená, že se chová stejně v obvodu AC i DC proudu (platí pro ideální rezistor).

Rezistor je součástka kmitočtově nezávislá, to znamená, že se chová stejně v obvodu AC i DC proudu (platí pro ideální rezistor). Rezistor: Pasivní elektrotechnická součástka, jejíž hlavní vlastností je schopnost bránit průchodu elektrickému proudu. Tuto vlastnost nazýváme elektrický odpor. Do obvodu se zařazuje za účelem snížení

Více

Okruhy, pojmy a průvodce přípravou na semestrální zkoušku v otázkách. Mechanika

Okruhy, pojmy a průvodce přípravou na semestrální zkoušku v otázkách. Mechanika 1 Fyzika 1, bakaláři AFY1 BFY1 KFY1 ZS 08/09 Okruhy, pojmy a průvodce přípravou na semestrální zkoušku v otázkách Mechanika Při studiu části mechanika se zaměřte na zvládnutí následujících pojmů: Kartézská

Více

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie TEPELNÉ JEVY Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Vnitřní energie tělesa Každé těleso se skládá z látek. Látky se skládají z částic. neustálý neuspořádaný pohyb kinetická energie vzájemné působení

Více

Základní zákony a terminologie v elektrotechnice

Základní zákony a terminologie v elektrotechnice Základní zákony a terminologie v elektrotechnice (opakování učiva SŠ, Fyziky) Určeno pro studenty komb. formy FMMI předmětu 452702 / 04 Elektrotechnika Zpracoval: Jan Dudek Prosinec 2006 Elektrický náboj

Více

F MATURITNÍ ZKOUŠKA Z FYZIKY PROFILOVÁ ČÁST 2017/18

F MATURITNÍ ZKOUŠKA Z FYZIKY PROFILOVÁ ČÁST 2017/18 F MATURITNÍ ZKOUŠKA Z FYZIKY PROFILOVÁ ČÁST 2017/18 Podpis: Třída: Verze testu: A Čas na vypracování: 120 min. Datum: Učitel: INSTRUKCE PRO VYPRACOVÁNÍ PÍSEMNÉ PRÁCE: Na vypracování zkoušky máte 120 minut.

Více

Elektrický proud. Elektrický proud : Usměrněný pohyb částic s elektrickým nábojem. Kovy: Usměrněný pohyb volných elektronů

Elektrický proud. Elektrický proud : Usměrněný pohyb částic s elektrickým nábojem. Kovy: Usměrněný pohyb volných elektronů Elektrický proud Elektrický proud : Usměrněný pohyb částic s elektrickým nábojem. Kovy: Usměrněný pohyb volných elektronů Vodivé kapaliny : Usměrněný pohyb iontů Ionizované plyny: Usměrněný pohyb iontů

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 1 Mechanika 1.1 Pohyby přímočaré, pohyb rovnoměrný po kružnici 1.2 Newtonovy pohybové zákony, síly v přírodě, gravitace 1.3 Mechanická

Více