Použití metody GD-OES Application of GD-OES
|
|
- Alena Bláhová
- před 6 lety
- Počet zobrazení:
Transkript
1 Použití metody GD-OES Application of GD-OES Antonín Kříž a), Petr Šmíd b) a) Nové technologie - výzkumné centrum, ZČU-Plzeň, Univerzitní 8, Plzeň b) Katedra fyziky, ZČU-Plzeň, Univerzitní 22, Plzeň Abstract Optical emission spectroscopy, as a method for chemical analysis of metallic materials, has been used since 19th century. At present, a number of spectroscopic methods is being commonly utilized not only to determine chemical composition of bulk materials, but also to obtain depth profiles of surfaces. The GD-OES method (Glow Discharge Optical Emission Spectroscopy) makes use of glow discharge to achieve excitation of particles. It is the GD-OES method that provides depth profile data with adequate precision. Correct interpretation of the results, however, requires knowledge of phenomena, which may influence the analysis accuracy. The present study comprises both these phenomena and the practical results. 1. Princip optické emisní spektroskopie Emisní spektrální analýza určuje z optického atomového spektra kvalitativní a kvantitativní složení vzorku[1]. Kvalitativní složení vzorku je dáno charakteristickými frekvencemi, jejichž poměrné rozdělení intenzit udává kvantitativní složení. Spektrum je tvořeno souborem frekvencí (vlnových délek), které jsou vzorkem v daném zdroji vysílány. Oblast optických atomových spekter se pohybuje v rozsahu vlnových délek elektromagnetického spektra mezi 30 až A. Toto optické spektrum vzniká přechody vnějších, tzv. valenčních elektronů z výšekvantových na nížekvantové, popř. základní hladiny. Dle charakteru dodané budící energie ze zdroje ke vzorku se dělí na plamenové a elektrické. U plamenových zdrojů se analyzované látky přivádí k excitaci do plamenů plynných paliv ve formě aerosolů. V elektrických zdrojích se jako zdroj emise nejčastěji využívá obloukového nebo anomálního výboje. Spektrální přístroje obr.č.1 se skládají z těchto základních částí: vstupní štěrbina, rozkladný prvek, zaostřovací systém a vhodný detektor záření. Polychromatický svazek, který vstupuje štěrbinou do přístroje je v disperzním prvku prostorově rozložen a zaostřovací soustavou vytváří v zobrazovací ploše spektrum (soubor monochromatických obrazů štěrbiny - spektrálních čar), které je detektorem vyhodnocováno. 2. GD-OES Metoda GD-OES[2] je modifikace optické emisní spektroskopie, která jako budící zdroj využívá tzv. Grimmovu lampu obr.1 pracující v režimu doutnavého výboje. Analyzovaný vzorek je umístěn na prstenci katody lampy a je 0,1-0,2 mm vzdálen od čela anody, kterou tvoří dutá měděná trubice. Prostor uvnitř lampy je kontinuálně odčerpáván a napouštěn pracovním plynem (argonem) o tlaku Pa[3]. Hodnota zvoleného tlaku je určena v závislosti na velikosti napětí přivedeného mezi anodu a katodu. Přivedením napětí řádově několik set voltů dojde k zažehnutí doutnavého elektr. výboje, který hoří v dutině anody. Použitím
2 stejnosměrného proudu lze analyzovat vodivé materiály. Pro nevodivé materiály je potřebný vysokofrekvenční výboj. Napětí na elektrodách způsobí, že elektrony pohybují s vysokou energií od povrchu vzorku k anodě. V prostoru katody se za přítomnosti argonu vlivem srážek jeho atomů s elektrony vytváří plazma s následnou ionizací. Kladné ionty argonu jsou elektrickým polem urychlovány směrem ke vzorku. Cestou ke vzorku ztrácí ionty argonu přibližně 70% své energie vlivem srážkového efektu[4]. Přesto je jejich energie dostačující k odprášení (uvolnění) atomů z povrchu vzorku. Typická kinetická energie odprášených atomů je 5 až 10 ev. Vzhledem k pracovnímu tlaku je jejich střední volná dráha řádově 10-2 mm[5]. Srážkový efekt vyvolá rychlou termalizaci atomů a transport do míst zóny doutnavého výboje, kde dojde k jejich excitaci, probíhá převážně difúzně. Z tohoto důvodu dochází rovněž ke zpětné depozici části odprášeného materiálu. Excitací atomů se získá záření o vlnové délce typické pro daný prvek, které je po výstupu z lampy analyzováno optickým spektrometrem. Při postupném odprašování vzorku vstupují do výboje atomy z jednotlivých hloubkových vrstev, čímž je možné sledovat závislost koncentrace prvků na analyzované hloubce. Výsledkem měření je koncentrační profil v závislosti na hloubce odprášení. Přesnost této analýzy je závislá na správné kalibraci odprašování materiálu. Přesné stanovení odprášené hloubky je dáno dobou odprašování. Proto je třeba provádět kalibraci přístroje na standardech blížící se svým složením k předpokládanému obsahu prvků vzorku. Rychlost odprašování je vedle chemického složení vzorku ovlivněna také jeho povrchovým stavem (drsností, pnutím, heterogenitou) a orientací jednotlivých zrn polykrystalického materiálu [6]. Výsledný koncentrační profil rozložení prvků může být ovlivněn celou řadou faktorů. Profily mohou být zkresleny nejen materiálovými vlivy, ale i nerovnoměrností odprašování analyzovaného materiálu způsobenou konstrukcí Grimmovy lampy popř. interferenčními jevy. Pro experimentální analýzy byl použit optický emisní spektroskop buzený doutnavým výbojem LECO GDS 750. Tento přístroj slouží ke kvalitativnímu a kvantitativnímu stanovení kovových i nekovových prvků v pevných vodivých vzorcích. V následujících kapitolách budou uvedeny příčiny, které mohou nejčastěji způsobit nepřesnost měření. 3. Přesnost použitých standardů Na přesnost měření mají zásadní vliv použité standardy. Tyto standardy definovaného chemického složení dovolují přesné zkalibrování přístroje. Tato kalibrace se provádí před vlastní analýzou, během popř. v závěru měření je prováděna kontrolní rekalibrace. Kalibrace dovoluje správné nastavení intenzity jednotlivých emisních čar spektra pro dané prvky a stav dané optiky. Během měření se může zvýšit rozptyl hodnot následkem znečištění kolimační čočky, přes kterou pak prochází nižší intenzita. Toto snížení není rovnoměrné pro všechny prvky, ale je ovlivněno vlnovou délkou emisní čáry. Pro krátké vlnové délky (např. křemík 288,2 nm) je stav kolimační čočky rozhodující. Z tohoto důvodu se provádí během měření tzv. rekalibrace přístroje. Uvedený případ nastal při analyzování chemického složení litých disků kol 6Jx14H2 pro osobní automobily ze slitiny AlSi7Mg. S ohledem na předpokládané chemické složení vzorku, které bylo dokladováno nejen označením na výrobku, ale i dodanou dokumentací, bylo provedeno kalibrování přístroje komerčně dodanými
3 standardy ČKD. Stanovené chemické složení se výrazně lišilo od chemického složení uvedeného v dokumentaci. Dříve něž byly udělány závěry o nepřesnosti chemického složení dodaných vzorků kol, byla provedena kontrola kalibrační řady ČKD. Pro tuto kontrolu byly zapůjčeny od firmy LECO standardy VAW Aluminium Ag, Germany. Z tabulky č. 1 vyplývá nepřesnost použitých standardů ČKD. Na analýze chemického složení těchto vzorků slitiny AlSi7Mg bude ukázán další zdroj možných nepřesností vyplývající z hloubkových koncentračních profilů. Na obr. č. 2 je zachycen graf hloubkových koncentračních křivek. Z analýzy grafu by se mohlo zdát, že na povrchu měřeného vzorku je odlišné chemické složení. Tento mylný předpoklad byl vyvrácen experimentem postupného odprašování do hloubky 7 µm, a následného jemného odbrušování povrchu. Z naměřených výsledků vyplývá, že všechny hloubkové koncentrační profily mají stejný počátečný anomální průběh. Tato nepřesnost je obecně způsobena nejen absorpcí vlhkosti na povrchu, ale i oxidací povrchu. Povrch je tak kontaminován prvky vodíku a kyslíku, které mají výrazný vliv na intenzitu emisních čar spektra. Následkem tohoto procesu se na počátku analýzy této hliníkové slitiny projevuje mylně vyšší koncentrace křemíku. Dalším zdrojem počátečných klasických nepřesností koncentračních hloubkových profilů je přítomnost zbytkových nečistot v prostoru anody. Tyto nečistoty mají za následek počáteční nestabilitu doutnavého výboje, která se pak projeví v nepřesnosti stanovené koncentrace. Při analýze slitin Al-Si se může projevit, tak jako např. u litin, vliv nestejnorodého odprašování jednotlivých strukturních fází[7]. Mangan a železo mají zpočátku vyšší odprašovací rychlost a z tohoto důvodu jejich počáteční koncentrace roste. Následně dojde k vyrovnání odprašovacích rychlostí, které se projeví poklesem obsahu, přičemž skutečná koncentrace těchto prvků je stále konstantní. Z tohoto důvodu je správné u objemových materiálů stanovovat průměrné koncentrace z hodnot získaných v závěru analýzy, kdy mají koncentrační hloubkové profily ustálený průběh obr.č.3. V tomto případě byl zmíněn děj nerovnoměrného odprašování jednotlivých prvků. Tento děj je zdrojem značných nepřesností stanovení chemického složení nejen u objemových materiálů, ale i u materiálů s povrchovou úpravou. Následující případ ukazuje vliv nestejnorodého odprašování na nerovnoměrnosti dna kráteru. 4. Nerovnoměrnosti dna kráteru Nerovnoměrnosti dna kráteru mohou být vyvolány různou odprašovací rychlostí jednotlivých prvků, strukturních fází popř. orientací zrn. Další příčinou nerovnoměrnosti je vytvoření tzv. kráterového jevu. Kráterový jev je spojen s nehomogenitou doutnavého výboje v prostoru Grimmovy lampy. V předchozí kapitole byl již uveden případ nerovnoměrného odprašování následkem různých odprašovacích rychlostí jednotlivých prvků. Tento děj je dobře pozorovatelný na případu šedé litiny. Obr. č. 4 zachycuje dno analyzovaného vzorku ze šedé litiny. Z obrázku vyplývá, že v tomto případě jsou nerovnosti dna spojeny s rozložením lupínkovitého grafitu. Útvary vzniklé na dně kráteru mají charakter redeponovaného materiálu. Z obr. č. 5 vyplývá, že se jedná o kompaktní, neodprášený materiál. Tyto nerovnosti ovlivňují přesnost hloubkových koncentračních profilů nejen na počátku analýzy, kdy nastává v předchozí kapitole popsaný děj, ale i proto, že je obtížné stanovit přesnou hloubku právě odprašovaného materiálu. S těmito útvary souvisí i jiný případ, který byl pozorován např. u rychlořezné oceli obr. č. 6, kdy se nerovnoměrným odprašováním vytvářely na dně kráteru tzv. kuželíkové útvary. Jejich vznik není zatím přesně odůvodněn. Na základě provedených analýz a experimentů se prozatím nepodařilo
4 najít jakoukoliv spojitost mezi strukturními fázemi a těmito útvary. Kráterový jev spojený s nerovnoměrným rozložením doutnavého výboje vyplývá z obr.č. 7. Tento jev nepříznivě ovlivňuje především přesnost hloubkových koncentračních křivek u materiálů s povrchovou úpravou. 5. Redepozice materiálu Během analýzy GD-OES dochází ke zpětné depozici části odprášeného materiálu. Některé práce [8;9] zabývající se procesem zpětné depozice hovoří o možnosti vytvoření nových útvarů na hranicích zrn popř. energeticky slabších místech, kde původně došlo k silnému odprášení materiálu. U systému tenká vrstvasubstrát jsou takovýmto slabým místem makročástice čistého kovu, které jsou charakteristickým jevem depozičního napařovacího procesu PVD. Na obr. č. 8 je zachycen redeponovaný materiál. Obr.č. 9 potvrzuje redepozici materiálu na základě výsledku mapy rozložení prvků z energiově disperzní analýzy. K silné redepozici dochází na okraji kráteru (viz obr.č.6). Redepozice v těchto místech má při delší době analýzy za následek spojení vzorku s anodou, čímž dojde k přerušení odprašování. Z toho důvodu lze provádět analýzu po omezenou dobu, jejíž hodnota závisí na parametrech výboje a odprašovaném materiálu. 6. Interferenční jev Na interferenční jev je způsoben blízkostí energetických hladin vlnových délek některých analyzovaných prvků Tento jev ovlivňuje například přesnost při analýze tenkých vrstev tvořených nitridy titanu a zirkonu. Odstranění interferenčního jevu spočívá vhodnou volbou emisní čáry prvku popř. upravením kvantifikačního výpočtového softwaru. Závěr Z uvedených příkladů vyplývá, že přesnost analýzy GD-OES je závislá na znalosti její problematiky. Při použití správných standardů, vyloučení interferenčního jevu a potlačení kráterového jevu dosahuje tato metoda u objemových materiálů uspokojivé přesnosti. V případě materiálů s povrchovými úpravami je třeba mít při vyhodnocování hloubkových koncentračních profilů na paměti jevy týkající se především nerovnoměrnosti odprašování a redepozice materiálu. Tyto děje mohou znepřesnit jejich průběh. Z tohoto důvodu je třeba správně korigovat dosažené hodnoty průběhu chemického složení stanovené metodou GD-OES. Tento příspěvek vznikl za finančního přispění MŠMT v rámci projektu výzkumu a vývoje LN00B084. Literatura [1] POLEJ, B.: Spektrální emisní analýza v oblasti atomových optických spekter. Analytická příručka. [2] WEISS, Z.: Čs. časopis pro fyziku. 41, 1991, 161. [3] WEISS, Z., ČÍŽEK, Z.: Hutnické listy. 5, 1990, 355. [4] PAYLING, R.: Materials Forum. 18, 1994, [5] CIBULKA, V.: Využití GDOES při studiu interdifuze... Diplomová práce, [6] KŘÍŽ, A.: Vlastnosti řezných nástrojů s tenkými vrstvami TiN, ZrN. Disertační práce [7] WINCHESTER, M. R., MILLER, J. K.: J. Anal. At. Spectrom, 15, 2000, [8] WEISS, Z.: Surface and Interface Analysis. 15, 1990, 775. [9] HEYNER, R. - MARX, G.: Phys. Status Solidi. A 114, 1989, 609.
5 Obr.č. 1 Schéma spektrálního přístroje LECO GDS-750 Al Si Cr Cu Fe Mg Mn Ni Pb Sn CKD ,0 6,9 0,26 3,9 1,01 0,42 0,83 0,095 0,095 0,105 měřené 84,1 6,3 0,30 4,9 1,15 0,47 0,93 0,164 0,103 0,134 CKD ,1 8,65 0,14 2,37 1,29 0,25 0,31 0,41 0,125 0,16 měřené 84,1 9,25 0,15 2,48 1,32 0,23 0,33 0,53 0,123 0,17 CKD ,6 11,25 0,02 0,69 0,09 1,62 0,13 2,36 0,04 0,025 měřené 83,0 10,7 2 0,02 0,75 0,05 1,58 0,14 3,37 0,05 0,031 CKD ,8 13,8 5 0,00 0,075 0,07 0,07 0,02 0,01 0,00 0,00 měřené 83,4 16,11 0,00 0,073 0,06 0,07 0,02 0,09 0,01 0,01 CKD ,5 15,3 0,00 0,005 0,21 0,01 0,00 0,00 0,00 0,00 měřené 82,9 16,7 0,00 0,005 0,22 0,01 0,00 0,07 0,01 0,02 Tabulka č.1 - Hodnoty deklarované dodavatelem u standardů ČKD spolu s hodnotami, které byly naměřeny po kalibraci jinými standardy.
6 Obr. 2 Počáteční nepřesnosti průběhů hloubkových koncentračních profilů slitiny AlSi7Mg po provedení správné kalibrace přístroje. Obr. 3 Hloubkové koncentrační pásmo, kde se již neprojevovaly nestability doutnavého výboje a nestejnorodosti odprašování jednotlivých fází
7 Obr.č. 4 Nerovnoměrnosti dna kráteru po analýze šedé litiny ČSN způsobené různou odprašovací rychlostí jednotlivých prvků a strukturních fází. Obr.č. 5 Příčný výbrus vzorku v místě kráteru zachycuje, že nerovnosti dna nejsou způsobeny redepozičním procesem.
8 Obr.č. 6 Kuželové nerovnoměrnosti dna kráteru po analýze materiálu ČSN Obr.č. 7 Kráterový jev iniciovaný nerovnoměrným rozložením doutnavého výboje.
9 Obr.č. 8 Příčný výbrus redeponovaným materiálem v místě průrazu vrstvy TiN následkem vyšší rychlosti odprašování makročástice z čistého titanu. Obr.č. 9 Plošná mikroanalýza prvků Ti a Fe na dně kráteru v místě redeponovaného materiálu.
GD OES a GD MS v praktických aplikacích
GD OES a GD MS v praktických aplikacích Princip povrchových analýz Interakce materiálu s prvotním činidlem Prvotní činidlo prodělá změnu nebo vybudí reakci materiálu Detekce signálu vybuzeného materiálem
Více, Hradec nad Moravicí. Vnouček, M., Západočeská univerzita v Plzni, Univerzitní 8, Plzeň, Czech Republic
Povrchové efekty při GDOES Vnouček, M., Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň, Czech Republic Abstrakt The modern conception of materials science often meets applications of spectroscopic
VíceABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY 1 Fyzikální základy spektrálních metod Monochromatický zářivý tok 0 (W, rozměr m 2.kg.s -3 ): Absorbován ABS Propuštěn Odražen zpět r Rozptýlen s Bilance toků 0 = +
VíceEmise vyvolaná působením fotonů nebo částic
Emise vyvolaná působením fotonů nebo částic PES (fotoelektronová spektroskopie) XPS (rentgenová fotoelektronová spektroskopie), ESCA (elektronová spektroskopie pro chemickou analýzu) UPS (ultrafialová
VíceOPTICK SPEKTROMETRIE
OPTICK TICKÁ EMISNÍ SPEKTROMETRIE Optical Emission Spectrometry (OES) ATOMOVÁ EMISNÍ SPEKTROMETRIE (AES) (c) -2010 OES je založena na registrování fotonů vzniklých přechody valenčních e - z vyšších energetických
VíceVybrané spektroskopické metody
Vybrané spektroskopické metody a jejich porovnání s Ramanovou spektroskopií Předmět: Kapitoly o nanostrukturách (2012/2013) Autor: Bc. Michal Martinek Školitel: Ing. Ivan Gregora, CSc. Obsah přednášky
VíceAUTOMATICKÁ EMISNÍ SPEKTROMETRIE
AUTOMATICKÁ EMISNÍ SPEKTROMETRIE SPEKTROGRAFIE Jako budící zdroj slouží plazma elektrického výboje, kdy se výkon generátoru mění v plazmatu na teplo, ionizační a budící práci a zářivou E. V praxi se spektrografie
VíceHODNOCENÍ VLASTNOSTÍ TENKÝCH VRSTEV NITRIDU KOVU
HODNOCENÍ VLASTNOSTÍ TENKÝCH VRSTEV NITRIDU KOVU Dr. Ing. Antonín Kříž, ZČU v Plzni, Univerzitní 22, 306 14, kriz@kmm.zcu.cz ANOTACE Wear resistant metal nitride thin films are being produced by means
VíceFotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec
Fotoelektronová spektroskopie Instrumentace RNDr. Věra V Vodičkov ková,, PhD. Katedra materiálů TU Liberec Obecné schéma metody Dopad rtg záření emitovaného ze zdroje na vzorek průnik fotonů několik µm
VíceAnomální doutnavý výboj
Anomální doutnavý výboj Výboje v plynech ve vakuu Základní procesy ve výboji Odprašování dopadající kladné ionty vyrážejí z katody částice, tím dochází k úbytku hmoty katody a zmenšování rozměrů. Odprašování
VíceZáklady spektroskopických metod
Základy spektroskopických metod Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Spektroskopické metody Optické metody pro stanovení chemického složení materiálů Založeny na vzájemném působení
VíceTechniky prvkové povrchové analýzy elemental analysis
Techniky prvkové povrchové analýzy elemental analysis (Foto)elektronová spektroskopie (pro chemickou analýzu) ESCA, XPS X-ray photoelectron spectroscopy (XPS) Any technique in which the sample is bombarded
Více13. Spektroskopie základní pojmy
základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
VíceVyužití plazmových metod ve strojírenství. Metody depozice povlaků a tenkých vrstev
Využití plazmových metod ve strojírenství Metody depozice povlaků a tenkých vrstev Metody depozice povlaků Využití plazmatu pro depozice (nanášení) povlaků a tenkých vrstev je moderní a stále častěji aplikovaná
VíceDOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj
DOUTNAVÝ VÝBOJ Další technologie využívající doutnavý výboj Plazma doutnavého výboje je využíváno v technologiích depozice povlaků nebo modifikace povrchů. Jedná se zejména o : - depozici povlaků magnetronovým
VíceRentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm
Rtg. záření: Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Vznik rtg. záření: 1. Rtg. záření se spojitým spektrem vzniká při prudkém zabrzdění urychlených elektronů.
VíceVybrané technologie povrchových úprav. Metody vytváření tenkých vrstev Doc. Ing. Karel Daďourek 2008
Vybrané technologie povrchových úprav Metody vytváření tenkých vrstev Doc. Ing. Karel Daďourek 2008 Metody vytváření tenkých vrstev Vakuové metody dnes nejužívanější CVD Chemical vapour deposition PE CVD
VíceMolekulová spektroskopie 1. Chemická vazba, UV/VIS
Molekulová spektroskopie 1 Chemická vazba, UV/VIS 1 Chemická vazba Silová interakce mezi dvěma atomy. Chemické vazby jsou soudržné síly působící mezi jednotlivými atomy nebo ionty v molekulách. Chemická
VíceMetody charakterizace
Metody y strukturní analýzy Metody charakterizace nanomateriálů I Význam strukturní analýzy pro studium vlastností materiálů Experimentáln lní metody využívan vané v materiálov lovém m inženýrstv enýrství:
VíceÚvod do fyziky tenkých vrstev a povrchů. Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál
Úvod do fyziky tenkých vrstev a povrchů Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál ty i hlavní typy nepružných srážkových proces pr chodu energetických
VíceAPLIKAČNÍ MOŽNOSTI GDOS PŘI HODNOCENÍ POVRCHOVÝCH VRSTEV KOVOVÝCH MATERIÁLŮ. VÚHŽ a.s., Dobrá 240, Dobrá, ČR, E mail:
APLIKAČNÍ MOŽNOSTI GDOS PŘI HODNOENÍ POVRHOVÝH VRSTEV KOVOVÝH MATERIÁLŮ Miloš Vaníček, Karel Malaník VÚHŽ a.s., Dobrá 24, 739 51 Dobrá, ČR, E mail: dlz@vuhz.cz Abstrakt In the course of manufacturing and
Více16. Franck Hertzův experiment
16. Franck Hertzův experiment Zatímco zahřáté těleso vysílá spojité spektrum elektromagnetického záření, mají např. zahřáté páry kovů nebo plyny, v nichž probíhá elektrický výboj, spektrum čárové. V uvedených
VíceOPTICKÁ EMISNÍ SPEKTROMETRIE
OPTICKÁ EMISNÍ SPEKTROMETRIE Optical Emission Spectrometry (OES) ATOMOVÁ EMISNÍ SPEKTROMETRIE (AES) (c) -2017 OES je založena na registrování fotonů vzniklých přechody valenčních e - z vyšších energetických
VíceElektronová mikroskopie SEM, TEM, AFM
Elektronová mikroskopie SEM, TEM, AFM Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první
VíceDOUTNAVÝ VÝBOJ. 1. Vlastnosti doutnavého výboje 2. Aplikace v oboru plazmové nitridace
DOUTNAVÝ VÝBOJ 1. Vlastnosti doutnavého výboje 2. Aplikace v oboru plazmové nitridace Doutnavý výboj Připomeneme si voltampérovou charakteristiku výboje v plynech : Doutnavý výboj Připomeneme si, jaké
VíceÚvod do spektrálních metod pro analýzu léčiv
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz
VíceÚvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.
Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.
VíceVLIV IONTOVÉHO BOMBARDU NA VLASTNOSTI SYSTÉMŮ VYTVÁŘENÝCH PVD TECHNOLOGIÍ. Antonín Kříž
Abstrakt VLIV IONTOVÉHO BOMBARDU NA VLASTNOSTI SYSTÉMŮ VYTVÁŘENÝCH PVD TECHNOLOGIÍ Antonín Kříž ZČU v Plzni, Univerzitní 22, 306 14 Plzeň, e-mail: kriz@kmm.zcu.cz Influence of ion bombardment upon properties
VíceProč elektronový mikroskop?
Elektronová mikroskopie Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop,, 1 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první komerční
VíceAnalýza vrstev pomocí elektronové spektroskopie a podobných metod
1/23 Analýza vrstev pomocí elektronové a podobných metod 1. 4. 2010 2/23 Obsah 3/23 Scanning Electron Microscopy metoda analýzy textury povrchu, chemického složení a krystalové struktury[1] využívá svazek
VíceZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ
ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ (c) -2008, ACH/IM BLOKOVÉ SCHÉMA: (a) emisní metody (b) absorpční metody (c) luminiscenční metody U (b) monochromátor často umístěn před kyvetou se vzorkem. Části
VíceSPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ; (c) David MILDE,
SEKTRÁLNÍ METODY Ing. David MILDE, h.d. Katedra analytické chemie Tel.: 585634443; E-mail: david.milde@upol.cz (c) -2008 oužitá a doporučená literatura Němcová I., Čermáková L., Rychlovský.: Spektrometrické
VíceZdroje optického záření
Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon
VíceAplikace AAS ACH/APAS. David MILDE, Úvod
Aplikace AAS ACH/APAS David MILDE, 2017 Úvod AAS: v podstatě 4atomizační techniky: plamenová atomizace (FA), elektrotermická atomizace (ETA), generování těkavých hydridů (HG), určené pro stanovení As,
VíceSTEJNOSMĚRNÝ PROUD Samostatný výboj TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
STEJNOSMĚRNÝ PROUD Samostatný výboj TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Plyny jsou tvořeny elektricky neutrálními molekulami. Proto jsou za
VíceHODNOCENÍ MECHANICKÝCH VLASTNOSTÍ TENKOVRSTVÝCH SYSTÉMŮ Z GRAFU ZÁVISLOSTI MÍRY INFORMACE NA ZATÍŽENÍ
HODNOCENÍ MECHANICKÝCH VLASTNOSTÍ TENKOVRSTVÝCH SYSTÉMŮ Z GRAFU ZÁVISLOSTI MÍRY INFORMACE NA ZATÍŽENÍ ANALYSIS OF MECHANICAL PROPERTIES OF THIN FILMS SYSTEMS FROM DEPENDENCE OF KIND OF INFORMATION AND
VíceSpektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie
Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. rentgenová spektroskopická metoda k určen
VíceSPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE)
SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE) Elektromagnetické vlnění SVĚTLO Charakterizace záření Vlnová délka - (λ) : jednotky: m (obvykle nm) λ Souvisí s povahou fotonu Charakterizace záření
VíceStručný úvod do spektroskopie
Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,
VíceTenká vrstva - aplikace
Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10; s platností do r. 2016 v návaznosti na platnost norem. Zákaz šíření a modifikace těchto materiálů. Děkuji Ing. D.
VíceANALÝZA LEHKÝCH PRVKŮ N,O,H FÚZÍ V INERTNÍM PLYNU A POMOCÍ OPTICKÉ EMISNÍ SPEKTROSKOPIE. Zdeněk WEISS, Pavel NOVÁK
ANALÝZA LEHKÝCH PRVKŮ N,O,H FÚZÍ V INERTNÍM PLYNU A POMOCÍ OPTICKÉ EMISNÍ SPEKTROSKOPIE Zdeněk WEISS, Pavel NOVÁK LECO Instrumente Plzeň spol. s r.o., Plaská 66, 323 00 Plzeň, Česká republika info@leco.cz
Více4. Spektrální metody pro prvkovou analýzu léčiv optická atomová spektroskopie
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 4. Spektrální metody pro prvkovou analýzu léčiv optická atomová spektroskopie Pavel Matějka pavel.matejka@vscht.cz pavel.matejka@gmail.com
VíceZADAVATEL: Fyzikální ústav AV ČR, v. v. i. Sídlem: Na Slovance 2, Praha 8 doc. Jan Řídký, DrSc., ředitel IČ:
ZADAVATEL: Fyzikální ústav AV ČR, v. v. i. Sídlem: Na Slovance 2, 182 21 Praha 8 Jednající: doc. Jan Řídký, DrSc., ředitel IČ: 68378271 VEŘEJNÁ ZAKÁZKA: Multifunkční fotoelektronový spektrometr s rychlým
VíceElektronová mikroskopie a mikroanalýza-2
Elektronová mikroskopie a mikroanalýza-2 elektronové dělo elektronové dělo je zařízení, které produkuje elektrony uspořádané do svazku (paprsku) elektrony opustí svůj zdroj katodu- po dodání určité množství
VíceINSTRUMENTÁLNÍ METODY
INSTRUMENTÁLNÍ METODY ACH/IM David MILDE, 2014 Dělení instrumentálních metod Spektrální metody (MILDE) Separační metody (JIROVSKÝ) Elektroanalytické metody (JIROVSKÝ) Ostatní: imunochemické, radioanalytické,
VíceSPEKTROMETRIE. aneb co jsem se dozvěděla. autor: Zdeňka Baxová
SPEKTROMETRIE aneb co jsem se dozvěděla autor: Zdeňka Baxová FTIR spektrometrie analytická metoda identifikace látek (organických i anorganických) všech skupenství měříme pohlcení IČ záření (o různé vlnové
VíceANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY ZLATÝCH A STŘÍBRNÝCH KELTSKÝCH MINCÍ Z BRATISLAVSKÉHO HRADU METODOU SEM-EDX. ZPRACOVAL Martin Hložek
/ 1 ZPRACOVAL Martin Hložek TMB MCK, 2011 ZADAVATEL PhDr. Margaréta Musilová Mestský ústav ochrany pamiatok Uršulínska 9 811 01 Bratislava OBSAH Úvod Skanovací elektronová mikroskopie (SEM) Energiově-disperzní
VíceMETODY ANALÝZY POVRCHŮ
METODY ANALÝZY POVRCHŮ (c) - 2017 Povrch vzorku 3 definice IUPAC: Povrch: vnější část vzorku o nedefinované hloubce (Užívaný při diskuzích o vnějších oblastech vzorku). Fyzikální povrch: nejsvrchnější
VícePOZOROVÁNÍ SLUNCE VE SPEKTRÁLNÍCH ČARÁCH. Libor Lenža Hvězdárna Valašské Meziříčí, p. o.
POZOROVÁNÍ SLUNCE VE SPEKTRÁLNÍCH ČARÁCH Libor Lenža Hvězdárna Valašské Meziříčí, p. o. Obsah 1. Co jsou to spektrální čáry? 2. Historie a současnost (přístroje, družice aj.) 3. Význam pro sluneční fyziku
VíceMODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5
MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5 Ondřej Votava J. Heyrovský Institute of Physical Chemistry AS ČR Opakování z minula Light Amplifier by Stimulated
VíceMěření charakteristik fotocitlivých prvků
Měření charakteristik fotocitlivých prvků Úkol : 1. Určete voltampérovou charakteristiku fotoodporu při denním osvětlení a při osvětlení E = 1000 lx. 2. Určete voltampérovou charakteristiku fotodiody při
VíceObloukové svařování wolframovou elektrodou v inertním plynu WIG (TIG) - 141
Obloukové svařování wolframovou elektrodou v inertním plynu WIG (TIG) - 141 Při svařování metodou 141 hoří oblouk mezi netavící se elektrodou a základním matriálem. Ochranu elektrody i tavné lázně před
VíceREAKTIVNÍ MAGNETRONOVÉ NAPRAŠOV. Jan VALTER HVM Plasma s.r.o. www.hvm.cz
REAKTIVNÍ MAGNETRONOVÉ NAPRAŠOV OVÁNÍ Jan VALTER SCHEMA REAKTIVNÍHO NAPRAŠOV OVÁNÍ zdroj výboje katoda odprašovaný terč plasma inertní napouštění plynů reaktivní zdroj předpětí p o v l a k o v a n é s
VíceOptické metody emisní spektrofotometrie. Mgr. Jana Gottwaldová
Optické metody emisní spektrofotometrie Mgr. Jana Gottwaldová Spektrofotometrie-rozdělení Podle typu interakce elektromagnetického záření: absorpční spektrofotometrii emisní spektrofotometrii Turbidimetrii,
VíceAnalytické metody využívané ke stanovení chemického složení kovů. Ing.Viktorie Weiss, Ph.D.
Analytické metody využívané ke stanovení chemického složení kovů. Ing.Viktorie Weiss, Ph.D. Rentgenová fluorescenční spektrometrie ergiově disperzní (ED-XRF) elé spektrum je analyzováno najednou polovodičovým
VíceANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY DROBNÝCH KOVOVÝCH OZDOB Z HROBU KULTURY SE ZVONCOVÝMI POHÁRY Z HODONIC METODOU SEM-EDX
/ 1 ZPRACOVAL Mgr. Martin Hložek TMB MCK, 2011 ZADAVATEL David Humpola Ústav archeologické památkové péče v Brně Pobočka Znojmo Vídeňská 23 669 02 Znojmo OBSAH Úvod Skanovací elektronová mikroskopie (SEM)
VíceANALY TIK GMBH CHEMICKÉ ANALÝZY NA NEJVYŠŠÍ ÚROVNI MADE IN GERMANY GDA 650 / GDA150 GDOES SPEKTROMETRY S VYSOKÝM ROZLIŠENÍM PRO LABORATORNÍ APLIKACE
ANALY TIK GMBH CHEMICKÉ ANALÝZY NA NEJVYŠŠÍ ÚROVNI MADE IN GERMANY GDA 650 / GDA150 GDOES SPEKTROMETRY S VYSOKÝM ROZLIŠENÍM PRO LABORATORNÍ APLIKACE 2 PROFIL FIRMY SPECTRUMA PŘEDSTAVENÍ GDA 650 / GDA150
VíceMETODY - spektrometrické
Analýza Analýza - prvková METODY - spektrometrické atomová emisní/absorpční spektrometrie rentgenová fluorescenční analýza emise elektronů - povrchová analýza ESCA (elektronová spektroskopie pro chemickou
VíceÚloha č. 1: CD spektroskopie
Přírodovědecké fakulta Masarykovy univerzity v Brně Předmět: Jméno: Praktikum z astronomie Andrea Dobešová Obor: Astrofyzika ročník: II. semestr: IV. Název úlohy Úloha č. 1: CD spektroskopie Úvod: Koho
VíceTransfer inovácií 20/2011 2011
OBRÁBĚNÍ LASEREM KALENÉHO POVRCHU Ing. Miroslav Zetek, Ph.D. Ing. Ivana Česáková Ing. Josef Sklenička Katedra technologie obrábění Univerzitní 22, 306 14 Plzeň e-mail: mzetek@kto.zcu.cz Abstract The technology
VíceATOMOVÁ SPEKTROMETRIE
ATOMOVÁ SPEKTROMETRIE doc. Ing. David MILDE, Ph.D. tel.: 585634443 E-mail: david.milde@upol.cz (c) -017 Doporučená literatura Černohorský T., Jandera P.: Atomová spektrometrie. Univerzita Pardubice 1997.
VícePOKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE III
POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE III FOTOELEKTRICKÝ JEV OBJEV ATOMOVÉHO JÁDRA 1911 Rutherford některé radioaktivní prvky vyzařují částice α, jde o kladné částice s nábojem 2e a hmotností 4 vodíkových
VícePlazma v technologiích
Plazma v technologiích Mezi moderními strojírenskými technologiemi se stále častěji prosazují metody využívající různé formy plazmatu. Plazma je plynné prostředí skládající se z poměrně volných částic,
VíceBalmerova série. F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3
Balmerova série F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3 Grepl.F@seznam.cz Abstrakt: Metodou dělených svazků jsme určili lámavý
VíceSvafiování elektronov m paprskem
Svafiování elektronov m paprskem Svařování svazkem elektronů je proces tavného svařování, při kterém se kinetická energie rychle letících elektronů mění na tepelnou při dopadu na povrch svařovaného materiálu.
VíceFluorescence (luminiscence)
Fluorescence (luminiscence) Patří mezi luminiscenční metody fotoluminiscence. Luminiscence efekt, kdy excitované molekuly či atomy vyzařují světlo při přechodu z excitovaného do základního stavu. Podle
Vícenano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL
Inovace a rozvoj studia nanomateriálů na TUL nano.tul.cz Tyto materiály byly vytvořeny v rámci projektu ESF OP VK: Inovace a rozvoj studia nanomateriálů na Technické univerzitě v Liberci Experimentální
VíceVakuové metody přípravy tenkých vrstev
Vakuové metody přípravy tenkých vrstev Metody vytváření tenkých vrstev Vakuové metody dnes nejužívanější CVD Chemical Vapour Deposition (PE CVD Plasma Enhanced CVD nebo PA CVD Plasma Assisted CVD) PVD
VíceMetalografie. Praktické příklady z materiálových expertíz. 4. cvičení
Metalografie Praktické příklady z materiálových expertíz 4. cvičení Příprava metalografických výbrusů Odběr vzorků nesmí dojít k změně struktury (deformace, ohřev) světelný mikroskop pro dosažení požadovaných
VíceINTERAKCE IONTŮ S POVRCHY II.
Úvod do fyziky tenkých vrstev a povrchů INTERAKCE IONTŮ S POVRCHY II. Metody IBA (Ion Beam Analysis): pružný rozptyl nabitých částic (RBS), detekce odražených atomů (ERDA), metoda PIXE, Spektroskopie rozptýlených
VíceVLIV ZPŮSOBŮ OHŘEVU NA TEPLOTNÍ DEGRADACI TENKÝCH OTĚRUVZDORNÝCH PVD VRSTEV ZJIŠŤOVANÝCH POMOCÍ VYBRANÝCH METOD
23. 25.11.2010, Jihlava, Česká republika VLIV ZPŮSOBŮ OHŘEVU NA TEPLOTNÍ DEGRADACI TENKÝCH OTĚRUVZDORNÝCH PVD VRSTEV ZJIŠŤOVANÝCH POMOCÍ VYBRANÝCH METOD Ing.Petr Beneš Ph.D. Doc.Dr.Ing. Antonín Kříž Katedra
VíceÚvod. Povrchové vlastnosti jako jsou koroze, oxidace, tření, únava, abraze jsou často vylepšovány různými technologiemi povrchového inženýrství.
Laserové kalení Úvod Povrchové vlastnosti jako jsou koroze, oxidace, tření, únava, abraze jsou často vylepšovány různými technologiemi povrchového inženýrství. poslední době se začínají komerčně prosazovat
VíceCZ.1.07/1.1.30/01.0038 SPŠ
Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 3 Téma: APLIKACE TENKÝCH VRSTEV NA OBRÁBĚCÍCH NÁSTROJÍCH Lektor: Ing. Jiří Hodač Třída/y:
VíceFYZIKA VE FIRMĚ HVM PLASMA
FYZIKA VE FIRMĚ HVM PLASMA Jiří Vyskočil HVM Plasma spol.s r.o. Na Hutmance 2, 158 00 Praha 5 OBSAH HVM PLASMA spol. s r.o. zaměření a historie firmy hlavní činnost a produkty POVRCHOVÉ TECHNOLOGIE metody
VíceKoroze kovů. Koroze lat. corode = rozhlodávat
Koroze kovů Koroze lat. corode = rozhlodávat Koroze kovů Koroze kovů, plastů, silikátových materiálů Principy korozních procesů = korozní inženýrství Strojírenství Mechanická pevnost Vzhled Elektotechnika
VíceANALY TIK GMBH CHEMICKÉ ANALÝZY NA NEJVYŠŠÍ ÚROVNI MADE IN GERMANY GDA 750 / GDA 550 GDOES SPEKTROMETRY S VYSOKÝM ROZLIŠENÍM PRO LABORATORNÍ APLIKACE
ANALY TIK GMBH CHEMICKÉ ANALÝZY NA NEJVYŠŠÍ ÚROVNI MADE IN GERMANY GDA 750 / GDA 550 GDOES SPEKTROMETRY S VYSOKÝM ROZLIŠENÍM PRO LABORATORNÍ APLIKACE 2 PROFIL FIRMY SPECTRUMA PŘEDSTAVENÍ GDA 750 / GDA550
VíceU = E a - E k + IR Znamená to, že vložené napětí je vyrovnáváno
Voltametrie a polarografie Princip. Do roztoku vzorku (elektrolytu) jsou ponořeny dvě elektrody (na rozdíl od potenciometrie prochází obvodem el. proud) - je vytvořen elektrochemický článek. Na elektrody
VíceJednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU SELENU METODOU ICP-OES
Strana 1 STANOVENÍ OBSAHU SELENU METODOU ICP-OES 1 Rozsah a účel Postup specifikuje podmínky pro stanovení celkového obsahu selenu v minerálních krmivech a premixech metodou optické emisní spektrometrie
VíceATOMOVÁ SPEKTROMETRIE (v UV a Vis oblasti spektra)
ATOMOVÁ SPEKTROMETRIE (v UV a Vis oblasti spektra) Atomová spektrometrie 1. OES (AES) 2. AAS 3. AFS Atomová spektra Na s elektronovou konfigurací [Ne] 3s 1 (1 val. e - ) Absorpce fotonu je spojena s excitací
VícePRASKÁNÍ VRTÁKŮ PO TEPELNÉM ZPRACOVÁNÍ Antonín Kříž
Vakuové tepelné zpracování a tepelné zpracování nástrojů 22. - 23.11. 2011 - Jihlava PRASKÁNÍ VRTÁKŮ PO TEPELNÉM ZPRACOVÁNÍ Antonín Kříž Západočeská univerzita v Plzni Fakulta strojní Katedra materiálu
VíceHmotnostní spektrometrie
Hmotnostní spektrometrie Princip: 1. Ze vzorku jsou tvořeny ionty na úrovni molekul, nebo jejich zlomků (fragmentů), nebo až volných atomů dodáváním energie, např. uvolnění atomů ze vzorku nebo přímo rozštěpení
VíceMěření šířky zakázaného pásu polovodičů
Měření šířky zakázaného pásu polovodičů Úkol : 1. Určete šířku zakázaného pásu ze spektrální citlivosti fotorezistoru pro šterbinu 1,5 mm. Na monochromátoru nastavujte vlnovou délku od 200 nm po 50 nm
VíceBezpečnostní inženýrství. - Detektory požárů a senzory plynů -
Bezpečnostní inženýrství - Detektory požárů a senzory plynů - Úvod 2 Včasná detekce požáru nebo úniku nebezpečných látek = důležitá součást bezpečnostního systému Základní požadavky včasná detekce omezení
VíceKOMPLEXY EUROPIA(III) LUMINISCENČNÍ VLASTNOSTI A VYUŽITÍ V ANALYTICKÉ CHEMII. Pavla Pekárková
KOMPLEXY EUROPIA(III) LUMINISCENČNÍ VLASTNOSTI A VYUŽITÍ V ANALYTICKÉ CHEMII Pavla Pekárková Katedra analytické chemie, Přírodovědecká fakulta, Masarykova univerzita, Kotlářská 2, 611 37 Brno E-mail: 78145@mail.muni.cz
VíceNauka o materiálu. Přednáška č.2 Poruchy krystalické mřížky
Nauka o materiálu Přednáška č.2 Poruchy krystalické mřížky Opakování z minula Materiál Degradační procesy Vnitřní stavba atomy, vazby Krystalické, amorfní, semikrystalické Vlastnosti materiálů chemické,
VíceÚvod do koroze. (kapitola, která bude společná všem korozním laboratorním pracím a kterou studenti musí znát bez ohledu na to, jakou práci dělají)
Úvod do koroze (kapitola, která bude společná všem korozním laboratorním pracím a kterou studenti musí znát bez ohledu na to, jakou práci dělají) Koroze je proces degradace kovu nebo slitiny kovů působením
VíceSpeciální spektrometrické metody. Zpracování signálu ve spektroskopii
Speciální spektrometrické metody Zpracování signálu ve spektroskopii detekce slabých signálů synchronní detekce (Lock-in) čítaní fotonů měření časového průběhu signálů metoda fázového posuvu časově korelované
VíceRentgenfluorescenční analýza, pomocník nejen při studiu památek
Rentgenfluorescenční analýza, pomocník nejen při studiu památek Ondřej Vrba (vrba.ondrej@gmail.com) Do Hoang Diep - Danka(dohodda@gmail.com) Verča Chadimová (verusyk@email.cz) Metoda využívající RTG záření
VíceTechnika vysokých napětí. Elektrické výboje v elektroenergetice
Elektrické výboje v elektroenergetice Korónový výboj V homogenním elektrickém poli dochází k celkovému přeskoku mezi elektrodami najednou U nehomogenních uspořádání dochází k optickým a akustickým projevům
VíceFLUORIMETRICKÉ STANOVENÍ FLUORESCEINU
FLUORIMETRICKÉ STANOVENÍ FLUORESCEINU návod vznikl jako součást bakalářské práce Martiny Vidrmanové Fluorimetrie s využitím spektrofotometru SpectroVis Plus firmy Vernier (http://is.muni.cz/th/268973/prif_b/bakalarska_prace.pdf)
VíceMETALOGRAFIE II. Oceli a litiny
METALOGRAFIE II Oceli a litiny Slitiny železa, uhlíku a popřípadě dalších prvků se nazývají oceli a litiny. Oceli jsou slitiny železa obsahující do 2,14 hm. % uhlíku, litiny s obsahem uhlíku nad 2,14 hm.
VícePlazmové metody. Základní vlastnosti a parametry plazmatu
Plazmové metody Základní vlastnosti a parametry plazmatu Atom je základní částice běžné hmoty. Částice, kterou již chemickými prostředky dále nelze dělit a která definuje vlastnosti daného chemického prvku.
VíceMetody analýzy povrchu
Metody analýzy povrchu Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Povrch pevné látky: Poslední monoatomární vrstva + absorbovaná monovrstva Ovlivňuje fyzikální vlastnosti (ukončení
VíceObrábění slitiny AlSi1Mg0,5Mn nástroji s progresivními tenkými vrstvami
Obrábění slitiny AlSi1Mg0,5Mn nástroji s progresivními tenkými vrstvami Antonín Kříž, Miroslav Zetek, Jan Matějka, Josef Formánek, Martina Sosnová, Jiří Hájek, Milan Vnouček Příspěvek vznikl na základě
VícePrincipy chemických snímačů
Principy chemických snímačů Název školy: SPŠ Ústí nad Labem, středisko Resslova Autor: Ing. Pavel Votrubec Název: VY_32_INOVACE_05_AUT_99_principy_chemickych_snimacu.pptx Téma: Principy chemických snímačů
VíceOptoelektronika. elektro-optické převodníky - LED, laserové diody, LCD. Elektronické součástky pro FAV (KET/ESCA)
Optoelektronika elektro-optické převodníky - LED, laserové diody, LCD Elektro-optické převodníky žárovka - nejzákladnější EO převodník nevhodné pro optiku široké spektrum vlnových délek vhodnost pro EO
VíceCharakteristika a mrtvá doba Geiger-Müllerova počítače
Charakteristika a mrtvá doba Geiger-Müllerova počítače Úkol : 1. Proměřte charakteristiku Geiger-Müllerova počítače. K jednotlivým naměřeným hodnotám určete střední kvadratickou chybu a vyznačte ji do
VíceAnalýza emisních čar ve výboji v napařovacím stroji
Analýza emisních čar ve výboji v napařovacím stroji Pavel Oupický, Centrum pro optoelektroniku Viktor Sember, Oddělení vysokoteplotního plazmatu Ústav fyziky plazmatu AV ČR, v.v.i. Abstrakt V článku v
Více