Roztřeseným pohledem na jinak obyčejnou hvězdu za humny

Rozměr: px
Začít zobrazení ze stránky:

Download "Roztřeseným pohledem na jinak obyčejnou hvězdu za humny"

Transkript

1 Roztřeseným pohledem na jinak obyčejnou hvězdu za humny Michal Švanda Astronomický ústav AV ČR Ondřejov Astronomický ústav UK Praha

2 Hvězda zvaná Slunce GV M=1, kg Tef=5778 K R= km L=3, W < >=1 408 km/m3 (U B)=0,0 (B V)=0,66

3 Struktura slunečního nitra

4 Fotosféra (1)

5 Fotosféra ()

6 Chromosféra

7 Koróna

8 Rovnice hvězdného nitra r 1 = m 4 r P Gm = m 4 r 4 L S = T m t 3 L 4 3 T 16 r T m T m conv = P, T ds =ds P,T =,T =,T Okrajové podmínky Na povrchu jednoduchý model atmosféry

9 Standardní model Slunce Řešením rovnic hvězdného nitra Neutrinový problém? Nestandardní modely (low Z, rychle rotující jádro, vnitřní míchání, vnitřní mg. pole) Na ZAMS: L=0,7 L0 R=0,88 R0

10 Slunce v budoucnosti

11 Oscilace (1) 1960 spektroheliografickou metodou (rozdílová struktura rychlostního pole, Leighton et al. (196)) V daném místě kvazisinusoidální oscilace s amplitudou stovek m/s a periodou 96 s Oscilace převážně radiální Zvukové vlny způsobené konvekcí odpovědnou za granulaci Interference 107 různých modů

12 Oscilace () Fotosféra (96 s) Chromosféra (180 a 40 s) Oscilace pod 100 s neměřitelné (vlnová délka srovnatelná s střední volnou drahou fotonu)

13 Oscilace (3)

14 Popis oscilací (1) Klasicky pomocí FT převod do frekvencí V kulatém problému je kartézká FT nevhodná sférické harmoniky v,,t = m=l l =0 m= l i m Y lm =P m e l a lm t Y lm,,

15 Popis oscilací () n l m

16 Měření oscilací Omezení daná Fourierovou transformací = /T = /T Nyquistova frekvence : Ny = / t = /T / t k x = / L x k x / x T doba měření, Dt vzorkovací frekvence, Lx rozměr měření ve směru x, Dx prostorová vzorkovací frekvence

17 Pozorované oscilace (1) Distribuce kh vůči diskrétní (1975 hřbetová struktura) Největší výkon ve frekvencích,54,5 mhz a vlnovými čísly 0,8 Mm 1 (tedy > km) Jako variace rychlostní struktury, ale také variace celkového zářivého toku (5minutové oscilace variace 10 5 L0)

18 Pozorované oscilace ()

19 Pozorované mody oscilací G mody P mody Odpovědnou silou je gravitace Nízké frekvence, nešíří se konvektivní zónou Šíření zvukového vzruchu Zdrojem konvekce Vysoké frekvence, nešíří se radiativní vrstvou F mod povrchový gravitační mod (analogie mořských vln), mod s n = 0

20 Základní mod oscilací Slunce ~R 0, c = P / ~ G M 0 / R 0 G M0 P ~ R0 1/ =4R 0 /c ~4 R 30 / G M 0 1/~ G Pro Slunce cca 60 min, stejným mechanismem pulsují např. cepheidy

21 Lineární adiabatické oscilace (1) Vychází se z hydrodynamických rovnic v =0 t v 1 v v = p t Předpokládá se existence eulerovské poruchy, např: = 0 1

22 Lineární adiabatické oscilace () =v 1 t Pro, kde je lineární výchylka od rovnovážné polohy a pro v 0=0 při zanedbání členů vyšších řádů 1 0 =0 1 0 p p 0=0 0 t Doplnit Poissonovou rovnicí 1=4 G 1

23 Lineární adiabatické oscilace (3) Adiabatická aproximace: P = P0 0 d značí lagrangeovskou poruchu: f =f 1 f 0 dále: c = P 0 / 0 Radiální symetrie převod do sférických souřadnic (poruchy analogicky): =e i t h r r r, h r, Y ml, sin

24 Lineární adiabatické oscilace (4) Rovnice nabydou tvaru: r g 1 1 l l 1 l l 1 1 d r P 1=0 r 1 0 c r r dr c r d 1 1 d g P 1 N r =0 0 d r c dr 4 G 0 4 G 1 d d 1 l l 1 r 1 N r P 1=0 dr g r dr r c 1 dp0 1 d P 0 1 d 0 g =, N =g 0 d r P 0 d r 0 d r

25 Lineární adiabatické oscilace (5) Cowlingova aproximace: Chyba maximálně několik procent oproti řešení plného systému rovnic r g 1 1 l l 1 l l 1 1 d r P 1=0 r 1 0 c r r dr c r d 1 1 d g P 1 N r =0 0 d r c dr 4 G 0 4 G 1 d d 1 l l 1 r 1 N r P 1=0 dr g r dr r c

26 Lineární adiabatické oscilace (6) Úhlová část vlastního problému na povrchu Slunce: r Y ml =r Pro x y r =r 0 je pak Y ml =r k x k y Y ml =r k h Y ml =l l 1 Y ml local l l 1 = k h r 0

27 Lokální přístup N, c a g konstantní (izotermální atmosféra), dále r / r d r / d r hledáme řešení s Cowlingovou aproximací ve tvaru: r ~ 1/ e 0 i krr, P 1 ~ 1/ e 0 Zavedeme l S = i kr r l l 1 r c Řešením disperzní relace: r k = A c S l N c c g, A= = H RT 1/

28 Lokální přístup k diagram =c k h =c k r k h k r 0 = A =N =N =k h c / A k h =N sin k r k h

29 Průběh kritických frekvencí A / N / S l /

30 Vnitřní odraz vlny (1) Změna stav. parametrů = změna podmínek šíření dané vlny = úprava disperzní relace Pro velká l: k r = S l /c Odraz vlny pro k r =0 1/ k r =0 =S l r l =[ l l 1 ] c r l / = 1 g k h

31 Vnitřní odraz vlny ()

32 Stojaté vlny r0 r0 n = = k r d r = rl rl c 1/ k h dr n ~k h r l = 1 gk h n ~ n g k h Toto je pozorováno (hřbety v k diagramu)

33 f vlny Vlny s n=0, pro které platí =0 Vlastní fce přibližně exponenciální: r ~exp k h r Frekvence nezávislá na vnitřní struktuře hvězdy Jednoznačně identifikovatelné ve spektru bez možnosti záměny s jiným modem z důvodu nejistoty slunečního modelu

34 Interpretace Přímé modelování výpočet slunečního modelu, radiální průběhy stavových parametrů, řešení perturbačních rovnic, vlastní frekvence oscilací Variací nejistých veličin lze dospět ke správnému modelu Vyloučeny mnohé alternativní modely Současná helioseismologie prokazuje platnost standardního modelu

35 Heliosesmická inverze (1) Nalezení integrandu určitého integrálu Obecně možné, pokud integrand závisí na parametru, jehož je integrál funkcí Určení průběhu rychlosti zvuku: Definice: u=l l 1 / = r /c Přepis: r0 = rl 0 S c l 1/ dr 1 dr F u = u d r d u 1/

36 Heliosesmická inverze () Diferenciace podle u: 0 d G /d df = d, G ln r 1/ d u u u Lze rozřešit (Abelova diferenciální rovnice): d F /d u r =r 0 exp du 1 / u 0

37 Heliosesmická inverze (3)

38 Rotace (1) v 0 = r, = cos, sin, 0 R0 nlm= nl0 m K nlm r, r, r d r d, K nlm ~m 0 0 Pokud pouze radiální závislost rotace, pak R0 nlm = nlm nl0 =m nl K nl r r d r 0 I se šířkovou závislostí rozklad do polynomů nlm= l l 1 a i P i m / l l 1 i

39 Rotace ()

40 Rotace (3)

41 Lokální helioseismologie (1) Globální oscilace obecně zprůměrovány přes heliografické délky, poruchy symetrické vůči rovníku, nejasná reakce na nehomogenity Pole vln v dané oblasti ovlivněno poruchami (nehomogenitami) mezi povrchem a bodem obratu vlny Nemožné konstruovat přímou úlohu a tedy obrácená úloha nejednoznačná

42 Lokální helioseismologie () Ring diagram Frekvence ovlivněny odnosem plazmatu (t, x, y) -> (, kx, ky) Analýza pro =konst Mapování podpovrchových rychlostí Horizontální průměr oblasti

43 Lokální helioseismologie (3)

44 Lokální helioseismologie (4) Time-distance Čas minimalizující korelaci mezi dvěma body = cestovní čas Pro dostatečné množství vln = lze invertovat: ds t = c w r, t v r, t n

45 Lokální helioseismologie (5) Helioseismická holografie Koherentní kombinace p-modů, zejména fázová informace, k mapování rozptylových oblastí na odvrácené straně

46 Důležité výsledky (1) Struktura těsně pod sluneční skvrnou Time-distance Spíše PR (na úkor přesnosti)

47 Důležité výsledky () Sluneční aktivita na odvrácené straně Pomocí helioseismické holografie Zpřesnění předpovědí sluneční aktivity

48 Důležité výsledky (3) Vnitřní rotace Konvektivní zóna rotuje konstatně po radiálních křivkách Radiativní zóna a jádro rotuje téměř rigidně (pomaleji než fotosféra)

49 Důležité výsledky (4) Vnitřní rychlost zvuku Jednoznačně identifikovatelné hranice vnitřní stratifikace

50 Důležité výsledky (5) Podpovrchové proudění time-distance

51 Důležité výsledky (6) Horizontální proudění v aktivní oblasti time-distance

52 Důležité výsledky (7) Poloha dynama

53 Perspektivy helioseismologie VELKÉ! vyhodnocování měření onboard Třeba doladit nejistoty zejména lokální helioseismologie (v podstatě žádná informace o chybě měření) Rozvoj asteroseismologie vnitřní struktura hvězd jiných typů

7. Rotace Slunce, souřadnice

7. Rotace Slunce, souřadnice 7. Rotace Slunce, souřadnice Sluneční fyzika LS 2007/2008 Michal Švanda Astronomický ústav MFF UK Astronomický ústav AV ČR Sluneční rotace Pomalá ~měsíc, ~1610 podle pohybů skvrn, Galileo 1858, Carrington,

Více

Cesta do nitra Slunce

Cesta do nitra Slunce Cesta do nitra Slunce Jeden den s fyzikou MFF UK, 7. 2. 2013 Michal Švanda Astronomický ústav MFF UK Chytří lidé řekli Už na první pohled se zdá, že vnitřek Slunce a hvězd je méně dostupný vědeckému zkoumání

Více

Sluneční dynamika. Michal Švanda Astronomický ústav AV ČR Astronomický ústav UK

Sluneční dynamika. Michal Švanda Astronomický ústav AV ČR Astronomický ústav UK Sluneční dynamika Michal Švanda Astronomický ústav AV ČR Astronomický ústav UK Slunce: dynamický systém Neměnnost Slunce Iluze Slunce je proměnná hvězda Sluneční proměny Díky vývoji Dynamika hmoty Magnetická

Více

Astronomický ústav Akademie věd České republiky, observatoř Ondřejov,

Astronomický ústav Akademie věd České republiky, observatoř Ondřejov, Helioseismologie moderní směr ve výzkumu Slunce Michal Švanda Astronomický ústav Akademie věd České republiky, observatoř Ondřejov, svanda@asu.cas.cz Slunečním fyzikům se pootevírají dveře umožňující nahlédnout

Více

= 2π/λ h. je charakteristický rozměr vlnového. (kde λ h

= 2π/λ h. je charakteristický rozměr vlnového. (kde λ h Helioseismologie: od oscilací k vnitřní struktuře Michal Švanda Astronomický ústav (v. v. i.), Akademie věd ČR, Observatoř Ondřejov, Fričova 298, 251 61 Ondřejov a Astronomický ústav UK, Matematicko-fyzikální

Více

Odhalená tajemství slunečních skvrn

Odhalená tajemství slunečních skvrn Odhalená tajemství slunečních skvrn Michal Řepík info@michalrepik.cz www.michalrepik.cz Hvězdárna a planetárium hlavního města Prahy 23. 11. 2015 Obsah Slunce jako hvězda Struktura slunečního nitra a atmosféry

Více

Spektroskopie Slunce. Michal Švanda. Astronomický ústav MFF UK Astronomický ústav AV ČR. Spektroskopie (nejen) ve sluneční fyzice LS 2011/2012

Spektroskopie Slunce. Michal Švanda. Astronomický ústav MFF UK Astronomický ústav AV ČR. Spektroskopie (nejen) ve sluneční fyzice LS 2011/2012 Spektroskopie Slunce Spektroskopie (nejen) ve sluneční fyzice LS 2011/2012 Michal Švanda Astronomický ústav MFF UK Astronomický ústav AV ČR Slunce jako hvězda Spektrální třída G2, hlavní posloupnost 4,5

Více

Sluneční skvrny od A do Z. Michal Sobotka Astronomický ústav AV ČR, Ondřejov

Sluneční skvrny od A do Z. Michal Sobotka Astronomický ústav AV ČR, Ondřejov Sluneční skvrny od A do Z Michal Sobotka Astronomický ústav AV ČR, Ondřejov Sluneční skvrny historie Příležitostná pozorování velkých skvrn pouhým okem První pozorování dalekohledem: 1610 Thomas Harriot

Více

Pulzující proměnné hvězdy. Marek Skarka

Pulzující proměnné hvězdy. Marek Skarka Pulzující proměnné hvězdy Marek Skarka F5540 Proměnné hvězdy Brno, 19.11.2012 Pulzující hvězdy se představují Patří mezi fyzicky proměnné hvězdy - ke změnám jasnosti dochází díky změnám rozměrů (radiální

Více

Slunce jako hvězda. Michal Švanda Astronomický ústav AV ČR Astronomický ústav UK

Slunce jako hvězda. Michal Švanda Astronomický ústav AV ČR Astronomický ústav UK Slunce jako hvězda Michal Švanda Astronomický ústav AV ČR Astronomický ústav UK Hvězdy, koření vesmíru Pouhá 4,5% hmoty a energie vesmíru ve svítící hmotě Z toho pouze 90 % podle předpokladů koncentrováno

Více

Modelování anelastické odezvy vlastních kmitů zemětřesení v Chile 2010

Modelování anelastické odezvy vlastních kmitů zemětřesení v Chile 2010 Modelování anelastické odezvy vlastních kmitů zemětřesení v Chile 2010 Eliška Zábranová Katedra geofyziky MFF UK, VCDZ Úvod Vlastní kmity jsou elementy stojatého vlnění s nekonečným počtem stupňů volnosti.

Více

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15 Proč studovat hvězdy? 9 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů.... 13 1.3 Model našeho Slunce 15 2 Záření a spektrum 21 2.1 Elektromagnetické záření

Více

Žhavé i vychladlé novinky ze sluneční fyziky. Michal Švanda Astronomický ústav AV ČR Astronomický ústav UK

Žhavé i vychladlé novinky ze sluneční fyziky. Michal Švanda Astronomický ústav AV ČR Astronomický ústav UK Žhavé i vychladlé novinky ze sluneční fyziky Michal Švanda Astronomický ústav AV ČR Astronomický ústav UK Měnící se sluneční fyzika Studium Slunce: již staří Číňané Kniha změn, vznik až 2000 pnl Kolem

Více

Od kvantové mechaniky k chemii

Od kvantové mechaniky k chemii Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi

Více

Projekt podpořený Operačním programem Přeshraniční spolupráce Slovenská republika Česká republika 2007-2013

Projekt podpořený Operačním programem Přeshraniční spolupráce Slovenská republika Česká republika 2007-2013 Projekt podpořený Operačním programem Přeshraniční spolupráce Slovenská republika Česká republika 2007-2013 Co (si myslíme že) víme o Slunci? Michal Švanda ASTRONOMICKÝ ÚSTAV UK, PRAHA ASTRONOMICKÝ ÚSTAV

Více

Slunce zdroj energie pro Zemi

Slunce zdroj energie pro Zemi Slunce zdroj energie pro Zemi Josef Trna, Vladimír Štefl Zavřete oči a otočte tvář ke Slunci. Co na tváři cítíte? Cítíme zvýšení teploty pokožky. Dochází totiž k přenosu tepla tepelným zářením ze Slunce

Více

1. Slunce jako hvězda

1. Slunce jako hvězda 1. Slunce jako hvězda Sluneční fyzika LS 2007/2008 Michal Švanda Astronomický ústav MFF UK Astronomický ústav AV ČR Slunce v minulosti Starověk: Slunce = bůh Ra/Re, Apolón, Khors, Radegast, Sunna, Dadźbóg,

Více

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic

Více

10. Sluneční skvrny. Michal Švanda. Astronomický ústav MFF UK Astronomický ústav AV ČR. Sluneční fyzika LS 2007/2008

10. Sluneční skvrny. Michal Švanda. Astronomický ústav MFF UK Astronomický ústav AV ČR. Sluneční fyzika LS 2007/2008 10. Sluneční skvrny Sluneční fyzika LS 2007/2008 Michal Švanda Astronomický ústav MFF UK Astronomický ústav AV ČR Magnetická pole na Slunci Pozorována Ve fotosféře (skvrny, knoty, fakule, póry, jasné body)

Více

Sluneční magnetismus. Michal Švanda. Astronomický ústav MFF UK Astronomický ústav AV ČR. Sluneční fyzika ZS 2011/2012

Sluneční magnetismus. Michal Švanda. Astronomický ústav MFF UK Astronomický ústav AV ČR. Sluneční fyzika ZS 2011/2012 Sluneční magnetismus Sluneční fyzika ZS 2011/2012 Michal Švanda Astronomický ústav MFF UK Astronomický ústav AV ČR Sluneční cyklus Hlavní cyklus 11 let Objev Heinrich Schwabe (1834) Hale 22 let, složený

Více

počátek 17. století, Johannes Kepler: 19. století: počátek 20. století: 1951, Ludwig Biermann:

počátek 17. století, Johannes Kepler: 19. století: počátek 20. století: 1951, Ludwig Biermann: Sluneční vítr počátek 17. století, Johannes Kepler: 19. století: sluneční aktivita ovlivňuje geomagnetickou aktivitu (pozorování Slunce + detekování změn magnetického pole měřeného na Zemi + polární záře)

Více

DISPERZNÍ KŘIVKY V DESCE S KUBICKOU ANIZOTROPIÍ

DISPERZNÍ KŘIVKY V DESCE S KUBICKOU ANIZOTROPIÍ DISPERZNÍ KŘIVKY V DESCE S KUBICKOU ANIZOTROPIÍ P. Hora, O. Červená Ústav termomechaniky AV ČR Příspěvek vznikl na základě podpory grantu cíleného vývoje a výzkumu AV ČR č. IBS276356 Ultrazvukové metody

Více

Vnitřní život krátkoperiodických exoplanet

Vnitřní život krátkoperiodických exoplanet Vnitřní život krátkoperiodických exoplanet Semianalytický model a ukázka jeho aplikací Michaela Walterová a Marie Běhounková Geodynamický seminář 23. 5. 2018 Motivace Jak vypadá vzájemná vazba mezi vývojem

Více

Pozorování Slunce s vysokým rozlišením. Michal Sobotka Astronomický ústav AV ČR, Ondřejov

Pozorování Slunce s vysokým rozlišením. Michal Sobotka Astronomický ústav AV ČR, Ondřejov Pozorování Slunce s vysokým rozlišením Michal Sobotka Astronomický ústav AV ČR, Ondřejov Úvod Na Slunci se důležité děje odehrávají na malých prostorových škálách (desítky až stovky km). Granule mají typickou

Více

TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD. 9, m s.

TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD. 9, m s. TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD Soustavu souřadnic spojenou se Zemí můžeme považovat prakticky za inerciální. Jen při několika jevech vznikají odchylky, které lze vysvětlit vlastním pohybem Země vzhledem

Více

Fyzika IV. g( ) Vibrace jader atomů v krystalové mříži

Fyzika IV. g( ) Vibrace jader atomů v krystalové mříži Vibrace jader atomů v krystalové mříži v krystalu máme N základních buněk, v každé buňce s atomů, které kmitají kolem rovnovážných poloh výchylky kmitů jsou malé (Taylorův rozvoj): harmonická aproximace

Více

Vlastnosti členů regulačních obvodů Osnova kurzu

Vlastnosti členů regulačních obvodů Osnova kurzu Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Statické vlastnosti členů regulačních obvodů 6) Dynamické vlastnosti členů

Více

Vlny v plazmatu. Narušení rovnováhy, perturbace se šíří prostorem => vlny Vlna musí být řešením příslušných rovnic plazmatu => módy

Vlny v plazmatu. Narušení rovnováhy, perturbace se šíří prostorem => vlny Vlna musí být řešením příslušných rovnic plazmatu => módy Vlny v plazmatu Narušení rovnováhy, perturbace se šíří prostorem => vlny Vlna musí být řešením příslušných rovnic plazmatu => módy Jakákoli perturbace A( x,t může být reprezentována jako kombinace rovinných

Více

Komplexní analýza. Laplaceova transformace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze

Komplexní analýza. Laplaceova transformace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Komplexní analýza Laplaceova transformace Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Laplaceova transformace 1 / 18 Definice Definice Laplaceovou

Více

ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0

ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0 Kmity základní popis kmitání je periodický pohyb, při kterém těleso pravidelně prochází rovnovážnou polohou mechanický oscilátor zařízení vykonávající kmity Základní veličiny Perioda T [s], frekvence f=1/t

Více

Úskalí modelování vlastních kmitů

Úskalí modelování vlastních kmitů Úskalí modelování vlastních kmitů Eliška Zábranová Katedra geofyziky MFF UK Přehled PRO PŘIPOMENUTÍ Rovnice, metoda řešení ÚSKALÍ VÝPOČTŮ Podmínka na kapalném rozhraní Frekvenční závislost vlastních kmitů

Více

1 Rozdělení mechaniky a její náplň

1 Rozdělení mechaniky a její náplň 1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů

Více

Zajímavé vlastnosti sluneční atmosféry: magnetická a rychlostní pole

Zajímavé vlastnosti sluneční atmosféry: magnetická a rychlostní pole Zajímavé vlastnosti sluneční atmosféry: magnetická a rychlostní pole Spektroskopie (nejen) ve sluneční fyzice LS 2011/2012 Michal Švanda Astronomický ústav MFF UK Astronomický ústav AV ČR Vliv na tvar

Více

TERMIKA II. Stacionární vedení s dokonalou i nedokonalou izolací; Obecná rovnice vedení tepla; Přestup a prostup tepla;

TERMIKA II. Stacionární vedení s dokonalou i nedokonalou izolací; Obecná rovnice vedení tepla; Přestup a prostup tepla; TERMIKA II Šíření tepla vedením, prouděním a zářením; Stacionární vedení s dokonalou i nedokonalou izolací; Nestacionární vedení tepla; Obecná rovnice vedení tepla; Přestup a prostup tepla; 1 Šíření tepla

Více

Neideální plyny. Z e dr dr dr. Integrace přes hybnosti. Neideální chování

Neideální plyny. Z e dr dr dr. Integrace přes hybnosti. Neideální chování eideální plyny b H Q(, V, T )... e dp 3... dpdr... dr! h Integrace přes hybnosti QVT (,, ) pmkt! h 3 / e dr dr dr /... U kt... eideální chování p kt r B ( T) r B ( T) r 3 3 Vyšší koeficinety velice složité

Více

Sluneční fotosféra: Pohybová dynamika mnoha tváří I.

Sluneční fotosféra: Pohybová dynamika mnoha tváří I. 3/2007 Sluneční fotosféra: Pohybová dynamika mnoha tváří I. Slunce je vcelku obyčejnou hvězdou spektrální třídy G2 nacházející se na hlavní posloupnosti H-R diagramu. Kdybychom její parametry hodnotili

Více

Obsah PŘEDMLUVA...9 ÚVOD TEORETICKÁ MECHANIKA...15

Obsah PŘEDMLUVA...9 ÚVOD TEORETICKÁ MECHANIKA...15 Obsah PŘEDMLUVA...9 ÚVOD...11 1. TEORETICKÁ MECHANIKA...15 1.1 INTEGRÁLNÍ PRINCIPY MECHANIKY... 16 1.1.1 Základní pojmy z mechaniky... 16 1.1.2 Integrální principy... 18 1.1.3 Hamiltonův princip nejmenší

Více

Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015

Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015 Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 8. přednáška 11MSP pondělí 20. dubna 2015 verze: 2015-04-14 12:31

Více

Sluneční fyzika. Vojtěch Sidorin. Praha,

Sluneční fyzika. Vojtěch Sidorin. Praha, Sluneční fyzika OHŘEV KORÓNY Vojtěch Sidorin Astronomický ústav Univerzity Karlovy v Praze Praha, 29.4.2008 Struktura prezentace 1 V čem je problém 2 Navrhnutá řešení 3 Které řešení je správné 4 Není to

Více

Jemná struktura slunečních skvrn. Michal Sobotka Astronomický ústav AV ČR, Ondřejov

Jemná struktura slunečních skvrn. Michal Sobotka Astronomický ústav AV ČR, Ondřejov Jemná struktura slunečních skvrn Michal Sobotka Astronomický ústav AV ČR, Ondřejov První pozorování s vysokým rozlišením 1870 Angelo Secchi: vizuální pozorování a kresby, kniha Le Soleil 1916 S. Chevalier:

Více

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy

Více

Fyzika II. Marek Procházka Vlnová optika II

Fyzika II. Marek Procházka Vlnová optika II Fyzika II Marek Procházka Vlnová optika II Základní pojmy Reflexe (odraz) Refrakce (lom) jevy na rozhraní dvou prostředí o různém indexu lomu. Disperze (rozklad) prostorové oddělení složek vlnění s různou

Více

Úvod do parciálních diferenciálních rovnic. 2 Kanonický tvar lineárních PDR 2. řádu pro funkce

Úvod do parciálních diferenciálních rovnic. 2 Kanonický tvar lineárních PDR 2. řádu pro funkce Příklady na cvičení k přednášce NMMA334 Úvod do parciálních diferenciálních rovnic 1 Kanonický tvar lineárních PDR 2. řádu pro funkce dvou proměnných 1. Určete typ parciální diferenciální rovnice u xx

Více

Historie sledování EOP (rotace)

Historie sledování EOP (rotace) Historie sledování EOP (rotace) 1895 IAG > ILS, 7 ZT na 39 s.š., stejné hvězdy, stejné přístroje. 1962 IPMS (Mizusawa, JPN), až 80 přístrojů. FK4, různé metody, různé přístroje, i jižní polokoule. 1921

Více

Složení hvězdy. Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ

Složení hvězdy. Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ Hvězdy zblízka Složení hvězdy Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ Plazma zcela nebo částečně ionizovaný plyn,

Více

7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí

7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí 202-m3b2/cvic/7slf.tex 7. Derivace složené funkce. Budeme uvažovat složenou funkci F = fg, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce, které mají

Více

Vibrace atomů v mřížce, tepelná kapacita pevných látek

Vibrace atomů v mřížce, tepelná kapacita pevných látek Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární

Více

Numerické simulace v astrofyzice

Numerické simulace v astrofyzice Numerické simulace v astrofyzice Petr Jelínek Jihočeská univerzita, Přírodovědecká fakulta, České Budějovice, Česká republika Astronomický ústav, Akademie věd České republiky v.v.i., Ondřejov, Česká republika

Více

Přijímací zkouška na navazující magisterské studium 2015

Přijímací zkouška na navazující magisterské studium 2015 Přijímací zkouška na navazující magisterské studium 205 Studijní program: Studijní obory: Fyzika FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Pro funkci f(x) := e x 2. Určete definiční

Více

Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory

Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při

Více

Koróna, sluneční vítr

Koróna, sluneční vítr Koróna, sluneční vítr Sluneční fyzika ZS 2011/2012 Michal Švanda Astronomický ústav MFF UK Astronomický ústav AV ČR Přechodová oblast Změna teplotní režimu mezi chromosférou (104 K) a korónou (106 K) Nehomogenní,

Více

Fyzika - Sexta, 2. ročník

Fyzika - Sexta, 2. ročník - Sexta, 2. ročník Fyzika Výchovné a vzdělávací strategie Kompetence komunikativní Kompetence k řešení problémů Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence

Více

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve

Více

Vnitřní magnetosféra

Vnitřní magnetosféra Vnitřní magnetosféra Plazmasféra Elektrické pole díky konvenkci (1) (Convection Electric Field) Vodivost σ, tj. ve vztažné soustavě pohybující se s plazmatem rychlostí v je elektrické pole rovno nule (

Více

Kombinatorická minimalizace

Kombinatorická minimalizace Kombinatorická minimalizace Cílem je nalézt globální minimum ve velké diskrétní množině, kde může být mnoho lokálních minim. Úloha obchodního cestujícího Cílem je najít nejkratší cestu, která spojuje všechny

Více

Teorie měření a regulace

Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace 22.z-3.tr ZS 2015/2016 2015 - Ing. Václav Rada, CSc. TEORIE ŘÍZENÍ druhá část tématu předmětu pokračuje. oblastí matematických pomůcek

Více

Flexibilita jednoduché naprogramování a přeprogramování řídícího systému

Flexibilita jednoduché naprogramování a přeprogramování řídícího systému Téma 40 Jiří Cigler Zadání Číslicové řízení. Digitalizace a tvarování. Diskrétní systémy a jejich vlastnosti. Řízení diskrétních systémů. Diskrétní popis spojité soustavy. Návrh emulací. Nelineární řízení.

Více

2. Úloha difúze v heterogenní katalýze

2. Úloha difúze v heterogenní katalýze 2. Úloha difúze v heterogenní katalýze Vnitřní difúze při nerovnoměrné radiální distribuci aktivní složky v částici katalyzátoru Kateřina Horáčková Příčina radiálního aktivitního profilu v katalyzátorové

Více

Akustika. Rychlost zvukové vlny v v prostředí s hustotou ρ a modulem objemové pružnosti K

Akustika. Rychlost zvukové vlny v v prostředí s hustotou ρ a modulem objemové pružnosti K zvuk každé mechanické vlnění v látkovém prostředí, které je schopno vyvolat v lidském uchu sluchový vjem akustika zabývá se fyzikálními ději spojenými se vznikem zvukového vlnění, jeho šířením a vnímáním

Více

Sluneční magnetismus. Michal Švanda Sluneční fyzika LS 2014/2015

Sluneční magnetismus. Michal Švanda Sluneční fyzika LS 2014/2015 Sluneční magnetismus Michal Švanda Sluneční fyzika LS 2014/2015 Sluneční cyklus Hlavní cyklus 11 let - Objev Heinrich Schwabe (1834) - Hale 22 let, složený ze dvou 11letých - 7,5 16 let (11,2 je střední

Více

Integrace. Numerické metody 7. května FJFI ČVUT v Praze

Integrace. Numerické metody 7. května FJFI ČVUT v Praze Integrace Numerické metody 7. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod 1D Kvadraturní vzorce Gaussovy kvadratury Více dimenzí Programy 1 Úvod Úvod - Úloha Máme funkci f( x) a snažíme se najít určitý integrál

Více

Fourierovské metody v teorii difrakce a ve strukturní analýze

Fourierovské metody v teorii difrakce a ve strukturní analýze Osnova přednášky na 31 kolokviu Krystalografické společnosti Výpočetní metody v rtg a neutronové strukturní analýze Nové Hrady, 16 20 6 2003 Fourierovské metody v teorii difrakce a ve strukturní analýze

Více

I. část - úvod. Iva Petríková

I. část - úvod. Iva Petríková Kmitání mechanických soustav I. část - úvod Iva Petríková Katedra mechaniky, pružnosti a pevnosti Osah Úvod, základní pojmy Počet stupňů volnosti Příklady kmitavého pohyu Periodický pohy Harmonický pohy,

Více

25.z-6.tr ZS 2015/2016

25.z-6.tr ZS 2015/2016 Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace Typové členy 2 25.z-6.tr ZS 2015/2016 2015 - Ing. Václav Rada, CSc. TEORIE ŘÍZENÍ třetí část tématu předmětu pokračuje. A oblastí

Více

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova 1 Rozložení, distribuce tepla Teplota je charakteristika tepelného stavu hmoty je to stavová veličina, charakterizující termodynamickou rovnováhu systému. Teplo vyjadřuje kinetickou energii částic. Teplota

Více

Úvod do zpracování signálů

Úvod do zpracování signálů 1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování

Více

Zobrazování. Zdeněk Tošner

Zobrazování. Zdeněk Tošner Zobrazování Zdeněk Tošner Ultrazvuk Zobrazování pomocí magnetické rezonance Rentgen a počítačová tomografie (CT) Ultrazvuk Akustické vlnění 20 khz 1 GHz materiálová defektoskopie sonar sonografie (v lékařství

Více

Kapitola 11: Lineární diferenciální rovnice 1/15

Kapitola 11: Lineární diferenciální rovnice 1/15 Kapitola 11: Lineární diferenciální rovnice 1/15 Lineární diferenciální rovnice 2. řádu Definice: Lineární diferenciální rovnice 2-tého řádu je rovnice tvaru kde: y C 2 (I) je hledaná funkce a 0 (x)y +

Více

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Molekulová fyzika, termika 2. ročník, sexta 2 hodiny týdně Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Více

Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF

Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF Václav Uruba uruba@fst.zcu.cz home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF 13.10.2014 Mechanika tekutin 1/13 1 Mechanika tekutin - přednášky 1. Úvod, pojmy,

Více

Digitalizace převod AS DS (analogový diskrétní signál )

Digitalizace převod AS DS (analogový diskrétní signál ) Digitalizace signálu v čase Digitalizace převod AS DS (analogový diskrétní signál ) v amplitudě Obvykle převod spojité předlohy (reality) f 1 (t/x,...), f 2 ()... připomenutí Digitalizace: 1. vzorkování

Více

MÍSENÍ MÍSENÍ JE REVERZIBILNÍ PROCES. Mísení a segregace sypkých hmot INŽENÝRSTVÍ FARMACEUTICKÝCH

MÍSENÍ MÍSENÍ JE REVERZIBILNÍ PROCES. Mísení a segregace sypkých hmot INŽENÝRSTVÍ FARMACEUTICKÝCH Mísení a segregace sypkých hmot INŽENÝRSTVÍ FARMACEUTICKÝCH VÝROB MÍSENÍ Definice Operace při které se na dvě nebo více oddělených složek působí tak, aby se dostaly do stavu, kdy každá částice jedné složky

Více

M4140 Vybrané partie z matematické analýzy Přírodovědecká fakulta MU

M4140 Vybrané partie z matematické analýzy Přírodovědecká fakulta MU M4140 Vybrané partie z matematické analýzy Přírodovědecká fakulta MU jaro 2010 Rozsah 4/2/0. 6 kr. Ukončení: zk. 1) Obyčejné diferenciální rovnice: 1.1. Úvod základní pojmy, přímé metody řešení některých

Více

Vlastní kmity od Q k CMT

Vlastní kmity od Q k CMT Vlastní kmity od Q k CMT Eliška Zábranová Katedra geofyziky MFF UK Přehled Data Vlastní kmity Frekvence a útlum z dat Modelování Nejdelší módy Vysoké frekvence 3.5.2013 Vlastní kmity od Q k CMT 2 Data

Více

ZÁŘENÍ V ASTROFYZICE

ZÁŘENÍ V ASTROFYZICE ZÁŘENÍ V ASTROFYZICE Plazmový vesmír Uvádí se, že 99 % veškeré hmoty ve vesmíru je v plazmovém skupenství (hvězdy, mlhoviny, ) I na Zemi se vyskytuje plazma, např. v podobě blesků, polárních září Ve sluneční

Více

lní model gravitačního pole z inverze dráhových dat družic CHAMP, GRACE a GOCE

lní model gravitačního pole z inverze dráhových dat družic CHAMP, GRACE a GOCE Globáln lní model gravitačního pole z inverze dráhových dat družic CHAMP, GRACE a GOCE Aleš Bezděk 1 Josef Sebera 1,2 Jaroslav Klokočník 1 Jan Kostelecký 2 1 Astronomický ústav AV ČR 2 ČVUT Seminář Výzkumného

Více

Pohyby částic ve vnějším poli A) Homogenní pole. qb m. cyklotronová frekvence. dt = = 0. 2 ω PČ 1

Pohyby částic ve vnějším poli A) Homogenní pole. qb m. cyklotronová frekvence. dt = = 0. 2 ω PČ 1 Způsob popisu Pohb částic v poli vnějším Pohb částic v selfkonsistentním poli Kinetické rovnice Hdrodnamické rovnice * tekutin * 1 tekutina * magnetohdrodnamika Pohb částic ve vnějším poli A) Homogenní

Více

Sluneční stínohra. Michal Švanda. Astronomický ústav AV ČR, Ondřejov Astronomický ústav UK, Praha

Sluneční stínohra. Michal Švanda. Astronomický ústav AV ČR, Ondřejov Astronomický ústav UK, Praha Sluneční stínohra Michal Švanda Astronomický ústav AV ČR, Ondřejov Astronomický ústav UK, Praha Zatmění Slunce vzdálená historie 2197 pnl Li a Che opilci (nepodloženo) Kost z Anyang (prov. Henan) 1300

Více

Světlo jako elektromagnetické záření

Světlo jako elektromagnetické záření Světlo jako elektromagnetické záření Základní pojmy: Homogenní prostředí prostředí, jehož dané vlastnosti jsou ve všech místech v prostředí stejné. Izotropní prostředí prostředí, jehož dané vlastnosti

Více

Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb

Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb Jan Slovák Masarykova univerzita Fakulta informatiky 23. 10. 2006 Obsah

Více

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

Odhad změny rotace Země při změně poloměru

Odhad změny rotace Země při změně poloměru Odhad změny rotace Země při změně poloměru NDr. Pavel Samohýl. Seznam symbolů A, A, A součinitel vztahu pro závislost hustoty Země na vzdálenosti od středu, totéž v minulosti a současnosti B, B, B součinitel

Více

Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie

UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie PŘEDMĚT: FYZIKA ROČNÍK: SEXTA VÝSTUP UČIVO MEZIPŘEDM. VZTAHY, PRŮŘEZOVÁ TÉMATA, PROJEKTY, KURZY POZNÁMKY Zná 3 základní poznatky kinetické teorie látek a vysvětlí jejich praktický význam Vysvětlí pojmy

Více

MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D19_Z_OPAK_KV_Mechanicke_kmitani_T Člověk a příroda Fyzika Mechanické kmitání Opakování

Více

A/D převodníky - parametry

A/D převodníky - parametry A/D převodníky - parametry lineární kvantování -(kritériem je jednoduchost kvantovacího obvodu), parametry ADC : statické odstup signálu od kvantizačního šumu SQNR, efektivní počet bitů n ef, dynamický

Více

13. Spektroskopie základní pojmy

13. Spektroskopie základní pojmy základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

ZS: 2018/2019 NMAF063 F/3 Josef MÁLEK. Matematika pro fyziky III

ZS: 2018/2019 NMAF063 F/3 Josef MÁLEK. Matematika pro fyziky III ZS: 2018/2019 NMAF063 F/3 Josef MÁLEK Matematika pro fyziky III OBECNÉ INFORMACE A SYLABUS Přednášející: Cvičící: Josef Málek Tomáš Los, Michal Pavelka, Michal Pavelka, Vít Průša Termíny přednášek: čtvrtek

Více

DUM č. 14 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia

DUM č. 14 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia projekt GML Brno Docens DUM č. 14 v sadě 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia Autor: Vojtěch Beneš Datum: 04.05.2014 Ročník: 1. ročník Anotace DUMu: Mechanické vlnění, zvuk Materiály

Více

Koróna, sluneční vítr. Michal Švanda Sluneční fyzika LS 2014/2015

Koróna, sluneční vítr. Michal Švanda Sluneční fyzika LS 2014/2015 Koróna, sluneční vítr Michal Švanda Sluneční fyzika LS 2014/2015 Přechodová oblast Změna teplotní režimu mezi chromosférou (10 4 K) a korónou (10 6 K) Nehomogenní, pohyby (doppler-shift), vývoj S výškou

Více

Úvod do vln v plazmatu

Úvod do vln v plazmatu Úvod do vln v plazmatu Co je to vlna? (fázová a grupová rychlost) Přehled vln v plazmatu Plazmové oscilace Iontové akustické vlny Horní hybridní frekvence Elektrostatické iontové cyklotronové vlny Dolní

Více

Těžíc z GOPE dat: Tohoku 2011

Těžíc z GOPE dat: Tohoku 2011 Těžíc z GOPE dat: Tohoku 2011 Eliška Zábranová Katedra geofyziky MFF UK, VÚGTK Úvod motivace přehled základních vztahů přiblížení výpočetní metody použité přístroje modely zdroje zemětřesení Tohoku 2011

Více

Výzkum vlivu přenosových jevů na chování reaktoru se zkrápěným ložem katalyzátoru. Petr Svačina

Výzkum vlivu přenosových jevů na chování reaktoru se zkrápěným ložem katalyzátoru. Petr Svačina Výzkum vlivu přenosových jevů na chování reaktoru se zkrápěným ložem katalyzátoru Petr Svačina I. Vliv difuze vodíku tekoucím filmem kapaliny na průběh katalytické hydrogenace ve zkrápěných reaktorech

Více

O tom, co skrývají centra galaxíı. F. Hroch. 26. březen 2015

O tom, co skrývají centra galaxíı. F. Hroch. 26. březen 2015 Kroužíme kolem černé díry? O tom, co skrývají centra galaxíı F. Hroch ÚTFA MU, Brno 26. březen 2015 Kroužíme kolem černé díry? Jak zkoumat neviditelné objekty? Specifika černých děr Objekty trůnící v centrech

Více

Elektronová a absorpční spektroskopie, Vibrační spektroskopie (absorpční a Ramanova rozptylu)

Elektronová a absorpční spektroskopie, Vibrační spektroskopie (absorpční a Ramanova rozptylu) Elektronová a absorpční spektroskopie, Vibrační spektroskopie (absorpční a Ramanova rozptylu) Průchod optického záření absorbujícím prostředím V dipólové aproximaci platí Einsteinův vztah pro pravděpodobnost

Více

Poznámky k cvičením z termomechaniky Cvičení 3.

Poznámky k cvičením z termomechaniky Cvičení 3. Vnitřní energie U Vnitřní energie U je stavová veličina U = U (p, V, T), ale závisí pouze na teplotě (experiment Gay-Lussac / Joule) U = f(t) Pro měrnou vnitřní energii (tedy pro vnitřní energii jednoho

Více

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory

Více

Kmity a mechanické vlnění. neperiodický periodický

Kmity a mechanické vlnění. neperiodický periodický rozdělení časově proměnných pohybů (dějů): Mechanické kmitání neperiodický periodický ne(an)harmonický harmonický vlastní kmity nucené kmity - je pohyb HB (tělesa), při němž HB nepřekročí konečnou vzdálenost

Více

Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více