Základní charakteristiky

Rozměr: px
Začít zobrazení ze stránky:

Download "Základní charakteristiky"

Transkript

1

2 Základní charakteristiky Vzdálenost Země-Slunce: x 108 km (světlo letí ~ 8 min 19 s) Poloměr: x 105 km (109 x poloměr Země) Hmotnost: x 1030 kg ( x hmotnost Země) Hustota: Průměrná: x 103 kg/m3 Jádro: x 105 kg/m3 Světelný tok: x 1026 W (=> u Země ~1368 W/m2, solární konstanta) Složení: 73.46% H, 24.85% He, zbytek (1.69%) jiné prvky (O, C, Fe, Ne, N, Si, Mg, S) Slunce nemá jasnou hranici, na vnější straně klesá hustota jako ~ exp(-r); poloměr se bere od středu po hranici fotosféry (dál už je plyn příliš řídký/chladný a nesvítí)

3 Solární konstanta? (1)

4 Solární konstanta? (2)

5

6

7 Jádro do ~ 1/4 slunečního poloměru hustota ~ kg/m3 teplota ~1.5 x 107 K hlavní termonukleární reakcí je p-p chain : 4 H1 => He4 (za 1 s proběhne u ~ 6.2 x 1011 kg protonů, z toho se ~ 0.7% převede na energii) termonukleární reakce jsou samoregulující

8 Proton-proton chain ~109 let ~1s ~109 let ~1s ~106 let

9 CNO cycle

10 Proton-proton chain vs. CNO cycle

11 Radiační oblast energie se šíří radiací, ale vždy jen krátkou vzdálenost (několik milimetrů), pak dojde ke srážce a náhodné změně směru => šíří se velmi pomalu (trvá ~ milony let) postupně ztrácí energii => zvětšuje se vlnová délka a dostává se do viditelné oblasti Konvekční oblast nižší teplota => transport radiací už není tak efektivní a převládá konvekce jádra atomů jsou schopna udržet si elektrony; pohlcují světlo a ohřívají se doba přechodu přes konvekční zónu ~ 3 měsíce

12 Granule ~ 1000 km v průměru; horké stoupající plazma uprostřed a studené klesající na krajích / mezi; doba života ~ 8 minut Supergranule až km, doba života až 24 hodin

13 Fotosféra vnější vrstva Slunce, ze které je vyzařováno světlo teplota mezi 4500 a 6000 K efektivní teplota 5777 K hustota ~ 2 x 10-4 kg/m3 vyzařuje prakticky jako černé těleso, ale: Fraunhoferovy (absorbční) čáry (=> informace o zastoupených prvcích => jemné variace díky Dopplerovu posunu)

14 Chromosféra hustota exponenciálně klesá teplota nejprve taky klesá, ale od minima ~ 3800 K začíná růst jak může teplota růst? co je zdrojem energie? (magnetická rekonekce, vlny) má emisní čáry, hlavní je H α nm (emitovaná H při přechodu z n=3 do n=2)

15 Přechodová oblast přestává dominovat gravitace => už nefunguje dobře uspořádání po vrstvách přestává dominovat tlak, začíná rozhodovat magnetické pole prudký nárůst teploty (He začíná být plně ionizované a přestává zářit => není čím ochlazovat) má emisní čáry v daleké ultrafialové a XUV oblasti => je možné pozorovat jen z družic ( = R Z 1 2 λ n )

16 Korona sluneční atmosféra, během zatmění Slunce může být pozorována pouhým okem K-korona ( kontinuerlich, spojité) rozptyl na volných elektronech Dopplerův posun způsobí vymizení absorbčních spektrálních čar F-korona ( Fraunhofer ) rozptyl na prachových zrnkách obsahuje absorbční spektrální čáry E-korona ( emission ) emise z iontů přítomných v koronálním plazmatu; hlavní zdroj informací o složení korony identifikovány spektrální čáry odpovídají vysoce ionizovanému železu => teplota ~ 106 K čím je zahříváno? (vlny, magnetická rekonekce)

17

18 Sluneční skvrny dočasné útvary ve fotosféře odpovídají chladnějším oblastem teploty ~ K, okolí ~5780 K velikosti od ~16 do ~ km doba života dny až týdny vznikají díky magnetickému poli, které zabrání konvekci typicky se vyskytují v párech s opačnou magnetickou polaritou Pozorování: už před naším letopočtem (Čína, Řecko) první pozorování dalekohledem 1610 sluneční rotace (1611, Johannes+David Fabricus) diferenciální rotace (1630, Christopher Scheiner) pak ale dlouhé období, kdy se skvrn vyskytovalo jen minimum ( Maunderovo minimum ) objev slunečního cyklu (1843, Heinrich Schwabe) od 1848: Wolfovo číslo (Rudolf Wolf, sunspot number ): R = k (10 g + s) Richard Christopher Carrington (~ polovina 19. st.)

19 1908: souvislost mezi slunečními skvrnami a magnetickým polem (George Ellery Hale) perioda v počtu skvrn (Wolfově číslu) je ~11 let, ale reálná perioda ~22 let odpovídá dvojímu přepólování magnetického pole Slunce 1961: kvalitativní model dynamiky vnějších slunečních vrstev (Horace W. Babcock) založený na diferenciální rotaci a s tím spojené změně topologie magnetického pole vysvětluje i šířkovou migraci slunečních skvrn v průběhu slunečního cyklu (tzv. Spörerův zákon)

20 Solar Activity Proxy (1) Kosmické záření (vysokoenergetické částice, především protony a atomová jádra pocházející z oblastí mimo sluneční soustavu)

21 Solar Activity Proxy (2)

22 Solar Activity Proxy (3)

23 Vliv na teplotu (???) IPCC: Satellite observations of total solar irradiance (TSI) changes from 1978 to 2011 show that the most recent solar cycle minimum was lower than the prior two. There is very high confidence that industrial-era natural forcing is a small fraction of the anthropogenic forcing except for brief periods following large volcanic eruptions.

24 Spörerův zákon (Richard Christopher Carrington ~1861; až po něm Gustav Spörer): na začátku slunečního cyklu vznikají sluneční skvrny na šířkách ~30o během solárního maxima na ~15o a s končícím slunečním cyklem se jejich šířky posouvají na ~7o

25

26

27

28

29 Radiační oblast Konvekční oblast

30 Solární dynamo díky diferenciální rotaci se magnetické pole namotává na Slunce původně severo-jižně orientované magnetické pole se může natočit okolo Slunce za ~8 měsíců působením Corriolisovy síly na konvekcí vzhůru se pohybující hmotu dochází ke zkroucení (twist) magnetických siločar

31

32 Toroidal to poloidal Turbulence and mean-field electrodynamics Hydrodynamical shear instabilities MHD instabilities The Babcock-Leighton mechanism

33

34 Koronální smyčky ( Coronal loops ) Spodní korona a přechodová oblast; spodek je ukotven ve fotosféře (kde je vysoké plazma-beta) Solar prominence obsahuje chladnější plazma než korona (složením odpovídá chromosféře) pokud se utrhne, dochází ke vzniku koronálního výronu hmoty ( Coronal Mass Ejection, CME)

35 Coronal Mass Ejection (CME) velké množství hmoty které se uvolní do prostoru vzniká díky magnetické rekonekci Solar flare náhle zvýšení jasu nad povrchem Slunce často následované CME, většinou v aktivních oblastech blízko slunečních skvrn vzniká díky magnetické rekonekci záření v širokém spektru frekvencí (hlavně X-ray & UV)

36 Coronal hole oblast, kde je korona tmavší, studenější a má menší hustotu odpovídá oblasti s otevřenými magnetickými siločarami z těchto oblastí pochází rychlý sluneční vítr během solárního minima hlavně na pólech, během maxima mohou být kdekoli

Sluneční skvrny od A do Z. Michal Sobotka Astronomický ústav AV ČR, Ondřejov

Sluneční skvrny od A do Z. Michal Sobotka Astronomický ústav AV ČR, Ondřejov Sluneční skvrny od A do Z Michal Sobotka Astronomický ústav AV ČR, Ondřejov Sluneční skvrny historie Příležitostná pozorování velkých skvrn pouhým okem První pozorování dalekohledem: 1610 Thomas Harriot

Více

Slunce zdroj energie pro Zemi

Slunce zdroj energie pro Zemi Slunce zdroj energie pro Zemi Josef Trna, Vladimír Štefl Zavřete oči a otočte tvář ke Slunci. Co na tváři cítíte? Cítíme zvýšení teploty pokožky. Dochází totiž k přenosu tepla tepelným zářením ze Slunce

Více

Slunce nejbližší hvězda

Slunce nejbližší hvězda Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Slunce nejbližší hvězda RNDr. Eva Marková, CSc., Hvězdárna v Úpici Slunce

Více

Úvod do fyziky plazmatu

Úvod do fyziky plazmatu Úvod do fyziky plazmatu Lenka Zajíčková, Ústav fyz. elektroniky Doporučená literatura: J. A. Bittencourt, Fundamentals of Plasma Physics, 2003 (3. vydání) ISBN 85-900100-3-1 Navazující a související přednášky:

Více

SLUNCE. 5. lekce Bára Gregorová a Ondrej Kamenský

SLUNCE. 5. lekce Bára Gregorová a Ondrej Kamenský SLUNCE 5. lekce Bára Gregorová a Ondrej Kamenský Slunce zblízka Vřící povrch probublávajícího plazmatu granulace to plazma čtvrté skupenství hmoty, směska elektricky nabitých částic Pozorujeme různé jevy

Více

VY_32_INOVACE_08.Fy.9. Slunce

VY_32_INOVACE_08.Fy.9. Slunce VY_32_INOVACE_08.Fy.9. Slunce SLUNCE Slunce je sice obyčejná hvězda, podobná těm, které vidíme na noční obloze, ale pro nás je velmi důležitá. Bez ní by naše Země byla tmavá a studená a žádný život by

Více

Sluneční dynamika. Michal Švanda Astronomický ústav AV ČR Astronomický ústav UK

Sluneční dynamika. Michal Švanda Astronomický ústav AV ČR Astronomický ústav UK Sluneční dynamika Michal Švanda Astronomický ústav AV ČR Astronomický ústav UK Slunce: dynamický systém Neměnnost Slunce Iluze Slunce je proměnná hvězda Sluneční proměny Díky vývoji Dynamika hmoty Magnetická

Více

Geomagnetická aktivita je důsledkem sluneční činnosti. Pavel Hejda a Josef Bochníček

Geomagnetická aktivita je důsledkem sluneční činnosti. Pavel Hejda a Josef Bochníček Geomagnetická aktivita je důsledkem sluneční činnosti Pavel Hejda a Josef Bochníček Úvod Geomagnetická aktivita je důsledkem sluneční činnosti. Příčinou geomagnetických poruch jsou buď vysokorychlostní

Více

ZÁŘENÍ V ASTROFYZICE

ZÁŘENÍ V ASTROFYZICE ZÁŘENÍ V ASTROFYZICE Plazmový vesmír Uvádí se, že 99 % veškeré hmoty ve vesmíru je v plazmovém skupenství (hvězdy, mlhoviny, ) I na Zemi se vyskytuje plazma, např. v podobě blesků, polárních září Ve sluneční

Více

Koróna, sluneční vítr. Michal Švanda Sluneční fyzika LS 2014/2015

Koróna, sluneční vítr. Michal Švanda Sluneční fyzika LS 2014/2015 Koróna, sluneční vítr Michal Švanda Sluneční fyzika LS 2014/2015 Přechodová oblast Změna teplotní režimu mezi chromosférou (10 4 K) a korónou (10 6 K) Nehomogenní, pohyby (doppler-shift), vývoj S výškou

Více

Koróna, sluneční vítr

Koróna, sluneční vítr Koróna, sluneční vítr Sluneční fyzika ZS 2011/2012 Michal Švanda Astronomický ústav MFF UK Astronomický ústav AV ČR Přechodová oblast Změna teplotní režimu mezi chromosférou (104 K) a korónou (106 K) Nehomogenní,

Více

Astronomie Sluneční soustavy II. Slunce. Jan Ebr Olomouc, 19. 4. 2012

Astronomie Sluneční soustavy II. Slunce. Jan Ebr Olomouc, 19. 4. 2012 Astronomie Sluneční soustavy II. Slunce Jan Ebr Olomouc, 19. 4. 2012 Literatura - Slunce je hvězda stelární astrofyzika! - (Vanýsek, V.: Základy astronomie a astrofyziky) - Z. Mikulášek, J. Krtička: Základy

Více

Odhalená tajemství slunečních skvrn

Odhalená tajemství slunečních skvrn Odhalená tajemství slunečních skvrn Michal Řepík info@michalrepik.cz www.michalrepik.cz Hvězdárna a planetárium hlavního města Prahy 23. 11. 2015 Obsah Slunce jako hvězda Struktura slunečního nitra a atmosféry

Více

Numerické simulace v astrofyzice

Numerické simulace v astrofyzice Numerické simulace v astrofyzice Petr Jelínek Jihočeská univerzita, Přírodovědecká fakulta, České Budějovice, Česká republika Astronomický ústav, Akademie věd České republiky v.v.i., Ondřejov, Česká republika

Více

Slunce - otázky a odpovědi

Slunce - otázky a odpovědi Slunce - otázky a odpovědi Vladimír Štefl, Josef Trna Zavřete oči a otočte tvář ke Slunci. Co na tváři cítíte? Cítíme zvýšení teploty pokožky. Dochází totiž k přenosu tepla tepelným zářením ze Slunce na

Více

Obnovitelné zdroje energie Budovy a energie

Obnovitelné zdroje energie Budovy a energie ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie Budovy a energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. 1 Solární energie 2 1

Více

Stručný úvod do spektroskopie

Stručný úvod do spektroskopie Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,

Více

11. Koróna, sluneční vítr

11. Koróna, sluneční vítr 11. Koróna, sluneční vítr Sluneční fyzika LS 2007/2008 Michal Švanda Astronomický ústav MFF UK Astronomický ústav AV ČR Přechodová oblast Změna teplotní režimu mezi chromosférou (104 K) a korónou (106

Více

Slunce, erupce, ohřev sluneční koróny

Slunce, erupce, ohřev sluneční koróny Slunce, erupce, ohřev sluneční koróny Slunce jako božstvo Mnoho kultur uctívalo Slunce jako božstvo modlitbami i přinášením (lidských) obětí Egypt Re Indie Surya Řecko a Řím Apollón a Helios Mezopotámie

Více

Chemické složení vesmíru

Chemické složení vesmíru Společně pro výzkum, rozvoj a inovace - CZ/FMP.17A/0436 Chemické složení vesmíru Jak sledujeme chemické složení ve vesmíru? Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Mendelova univerzita v Brně,

Více

PŘEDCHOZÍ :: DALŠÍ :: OBSAH HISTORIE POZOROVATELNÉ OBJEKTY PŘÍSTROJE METODY AKTIVITA VÝSLEDKY SLUNCE DALEKOHLEDEM PŘEDNÁŠÍ: MICHAL ŘEPÍK

PŘEDCHOZÍ :: DALŠÍ :: OBSAH HISTORIE POZOROVATELNÉ OBJEKTY PŘÍSTROJE METODY AKTIVITA VÝSLEDKY SLUNCE DALEKOHLEDEM PŘEDNÁŠÍ: MICHAL ŘEPÍK PŘEDCHOZÍ :: DALŠÍ :: OBSAH HISTORIE POZOROVATELNÉ OBJEKTY PŘÍSTROJE METODY AKTIVITA VÝSLEDKY SLUNCE DALEKOHLEDEM PŘEDNÁŠÍ: MICHAL ŘEPÍK 1 PŘEDCHOZÍ :: DALŠÍ :: OBSAH HISTORIE POZOROVATELNÉ OBJEKTY PŘÍSTROJE

Více

7. Rotace Slunce, souřadnice

7. Rotace Slunce, souřadnice 7. Rotace Slunce, souřadnice Sluneční fyzika LS 2007/2008 Michal Švanda Astronomický ústav MFF UK Astronomický ústav AV ČR Sluneční rotace Pomalá ~měsíc, ~1610 podle pohybů skvrn, Galileo 1858, Carrington,

Více

počátek 17. století, Johannes Kepler: 19. století: počátek 20. století: 1951, Ludwig Biermann:

počátek 17. století, Johannes Kepler: 19. století: počátek 20. století: 1951, Ludwig Biermann: Sluneční vítr počátek 17. století, Johannes Kepler: 19. století: sluneční aktivita ovlivňuje geomagnetickou aktivitu (pozorování Slunce + detekování změn magnetického pole měřeného na Zemi + polární záře)

Více

VÍTR MEZI HVĚZDAMI Daniela Korčáková kor@sunstel.asu.cas.cz Astronomický ústav AV ČR horké hvězdy hvězdy podobné Slunci chladné hvězdy co se stane, když vítr potká vítr? co způsobil vítr? HORKÉ HVĚZDY

Více

Základy spektroskopie a její využití v astronomii

Základy spektroskopie a její využití v astronomii Ing. Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Základy spektroskopie a její využití v astronomii Hvězdárna Valašské Meziříčí, p. o. Krajská hvezdáreň v Žiline Světlo x záření Jak vypadá spektrum?

Více

Sluneční soustava je součástí galaxie známé také pod názvem Mléčná dráha. Planety ve sluneční soustavě obíhají po eliptických drahách kolem Slunce.

Sluneční soustava je součástí galaxie známé také pod názvem Mléčná dráha. Planety ve sluneční soustavě obíhají po eliptických drahách kolem Slunce. Sluneční soustava je součástí galaxie známé také pod názvem Mléčná dráha. Planety ve sluneční soustavě obíhají po eliptických drahách kolem Slunce. Zhruba 99,866 % celkové hmotnosti sluneční soustavy tvoří

Více

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15 Proč studovat hvězdy? 9 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů.... 13 1.3 Model našeho Slunce 15 2 Záření a spektrum 21 2.1 Elektromagnetické záření

Více

Kroužek pro přírodovědecké talenty I lekce 3 SLUNEČNÍ SOUSTAVA

Kroužek pro přírodovědecké talenty I lekce 3 SLUNEČNÍ SOUSTAVA Kroužek pro přírodovědecké talenty - 2018 I lekce 3 SLUNEČNÍ SOUSTAVA Sluneční soustava - Proč Sluneční soustava? - Co to je - obecně? - Z čeho se skládá? Sluneční soustava inventura: 1. Slunce jediná

Více

Jemná struktura slunečních skvrn. Michal Sobotka Astronomický ústav AV ČR, Ondřejov

Jemná struktura slunečních skvrn. Michal Sobotka Astronomický ústav AV ČR, Ondřejov Jemná struktura slunečních skvrn Michal Sobotka Astronomický ústav AV ČR, Ondřejov První pozorování s vysokým rozlišením 1870 Angelo Secchi: vizuální pozorování a kresby, kniha Le Soleil 1916 S. Chevalier:

Více

POZOROVÁNÍ SLUNCE VE SPEKTRÁLNÍCH ČARÁCH. Libor Lenža Hvězdárna Valašské Meziříčí, p. o.

POZOROVÁNÍ SLUNCE VE SPEKTRÁLNÍCH ČARÁCH. Libor Lenža Hvězdárna Valašské Meziříčí, p. o. POZOROVÁNÍ SLUNCE VE SPEKTRÁLNÍCH ČARÁCH Libor Lenža Hvězdárna Valašské Meziříčí, p. o. Obsah 1. Co jsou to spektrální čáry? 2. Historie a současnost (přístroje, družice aj.) 3. Význam pro sluneční fyziku

Více

Astrofyzika. 1. Sluneční soustava. Slunce. Sluneční atmosféra. Slunce 17.6.2013. Slunce planety planetky komety, meteoroidy prach, plyny

Astrofyzika. 1. Sluneční soustava. Slunce. Sluneční atmosféra. Slunce 17.6.2013. Slunce planety planetky komety, meteoroidy prach, plyny 1. Sluneční soustava Astrofyzika aneb fyzika hvězd a vesmíru planety planetky komety, meteoroidy prach, plyny je dominantním tělesem ve Sluneční soustavě koule o poloměru 1392000 km, s průměrnou hustotou

Více

Pozorování Slunce s vysokým rozlišením. Michal Sobotka Astronomický ústav AV ČR, Ondřejov

Pozorování Slunce s vysokým rozlišením. Michal Sobotka Astronomický ústav AV ČR, Ondřejov Pozorování Slunce s vysokým rozlišením Michal Sobotka Astronomický ústav AV ČR, Ondřejov Úvod Na Slunci se důležité děje odehrávají na malých prostorových škálách (desítky až stovky km). Granule mají typickou

Více

Plazmové metody. Základní vlastnosti a parametry plazmatu

Plazmové metody. Základní vlastnosti a parametry plazmatu Plazmové metody Základní vlastnosti a parametry plazmatu Atom je základní částice běžné hmoty. Částice, kterou již chemickými prostředky dále nelze dělit a která definuje vlastnosti daného chemického prvku.

Více

Úvod. Zatmění Slunce 2006

Úvod. Zatmění Slunce 2006 Dynamika polárních paprsků během zatmění Slunce 2006 Marková, E. 1, Bělík, M. 1, Druckmüller, M. 2, Druckmüllerová, H. 2 1 Hvězdárna v Úpici 2 VUT Brno Abstrakt: Velmi jemné detaily koronálních struktur

Více

ČLOVĚK A ROZMANITOST PŘÍRODY VESMÍR A ZEMĚ. GRAVITACE

ČLOVĚK A ROZMANITOST PŘÍRODY VESMÍR A ZEMĚ. GRAVITACE ČLOVĚK A ROZMANITOST PŘÍRODY VESMÍR A ZEMĚ. GRAVITACE Sluneční soustava Vzdálenosti ve vesmíru Imaginární let fotonovou raketou Planety, planetky Planeta (oběžnice) ve sluneční soustavě je takové těleso,

Více

Pulzující proměnné hvězdy. Marek Skarka

Pulzující proměnné hvězdy. Marek Skarka Pulzující proměnné hvězdy Marek Skarka F5540 Proměnné hvězdy Brno, 19.11.2012 Pulzující hvězdy se představují Patří mezi fyzicky proměnné hvězdy - ke změnám jasnosti dochází díky změnám rozměrů (radiální

Více

10. Sluneční skvrny. Michal Švanda. Astronomický ústav MFF UK Astronomický ústav AV ČR. Sluneční fyzika LS 2007/2008

10. Sluneční skvrny. Michal Švanda. Astronomický ústav MFF UK Astronomický ústav AV ČR. Sluneční fyzika LS 2007/2008 10. Sluneční skvrny Sluneční fyzika LS 2007/2008 Michal Švanda Astronomický ústav MFF UK Astronomický ústav AV ČR Magnetická pole na Slunci Pozorována Ve fotosféře (skvrny, knoty, fakule, póry, jasné body)

Více

Složení hvězdy. Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ

Složení hvězdy. Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ Hvězdy zblízka Složení hvězdy Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ Plazma zcela nebo částečně ionizovaný plyn,

Více

Diskontinuity a šoky

Diskontinuity a šoky Diskontinuity a šoky tok plazmatu Oblast 1 Oblast ( upstream ) ( downstream ) ρu Uu Bu pu ρd Ud Bd pd hranice mezi oblastmi může tu docházet k disipaci (růstu entropie a nevratným změnám) není popsatelná

Více

Spektrum. Spektrum. zisk rozkladem bílého světla

Spektrum. Spektrum. zisk rozkladem bílého světla Spektrum Spektrum zisk rozkladem bílého světla rozklad bílého světla pomocí mřížky rozklad bílého světla pomocí hranolu Spektrum Spektrum dějiny v kostce 1665 Isaac Newton - rozklad slunečního světla pomocí

Více

Kroužek pro přírodovědecké talenty I lekce 3 SLUNEČNÍ SOUSTAVA

Kroužek pro přírodovědecké talenty I lekce 3 SLUNEČNÍ SOUSTAVA Kroužek pro přírodovědecké talenty - 2018 I lekce 3 SLUNEČNÍ SOUSTAVA Sluneční soustava - Proč Sluneční soustava? - Co to je - obecně? - Z čeho se skládá? Sluneční soustava inventura: 1. Slunce jediná

Více

Cesta do nitra Slunce

Cesta do nitra Slunce Cesta do nitra Slunce Jeden den s fyzikou MFF UK, 7. 2. 2013 Michal Švanda Astronomický ústav MFF UK Chytří lidé řekli Už na první pohled se zdá, že vnitřek Slunce a hvězd je méně dostupný vědeckému zkoumání

Více

Vnitřní magnetosféra

Vnitřní magnetosféra Vnitřní magnetosféra Plazmasféra Elektrické pole díky konvenkci (1) (Convection Electric Field) Vodivost σ, tj. ve vztažné soustavě pohybující se s plazmatem rychlostí v je elektrické pole rovno nule (

Více

Sluneční magnetismus. Michal Švanda Sluneční fyzika LS 2014/2015

Sluneční magnetismus. Michal Švanda Sluneční fyzika LS 2014/2015 Sluneční magnetismus Michal Švanda Sluneční fyzika LS 2014/2015 Sluneční cyklus Hlavní cyklus 11 let - Objev Heinrich Schwabe (1834) - Hale 22 let, složený ze dvou 11letých - 7,5 16 let (11,2 je střední

Více

Martin Jurek přednáška

Martin Jurek přednáška Martin Jurek přednáška 2. 10. 2014 extraterestrické = mimozemské hazardy ve sluneční soustavě, které mohou ovlivnit krajinnou sféru na planetě Zemi: projevy sluneční činnosti (solární erupce, CME) dopady

Více

SLUNCE A JEHO POZOROVÁNÍ I FYZIKA PLAZMATU

SLUNCE A JEHO POZOROVÁNÍ I FYZIKA PLAZMATU POZVÁNKA NA WORKSHOP PROJEKTU SE SLUNCEM SPOLEČNĚ SLUNCE A JEHO POZOROVÁNÍ I FYZIKA PLAZMATU 28. 30. června 2013, Hvězdárna Valašské Meziříčí Milí přátelé, Hvězdárna Valašské Meziříčí, p. o. ve spolupráci

Více

Elektronový obal atomu

Elektronový obal atomu Elektronový obal atomu Vlnění o frekvenci v se může chovat jako proud částic (kvant - fotonů) o energii E = h.v Částice pohybující se s hybností p se může chovat jako vlna o vlnové délce λ = h/p Kde h

Více

1. Slunce jako hvězda

1. Slunce jako hvězda 1. Slunce jako hvězda Sluneční fyzika LS 2007/2008 Michal Švanda Astronomický ústav MFF UK Astronomický ústav AV ČR Slunce v minulosti Starověk: Slunce = bůh Ra/Re, Apolón, Khors, Radegast, Sunna, Dadźbóg,

Více

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II FOTOELEKTRICKÝ JEV VNĚJŠÍ FOTOELEKTRICKÝ JEV na intenzitě záření závisí jen množství uvolněných elektronů, ale nikoliv energie jednotlivých elektronů energie elektronů

Více

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu. Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.

Více

Úloha č. 1: CD spektroskopie

Úloha č. 1: CD spektroskopie Přírodovědecké fakulta Masarykovy univerzity v Brně Předmět: Jméno: Praktikum z astronomie Andrea Dobešová Obor: Astrofyzika ročník: II. semestr: IV. Název úlohy Úloha č. 1: CD spektroskopie Úvod: Koho

Více

Struktura elektronového obalu

Struktura elektronového obalu Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Struktura elektronového obalu Představy o modelu atomu se vyvíjely tak, jak se zdokonalovaly možnosti vědy

Více

Základy Mössbauerovy spektroskopie. Libor Machala

Základy Mössbauerovy spektroskopie. Libor Machala Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických

Více

Plazma. magnetosféra komety. zbytky po výbuchu supernovy. formování hvězdy. slunce

Plazma. magnetosféra komety. zbytky po výbuchu supernovy. formování hvězdy. slunce magnetosféra komety zbytky po výbuchu supernovy formování hvězdy slunce blesk polární záře sluneční vítr - plazma je označována jako čtvrté skupenství hmoty - plazma je plyn s významným množstvím iontů

Více

Spektroskopie Slunce. Michal Švanda. Astronomický ústav MFF UK Astronomický ústav AV ČR. Spektroskopie (nejen) ve sluneční fyzice LS 2011/2012

Spektroskopie Slunce. Michal Švanda. Astronomický ústav MFF UK Astronomický ústav AV ČR. Spektroskopie (nejen) ve sluneční fyzice LS 2011/2012 Spektroskopie Slunce Spektroskopie (nejen) ve sluneční fyzice LS 2011/2012 Michal Švanda Astronomický ústav MFF UK Astronomický ústav AV ČR Slunce jako hvězda Spektrální třída G2, hlavní posloupnost 4,5

Více

Žhavé i vychladlé novinky ze sluneční fyziky. Michal Švanda Astronomický ústav AV ČR Astronomický ústav UK

Žhavé i vychladlé novinky ze sluneční fyziky. Michal Švanda Astronomický ústav AV ČR Astronomický ústav UK Žhavé i vychladlé novinky ze sluneční fyziky Michal Švanda Astronomický ústav AV ČR Astronomický ústav UK Měnící se sluneční fyzika Studium Slunce: již staří Číňané Kniha změn, vznik až 2000 pnl Kolem

Více

Úvod do moderní fyziky. lekce 7 vznik a vývoj vesmíru

Úvod do moderní fyziky. lekce 7 vznik a vývoj vesmíru Úvod do moderní fyziky lekce 7 vznik a vývoj vesmíru proč nemůže být vesmír statický? Planckova délka, Planckův čas l p =sqrt(hg/c^3)=1.6x10-35 m nejkratší dosažitelná vzdálenost, za kterou teoreticky

Více

Balmerova série, určení mřížkové a Rydbergovy konstanty

Balmerova série, určení mřížkové a Rydbergovy konstanty Balmerova série, určení mřížkové a Rydbergovy konstanty V tomto laboratorním cvičení zkoumáme spektrální čáry 1. řádu vodíku a rtuti pomocí difrakční mřížky (mřížkového spektroskopu). Známé spektrální

Více

Kosmické počasí, předpovědi aktivity. Michal Švanda Sluneční fyzika LS 2014/2015

Kosmické počasí, předpovědi aktivity. Michal Švanda Sluneční fyzika LS 2014/2015 Kosmické počasí, předpovědi aktivity Michal Švanda Sluneční fyzika LS 2014/2015 Kosmické počasí Perspektivní obor Hodně peněz Aplikovaná sluneční fyzika Sledování stavu IMF v okolí Země Geomagnetické bouře

Více

O původu prvků ve vesmíru

O původu prvků ve vesmíru O původu prvků ve vesmíru prof. Mgr. Jiří Krtička, Ph.D. Ústav teoretické fyziky a astrofyziky Masarykova univerzita, Brno Odkud pochází látka kolem nás? Odkud pochází látka kolem nás? Z čeho je svět kolem

Více

Astronomie, sluneční soustava

Astronomie, sluneční soustava Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační číslo: CZ.1.07/1.4.00/21.3267

Více

MB130P68 Globální změny a trvalá udržitelnost. ZS 2012/2013. Lubomír Nátr. Lubomír Nátr

MB130P68 Globální změny a trvalá udržitelnost. ZS 2012/2013. Lubomír Nátr. Lubomír Nátr MB130P68 Globální změny a trvalá udržitelnost. ZS 2012/2013 Globální změny klimatu a trvale udržitelný rozvoj 2. Biologické principy fotosyntetické produkce rostlin Lubomír Nátr Lubomír Nátr 2. Biologické

Více

Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou?

Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou? Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou? 10/20/2004 1 Bethe Blochova formule (1) je maximální možná předaná energie elektronu N r e - vogadrovo čislo - klasický poloměr elektronu

Více

Počátky kvantové mechaniky. Petr Beneš ÚTEF

Počátky kvantové mechaniky. Petr Beneš ÚTEF Počátky kvantové mechaniky Petr Beneš ÚTEF Úvod Stav fyziky k 1. 1. 1900 Hypotéza atomu velmi rozšířená, ne vždy však přijatá. Atomy bodové, není jasné, jak se liší atomy jednotlivých prvků. Elektron byl

Více

Urychlené částice z pohledu sluneční rentgenové emise

Urychlené částice z pohledu sluneční rentgenové emise Urychlené částice z pohledu sluneční rentgenové emise Jana Kašparová Astronomický ústav AV ČR, Ondřejov kasparov@asu.cas.cz Vybrané kapitoly z astrofyziky, MFF UK, 25. října 2006 sluneční erupce stručný

Více

Pouť k planetám. Která z možností je správná odpověď? OTÁZKY

Pouť k planetám.  Která z možností je správná odpověď? OTÁZKY Co způsobuje příliv a odliv? hejna migrujících ryb vítr gravitace Měsíce Je možné přistát na povrchu Saturnu? Čím je tvořen prstenec Saturnu? Mají prstenec i jiné planety? Jak by mohla získat prstenec

Více

vysokoteplotního plazmatu na tokamaku GOLEM

vysokoteplotního plazmatu na tokamaku GOLEM Měření základních parametů vysokoteplotního plazmatu na tokamaku GOLEM J. Krbec 1 1 České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská U3V Fyzika přátelsky / Aplikované přírodní

Více

Sluneční magnetismus. Michal Švanda. Astronomický ústav MFF UK Astronomický ústav AV ČR. Sluneční fyzika ZS 2011/2012

Sluneční magnetismus. Michal Švanda. Astronomický ústav MFF UK Astronomický ústav AV ČR. Sluneční fyzika ZS 2011/2012 Sluneční magnetismus Sluneční fyzika ZS 2011/2012 Michal Švanda Astronomický ústav MFF UK Astronomický ústav AV ČR Sluneční cyklus Hlavní cyklus 11 let Objev Heinrich Schwabe (1834) Hale 22 let, složený

Více

O tom, co skrývají centra galaxíı. F. Hroch. 26. březen 2015

O tom, co skrývají centra galaxíı. F. Hroch. 26. březen 2015 Kroužíme kolem černé díry? O tom, co skrývají centra galaxíı F. Hroch ÚTFA MU, Brno 26. březen 2015 Kroužíme kolem černé díry? Jak zkoumat neviditelné objekty? Specifika černých děr Objekty trůnící v centrech

Více

O tom, co skrývají centra galaxíı. F. Hroch. 10. duben 2009

O tom, co skrývají centra galaxíı. F. Hroch. 10. duben 2009 Kroužíme kolem černé díry? O tom, co skrývají centra galaxíı F. Hroch ÚTFA MU, Brno 10. duben 2009 F. Hroch (ÚTFA MU, Brno) Kroužíme kolem černé díry? 10. duben 2009 1 / 22 Před lety... pohyb objektů kolem

Více

Fyzikální podstata DPZ

Fyzikální podstata DPZ Elektromagnetické záření Vlnová teorie vlna elektrického (E) a magnetického (M) pole šíří se rychlostí světla (c) Charakteristiky záření: vlnová délka (λ) frekvence (ν) Fyzikální podstata DPZ Petr Dobrovolný

Více

DUM č. 19 v sadě. 12. Fy-3 Průvodce učitele fyziky pro 4. ročník

DUM č. 19 v sadě. 12. Fy-3 Průvodce učitele fyziky pro 4. ročník projekt GML Brno Docens DUM č. 19 v sadě 12. Fy-3 Průvodce učitele fyziky pro 4. ročník Autor: Miroslav Kubera Datum: 20.06.2014 Ročník: 4B Anotace DUMu: Prezentace se zabývá historií astronomických pozorování

Více

Rozměr a složení atomových jader

Rozměr a složení atomových jader Rozměr a složení atomových jader Poloměr atomového jádra: R=R 0 A1 /3 R0 = 1,2 x 10 15 m Cesta do hlubin hmoty Složení atomových jader: protony + neutrony = nukleony mp = 1,672622.10 27 kg mn = 1,6749272.10

Více

Mgr. Jan Ptáčník. Astronomie. Fyzika - kvarta Gymnázium J. V. Jirsíka

Mgr. Jan Ptáčník. Astronomie. Fyzika - kvarta Gymnázium J. V. Jirsíka Mgr. Jan Ptáčník Astronomie Fyzika - kvarta Gymnázium J. V. Jirsíka Astronomie Jevy za hranicemi atmosféry Země Astrofyzika Astrologie Historie Thalés z Milétu: Země je placka Ptolemaios: Geocentrismus

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 6.1Slunce, planety a jejich pohyb, komety Vesmír - Slunce - planety a jejich pohyb, - komety, hvězdy a galaxie 2 Vesmír či kosmos (z

Více

Role magnetického pole při strukturování bílé koróny (interpretace pozorování zatmění z Angoly 2001)

Role magnetického pole při strukturování bílé koróny (interpretace pozorování zatmění z Angoly 2001) Role magnetického pole při strukturování bílé koróny (interpretace pozorování zatmění z Angoly 2001) Marcel Bělík, Hvězdárna v Úpici, belik @obsupice.cz Pavel Ambrož, AÚ AV ČR Ondřejov, pambroz @asu.cas.cz

Více

Sluneční fyzika. Vojtěch Sidorin. Praha,

Sluneční fyzika. Vojtěch Sidorin. Praha, Sluneční fyzika OHŘEV KORÓNY Vojtěch Sidorin Astronomický ústav Univerzity Karlovy v Praze Praha, 29.4.2008 Struktura prezentace 1 V čem je problém 2 Navrhnutá řešení 3 Které řešení je správné 4 Není to

Více

změna konfigurace => změna proudů tekoucích systémem => změna magnetického pole (i na Zemi)

změna konfigurace => změna proudů tekoucích systémem => změna magnetického pole (i na Zemi) Geomagnetické bouře změna konfigurace => změna proudů tekoucích systémem => změna magnetického pole (i na Zemi) více než 500 magnetických observatoří, tolik dat je těžké zpracovat => zavádí se geomagnetické

Více

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika Fyzika pro střední školy II 84 R10 F Y Z I K A M I K R O S V Ě T A R10.1 Fotovoltaika Sluneční záření je spojeno s přenosem značné energie na povrch Země. Její velikost je dána sluneční neboli solární

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ATOM, ELEKTRONOVÝ OBAL 1) Sestavte tabulku: a) Do prvního sloupce

Více

Barycentrum - Slunce - sluneční činnost. Jiří Čech. Abstrakt:

Barycentrum - Slunce - sluneční činnost. Jiří Čech. Abstrakt: Barycentrum - Slunce - sluneční činnost Jiří Čech Abstrakt: Při studiu pohybu Slunce vzhledem k barycentru sluneční soustavy lze nalézt těsný vztah s cykly sluneční činnosti (v návaznosti na předcházející

Více

Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113

Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113 Sluneční energie, fotovoltaický jev Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113 1 Osnova přednášky Slunce jako zdroj energie Vlastnosti slunečního

Více

Sluneční soustava OTEVŘÍT. Konec

Sluneční soustava OTEVŘÍT. Konec Sluneční soustava OTEVŘÍT Konec Sluneční soustava Slunce Merkur Venuše Země Mars Jupiter Saturn Uran Neptun Pluto Zpět Slunce Slunce vzniklo asi před 4,6 miliardami let a bude svítit ještě přibližně 7

Více

4.2.3 ŠÍŘE FREKVENČNÍHO PÁSMA CHOROVÉHO ELEMENTU A DISTRIBUČNÍ FUNKCE VLNOVÝCH NORMÁL

4.2.3 ŠÍŘE FREKVENČNÍHO PÁSMA CHOROVÉHO ELEMENTU A DISTRIBUČNÍ FUNKCE VLNOVÝCH NORMÁL 4.2.3 ŠÍŘE FREKVENČNÍHO PÁSMA CHOROVÉHO ELEMENTU A DISTRIBUČNÍ FUNKCE VLNOVÝCH NORMÁL V předchozích dvou podkapitolách jsme ukázali, že chorové emise se mohou v řadě případů šířit nevedeným způsobem. Připomeňme

Více

Vnitřní energie. Teplo. Tepelná výměna.

Vnitřní energie. Teplo. Tepelná výměna. Vnitřní energie. Teplo. Tepelná výměna. A) Výklad: Vnitřní energie vnitřní energie označuje součet celkové kinetické energie částic (tj. rotační + vibrační + translační energie) a celkové polohové energie

Více

Složení látek a chemická vazba Číslo variace: 1

Složení látek a chemická vazba Číslo variace: 1 Složení látek a chemická vazba Číslo variace: 1 Zkoušecí kartičku si PODEPIŠ a zapiš na ni ČÍSLO VARIACE TESTU (číslo v pravém horním rohu). Odpovědi zapiš na zkoušecí kartičku, do testu prosím nepiš.

Více

16. Franck Hertzův experiment

16. Franck Hertzův experiment 16. Franck Hertzův experiment Zatímco zahřáté těleso vysílá spojité spektrum elektromagnetického záření, mají např. zahřáté páry kovů nebo plyny, v nichž probíhá elektrický výboj, spektrum čárové. V uvedených

Více

B. Hvězdy s větší hmotností spalují termojaderné palivo pomaleji,

B. Hvězdy s větší hmotností spalují termojaderné palivo pomaleji, HVĚZDY 1. Většina hvězd se při pozorování v průběhu noci pohybuje od A. Západu k východu, B. Východu k západu, C. Severu k jihu, D. Jihu k severu. 2. Ve většině hvězd se energie uvolňuje A. Prudkou rotací

Více

Pohled na svět dalekohledem i mikroskopem.

Pohled na svět dalekohledem i mikroskopem. Pohled na svět dalekohledem i mikroskopem.. Toto je výlet velikou rychlostí překonáváním vzdáleností s frakcí 10. 10 0 1 metr Vzdálenost hromádky listí na zahrádce. 10 1 0 metrů Jděme blíže, možná, uvidíme

Více

13. Spektroskopie základní pojmy

13. Spektroskopie základní pojmy základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

Atmosféra, znečištění vzduchu, hašení

Atmosféra, znečištění vzduchu, hašení Atmosféra, znečištění vzduchu, hašení Zemská atmosféra je vrstva plynů obklopující planetu Zemi, udržovaná na místě zemskou gravitací. Obsahuje přibližně 78 % dusíku a 21 % kyslíku, se stopovým množstvím

Více

DPZ - IIa Radiometrické základy

DPZ - IIa Radiometrické základy DPZ - IIa Radiometrické základy Ing. Tomáš Dolanský Definice DPZ DPZ = dálkový průzkum Země Remote Sensing (Angl.) Fernerkundung (Něm.) Teledetection (Fr.) Informace o objektu získává bezkontaktním měřením

Více

Identifikace vzdělávacího materiálu VY_52_INOVACE_F.9.A.34 EU OP VK

Identifikace vzdělávacího materiálu VY_52_INOVACE_F.9.A.34 EU OP VK Identifikace vzdělávacího materiálu VY_52_INOVACE_F.9.A.34 EU OP VK Škola, adresa Autor ZŠ Smetanova 1509, Přelouč Mgr. Ladislav Hejný Období tvorby VM Červen 2012 Ročník 9. Předmět Fyzika Hvězdy Název,

Více

Jádro se skládá z kladně nabitých protonů a neutrálních neutronů -> nukleony

Jádro se skládá z kladně nabitých protonů a neutrálních neutronů -> nukleony Otázka: Atom a molekula Předmět: Chemie Přidal(a): Dituse Atom = základní stavební částice všech látek Skládá se ze 2 částí: o Kladně nabité jádro o Záporně nabitý elektronový obal Jádro se skládá z kladně

Více

Zdroje optického záření

Zdroje optického záření Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon

Více

Vlnové vlastnosti světla. Člověk a příroda Fyzika

Vlnové vlastnosti světla. Člověk a příroda Fyzika Název vzdělávacího materiálu: Číslo vzdělávacího materiálu: Autor vzdělávací materiálu: Období, ve kterém byl vzdělávací materiál vytvořen: Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Tematická

Více

Cyklické změny v dynamice sluneční konvektivní zóny

Cyklické změny v dynamice sluneční konvektivní zóny Cyklické změny v dynamice sluneční konvektivní zóny P. Ambrož, Astronomický ústav AVČR, Ondřejov, pambroz @asu.cas.cz Abstrakt Na základě analýzy rozsáhlého materiálu evoluce fotosférických pozaďových

Více

Mlžnákomora. PavelMotal,SOŠaSOUKuřim Martin Veselý, FJFI ČVUT Praha

Mlžnákomora. PavelMotal,SOŠaSOUKuřim Martin Veselý, FJFI ČVUT Praha Mlžnákomora PavelMotal,SOŠaSOUKuřim Martin Veselý, FJFI ČVUT Praha Historie vývoje mlžné komory Jelikož není možné částice hmoty pozorovat pouhým okem, bylo vyvinutozařízení,ježzviditelňujedráhytěchtočásticvytvářenímmlžné

Více

Roztřeseným pohledem na jinak obyčejnou hvězdu za humny

Roztřeseným pohledem na jinak obyčejnou hvězdu za humny Roztřeseným pohledem na jinak obyčejnou hvězdu za humny Michal Švanda Astronomický ústav AV ČR Ondřejov Astronomický ústav UK Praha Hvězda zvaná Slunce GV M=1,99 1030 kg Tef=5778 K R=695 000 km L=3,85

Více