Vybrané spektroskopické metody
|
|
- Jozef Urban
- před 8 lety
- Počet zobrazení:
Transkript
1 Vybrané spektroskopické metody a jejich porovnání s Ramanovou spektroskopií Předmět: Kapitoly o nanostrukturách (2012/2013) Autor: Bc. Michal Martinek Školitel: Ing. Ivan Gregora, CSc.
2 Obsah přednášky Úvod do problematiky Absorpční, emisní a rozptylové metody IR spektroskopie UV-VIS spektroskopie Rentgenofluorescenční spektroskopie Fotoelektronová spektroskopie Ramanova spektroskopie
3 Úvod do problematiky Spektroskopie analytická metoda využívající fyzikálních polí pro interakci se vzorkem, za účelem zjištění jeho chemického složení. První spektrometr 1860 (Bunsen, Kirchhoff) Dělení podle interagujícího fyzikálního pole: 1) optické spektroskopie - využití elektromagnetického pole 2) částicové spektroskopie - využití vlnových vlastností částic (např.: e -, I ±n,n)
4 Úvod do problematiky Dva předpoklady pro spektroskopii: 1) Částice (molekuly, atomy) se nacházejí jen v určitých kvantových hladinách. - hladiny odpovídají elektronovým stavům atomu, rotačně-vibračním stavům molekul, či kolektivním kmitům kryst. mříže u pevných látek - Tato skutečnost je pro látky charakteristická! 2) Energie interagujícího fyzikálního pole je kvantována
5 Rozdělení optických spektroskopií Absorpční metody charakteristická vlnová délka interagujícího záření je vzorkem pohlcena. Odražené případně transmitované záření je o tuto vlnovou délku ochuzeno. Emisní metody při přechodu vzorku z excitovaného do nižšího energetického stavu, dojde k emisi záření. Jeho energie dána energetickým rozdílem kvantových stavů vzorku. Rozptylové metody využití nepružného rozptylu záření ve vzorku. Rozptýlené záření má změněnou energii. Změna této energie odpovídá rozdílu energetických hladin v molekulách či pevných látkách.
6 Absorpční metody IR a FTIR spektroskopie Princip: Absorpce charakteristických vlnových délek IR spektra vzorkem změny rotačně-vibračních stavů molekuly. IR oblast spektra μm záření méně energetické nedochází k elektronové excitaci. Výstup: závislost intenzity (reflexe, transmitance) na vlnové délce. Aktivní módy v IR jsou u látek kde dochází ke změně dipólového momentu. Komplementární metoda k Ramanově spektroskopii.
7 Absorpční metody IR a FTIR spektroskopie Rozšíření metody: IR spektrometry s Fourierovou transformací (FTIR), využití interferometrie lepší rozlišitelnost spektra. Využití: Analýza molekul a pevných látek. Schéma FTIR spektroskopie
8 Absorpční metody UV-VIS spektroskopie Princip: Absorbce UV viditelného světla vzorkem. UV-VIS oblast spektra typicky nm záření oproti IR více energické dochází k excitaci valenčních elektronů. Aktivní v UV spektroskopii jsou především látky obsahující násobné vazby, či nevazebné elektrony. V případě využití viditelného světla (VIS) jsou spektroskopicky aktivní barevné látky.
9 Absorpční metody UV-VIS spektroskopie Využití: Analýza iontů přechodových kovů a organických látek obsahující násobné vazby. Kvalitativní analýza poloha maxima absorbance v závislosti na vlnové délce. Kvantitativní analýza nutná kalibrační křivka. Schéma UV-VIS spektroskopie
10 Emisní metody Rentgenofluorescenční spektroskopie Princip: Buzení vnějším RTG zářením vyražení elektronu z vnitřní hladiny zaplňování vakance elektronem z vyšších hladin vyzáření přebytku energie ve formě charakteristického RTG záření. Buzení rentgenka, radioizotopy. Energie emitovaného záření odpovídá rozdílu energetických hladin elektronů. Lepší detekovatelnost těžších prvků. Princip dějů při rentgenové fluorescenci
11 Emisní metody Rentgenofluorescenční spektroskopie Metody vyhodnocení: Využití: Vlnově dispersní analýza přesnější, trvá déle Energiově dispersní analýza méně přesná, rychlejší Analýza kovových a nekovových prvků. Schéma rentgenofluorescenční spektroskopie
12 Emisní metody Fotoelektronová spektroskopie Princip: Využití fotoelektrického jevu. K ionizaci dojde, překročí-li energie interagujícího záření výstupní práci elektronu (W). E kin. el. = h. υ + W Buzení: RTG, UV, nebo i urychlené elektrony. Výstup: fotoelektronové spektrum rozdělení kinetické energie elektronů charakteristické pro každý prvek. Přítomnost chemických vazeb v molekulách a pevných posuvy ve fotoelektronovém spektru určení stavu atomů.
13 Emisní metody Fotoelektronová spektroskopie Velice moderní progresivní metoda studia materiálů Využití pro studium: Polymerů Korozních procesů Polovodičů Modifikací povrchů Schéma fotoelektronové spektroskopie
14 Rozptylové metody Ramanova spektroskopie Princip: Nepružný rozptyl monochromatického záření ve vzorku detekce rozptýleného záření posunuté charakteristické vlnové délky, typické pro danou molekulu, či pevnou látku. Stokesův posuv rozptýlené záření je energeticky chudší oproti dopadajícímu: E= h.υ Ω anti-stokesův posuv rozptýlené záření je energeticky bohatší oproti dopadajícímu: E= h.υ + Ω kde Ω je charakteristický rozdíl.
15 Rozptylové metody Ramanova spektroskopie Zdroj: kontinuálně pracující laser výhodou dobrá fokusace Detekce Ramanova rozptylu: Nízká intenzita Ramanova rozptylu citlivý detekční systém - Použití Michelsonova interferometru. V Ramanově spektroskopii jsou aktivní vibrační módy molekul, modulující elektrickou polarizovatelnost komplementární metoda k IR spektroskopii.
16 Rozptylové metody Ramanova spektroskopie Využití a modifikace: Analýza molekul a pevných látek Kombinace s mikroskopy lokální analýza, možnost tvorby map chemického složení. Kombinace s FTIR spektroskopií komplementace Kombinace s AFM či SNOM modifikace Ramanovy spektroskopie využívající vybuzené povrchové plasmony k zesílení signálu metody TERS a SERS nanospektroskopie.
17 Rozptylové metody Ramanova spektroskopie Schéma Ramanova spektrometru s Michelsonovým interferometrem. Typický výstup v Ramanově spektroskopii Ramanovo spektrum síry.
18 Rama Děkuji za pozornost! Prosím o dotazy
Metody charakterizace nanomaterálů I
Vybrané metody spektráln lní analýzy Metody charakterizace nanomaterálů I RNDr. Věra Vodičková, PhD. Molekulová spektroskopie atomy a molekuly mohou měnit svůj energetický stav přijetím nebo vyzářením
Emise vyvolaná působením fotonů nebo částic
Emise vyvolaná působením fotonů nebo částic PES (fotoelektronová spektroskopie) XPS (rentgenová fotoelektronová spektroskopie), ESCA (elektronová spektroskopie pro chemickou analýzu) UPS (ultrafialová
13. Spektroskopie základní pojmy
základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vybrané metody spektráln. lní analýzy. Metody charakterizace nanomaterálů I
Vybrané metody spektráln lní analýzy Metody charakterizace nanomaterálů I Spektroskopické metody: atomové vs molekulové atomy a molekuly mohou měnit svůj energetický stav přijetím nebo vyzářením pouze
Úvod do spektrálních metod pro analýzu léčiv
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz
Molekulová spektroskopie 1. Chemická vazba, UV/VIS
Molekulová spektroskopie 1 Chemická vazba, UV/VIS 1 Chemická vazba Silová interakce mezi dvěma atomy. Chemické vazby jsou soudržné síly působící mezi jednotlivými atomy nebo ionty v molekulách. Chemická
Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm
Rtg. záření: Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Vznik rtg. záření: 1. Rtg. záření se spojitým spektrem vzniká při prudkém zabrzdění urychlených elektronů.
SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ; (c) David MILDE,
SEKTRÁLNÍ METODY Ing. David MILDE, h.d. Katedra analytické chemie Tel.: 585634443; E-mail: david.milde@upol.cz (c) -2008 oužitá a doporučená literatura Němcová I., Čermáková L., Rychlovský.: Spektrometrické
- Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl. - fluorescence - fosforescence
ROZPTYLOVÉ a EMISNÍ metody - Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl - fluorescence - fosforescence Ramanova spektroskopie Každá čára Ramanova spektra je svými vlastnostmi závislá
INSTRUMENTÁLNÍ METODY
INSTRUMENTÁLNÍ METODY ACH/IM David MILDE, 2014 Dělení instrumentálních metod Spektrální metody (MILDE) Separační metody (JIROVSKÝ) Elektroanalytické metody (JIROVSKÝ) Ostatní: imunochemické, radioanalytické,
METODY ANALÝZY POVRCHŮ
METODY ANALÝZY POVRCHŮ (c) - 2017 Povrch vzorku 3 definice IUPAC: Povrch: vnější část vzorku o nedefinované hloubce (Užívaný při diskuzích o vnějších oblastech vzorku). Fyzikální povrch: nejsvrchnější
VIBRAČNÍ SPEKTROMETRIE
VIBRAČNÍ SPEKTROMETRIE (c) -2012 RAMANOVA SPEKTROMETRIE 1 PRINCIP METODY Měří se rozptýlené záření, které vzniká interakcí monochromatického záření z viditelné oblasti s molekulami vzorku za současné změny
Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec
Fotoelektronová spektroskopie Instrumentace RNDr. Věra V Vodičkov ková,, PhD. Katedra materiálů TU Liberec Obecné schéma metody Dopad rtg záření emitovaného ze zdroje na vzorek průnik fotonů několik µm
SPEKTROMETRIE. aneb co jsem se dozvěděla. autor: Zdeňka Baxová
SPEKTROMETRIE aneb co jsem se dozvěděla autor: Zdeňka Baxová FTIR spektrometrie analytická metoda identifikace látek (organických i anorganických) všech skupenství měříme pohlcení IČ záření (o různé vlnové
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY 1 Fyzikální základy spektrálních metod Monochromatický zářivý tok 0 (W, rozměr m 2.kg.s -3 ): Absorbován ABS Propuštěn Odražen zpět r Rozptýlen s Bilance toků 0 = +
Využití UV/VIS a IR spektrometrie v analýze potravin
Využití UV/VIS a IR spektrometrie v analýze potravin Chemické laboratorní metody v analýze potravin MVDr. Zuzana Procházková, Ph.D. MVDr. Michaela Králová, Ph.D. Spektrometrie: základy Interakce záření
Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.
Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.
Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie
Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. rentgenová spektroskopická metoda k určen
nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL
Inovace a rozvoj studia nanomateriálů na TUL nano.tul.cz Tyto materiály byly vytvořeny v rámci projektu ESF OP VK: Inovace a rozvoj studia nanomateriálů na Technické univerzitě v Liberci Experimentální
Optické spektroskopie 1 LS 2014/15
Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)
Stručný úvod do spektroskopie
Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,
Spektroskopické metody. převážně ve viditelné, ultrafialové a blízké infračervené oblasti
Spektroskopické metody převážně ve viditelné, ultrafialové a blízké infračervené oblasti Elektromagnetické záření Elektromagnetické záření je postupné vlnění elektromagnetického pole složeného z kombinace
Neprobíhá-li v soustavě za daných vnějších podmínek žádný samovolný děj spojený s výměnou látek nebo energie, je soustava v rovnovážném stavu.
Rovnovážné stavy Rovnovážné stavy Neprobíhá-li v soustavě za daných vnějších podmínek žádný samovolný děj spojený s výměnou látek nebo energie, je soustava v rovnovážném stavu. Fázová rovnováha je-li soustava
Metody analýzy povrchu
Metody analýzy povrchu Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Povrch pevné látky: Poslední monoatomární vrstva + absorbovaná monovrstva Ovlivňuje fyzikální vlastnosti (ukončení
SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK
SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE) Ivona Trejbalová, Petr Šmejkal Elektromagnetické vlnění SVĚTLO Charakterizace záření Vlnová délka - (λ) : jednotky: m (obvykle nm) λ Souvisí s povahou
Metody analýzy povrchu
Metody analýzy povrchu Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. 2 Povrch pevné látky: Poslední monoatomární vrstva + absorbovaná monovrstva Ovlivňuje fyzikální vlastnosti (ukončení
10A1_IR spektroskopie
C6200-Biochemické metody 10A1_IR spektroskopie Petr Zbořil IR spektroskopie Excitace vibračních a rotačních přechodů Valenční vibrace n Deformační vibrace d IR spektroskopie N atomů = 3N stupňů volnosti
Přednáška IX: Elektronová spektroskopie II.
Přednáška IX: Elektronová spektroskopie II. 1 Försterův resonanční přenos energie Pravděpodobnost (rychlost) přenosu je určená jako: k ret 1 = τ 0 D R r 0 6 0 τ D R 0 r Doba života donoru v excitovaném
SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE)
SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE) Elektromagnetické vlnění SVĚTLO Charakterizace záření Vlnová délka - (λ) : jednotky: m (obvykle nm) λ Souvisí s povahou fotonu Charakterizace záření
METODY - spektrometrické
Analýza Analýza - prvková METODY - spektrometrické atomová emisní/absorpční spektrometrie rentgenová fluorescenční analýza emise elektronů - povrchová analýza ESCA (elektronová spektroskopie pro chemickou
Pokročilé cvičení z fyzikální chemie KFC/POK2 Vibrační spektroskopie
Pokročilé cvičení z fyzikální chemie KFC/POK2 Vibrační spektroskopie Vibrace molekul mohou být měřeny buď pomocí absorpce infračerveného záření, nebo pomocí neelastického rozptylu záření, tzn. Ramanova
Základy spektroskopických metod
Základy spektroskopických metod Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Spektroskopické metody Optické metody pro stanovení chemického složení materiálů Založeny na vzájemném působení
Barevné principy absorpce a fluorescence
Barevné principy absorpce a fluorescence Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr 27.9.2007 2 1 Světlo je elektromagnetické vlnění Skládá se z elektrické složky a magnetické
PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka.
PSK1-14 Název školy: Autor: Anotace: Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Optické zdroje a detektory Vzdělávací oblast: Informační a komunikační technologie Předmět:
Diskutujte, jak široký bude pás spojený s fosforescencí versus fluorescencí. Udělejte odhad v cm -1.
S použitím modelu volného elektronu (=částice v krabici) spočtěte vlnovou délku a vlnočet nejdlouhovlnějšího elektronového přechodu u molekuly dekapentaenu a oktatetraenu. Diskutujte polohu absorpčního
Teorie Molekulových Orbitalů (MO)
Teorie Molekulových Orbitalů (MO) Kombinace atomových orbitalů na všech atomech v molekule Vhodná symetrie Vhodná (podobná) energie Z n AO vytvoříme n MO Pro začátek dvouatomové molekuly: H 2, F 2, CO,...
Lasery. Biofyzikální ústav LF MU. Projekt FRVŠ 911/2013
Lasery Biofyzikální ústav LF MU Elektromagnetické spektrum http://cs.wikipedia.org/wiki/soubor:elmgspektrum.png http://cs.wikipedia.org/wiki/ Soubor:Spectre.svg Bezkontaktní termografie 2 Součásti laseru
FLUORIMETRICKÉ STANOVENÍ FLUORESCEINU
FLUORIMETRICKÉ STANOVENÍ FLUORESCEINU návod vznikl jako součást bakalářské práce Martiny Vidrmanové Fluorimetrie s využitím spektrofotometru SpectroVis Plus firmy Vernier (http://is.muni.cz/th/268973/prif_b/bakalarska_prace.pdf)
Viková, M. : ZÁŘENÍ II. Martina Viková. LCAM DTM FT TU Liberec, (hranol, mřížka) štěrbina. Přednášky z : Textilní fyzika
Záření II Martina Viková LCAM DTM FT TU Liberec, martina.vikova@vslib.cz kolimátor dalekohled štěrbina (hranol, mřížka) SPEKTRA LÁTEK L I Zářící zdroje vysílají záření závislé na jejich chemickém složení
Barevné principy absorpce a fluorescence
Barevné principy absorpce a fluorescence Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr Světlo je elektromagnetické vlnění Skládá se z elektrické složky a magnetické složky, které
Fyzika IV Dynamika jader v molekulách
Dynamika jader v molekulách vibrace rotace Dynamika jader v molekulách rotační energetické hladiny (dvouatomová molekula) moment setrvačnosti kolem osy procházející těžištěm osa těžiště m2 m1 r2 r1 R moment
Základy NIR spektrometrie a její praktické využití
Nicolet CZ s.r.o. The world leader in serving science Základy NIR spektrometrie a její praktické využití NIR praktická metoda molekulové spektroskopie, nahrazující pracnější, časově náročnější a dražší
ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ
ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ (c) -2008, ACH/IM BLOKOVÉ SCHÉMA: (a) emisní metody (b) absorpční metody (c) luminiscenční metody U (b) monochromátor často umístěn před kyvetou se vzorkem. Části
Born-Oppenheimerova aproximace
Born-Oppenheimerova aproximace Oddělení elektronického a jaderného pohybu Jádra 2000 x těžší než elektrony elektrony kvantová chemie, popis systému (do 100 atomů) na základě vlastností elektronů (jádra
INTERAKCE IONTŮ S POVRCHY II.
Úvod do fyziky tenkých vrstev a povrchů INTERAKCE IONTŮ S POVRCHY II. Metody IBA (Ion Beam Analysis): pružný rozptyl nabitých částic (RBS), detekce odražených atomů (ERDA), metoda PIXE, Spektroskopie rozptýlených
Ramanova spektroskopie
Ramanova spektroskopie Připomentuní elmag. záření Princip Neelastický rozptyl monochromatického záření Ramanův rozptyl je jev vznikající při interakci mezi fotony dopadajícího světla s atomy, kdy se předává
Elektronová mikroanalýz Instrumentace. Metody charakterizace nanomateriálů II
Elektronová mikroanalýz ýza 1 Instrumentace Metody charakterizace nanomateriálů II RNDr. Věra V Vodičkov ková,, PhD. Elektronová mikroanalýza relativně nedestruktivní rentgenová spektroskopická metoda
Spektrometrické metody. Reflexní a fotoakustická spektroskopie
Spektrometrické metody Reflexní a fotoakustická spektroskopie odraz elektromagnetického záření - souvislost absorpce a reflexe Kubelka-Munk funkce fotoakustická spektroskopie Měření odrazivosti elmg záření
Identifikace barviv pomocí Ramanovy spektrometrie
Identifikace barviv pomocí Ramanovy spektrometrie V kriminalistických laboratořích se provádí technická expertíza písemností, která se mimo jiné zabývá zkoumáním použitých psacích prostředků: tiskových
Spektroskopie v UV-VIS oblasti. UV-VIS spektroskopie. Roztok KMnO 4. pracuje nejčastěji v oblasti 200-800 nm
Spektroskopie v UV-VIS oblasti UV-VIS spektroskopie pracuje nejčastěji v oblasti 2-8 nm lze měřit i < 2 nm či > 8 nm UV VIS IR Ultra Violet VISible Infra Red Roztok KMnO 4 roztok KMnO 4 je červenofialový
Fluorescence (luminiscence)
Fluorescence (luminiscence) Patří mezi luminiscenční metody fotoluminiscence. Luminiscence efekt, kdy excitované molekuly či atomy vyzařují světlo při přechodu z excitovaného do základního stavu. Podle
Elektronová mikroskopie
Elektronová mikroskopie Princip elektronové mikroskopie Optické přístroje podobně jako světelné mikroskopy. Místo světelného svazku používají elektrickým polem urychlené elektrony. Místo skleněných čoček
3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické).
PŘEDMĚTY KE STÁTNÍM ZÁVĚREČNÝM ZKOUŠKÁM V BAKALÁŘSKÉM STUDIU SP: CHEMIE A TECHNOLOGIE MATERIÁLŮ SO: MATERIÁLOVÉ INŽENÝRSTVÍ POVINNÝ PŘEDMĚT: NAUKA O MATERIÁLECH Ing. Alena Macháčková, CSc. 1. Souvislost
Oblasti průzkumu kovů
Průzkum kovů Oblasti průzkumu kovů Identifikace kovů, složení slitin. Studium struktury kovu-technologie výroby, defektoskopie. Průzkum aktuálního stavu kovu, typu a stupně koroze. Průzkumy předchozích
Základy spektroskopie a její využití v astronomii
Ing. Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Základy spektroskopie a její využití v astronomii Hvězdárna Valašské Meziříčí, p. o. Krajská hvezdáreň v Žiline Světlo x záření Jak vypadá spektrum?
Techniky prvkové povrchové analýzy elemental analysis
Techniky prvkové povrchové analýzy elemental analysis (Foto)elektronová spektroskopie (pro chemickou analýzu) ESCA, XPS X-ray photoelectron spectroscopy (XPS) Any technique in which the sample is bombarded
Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření
Elektromagnetické záření lineárně polarizované záření Cirkulárně polarizované záření Levotočivé Pravotočivé 1 Foton Jakékoli elektromagnetické vlnění je kvantováno na fotony, charakterizované: Vlnovou
Metody nelineární optiky v Ramanově spektroskopii
Metody nelineární optiky v Ramanově spektroskopii Využití optických nelinearit umožňuje přejít od tradičního studia rozptylu světla na fluktuacích, teplotních elementárních excitacích, ke studiu rozptylu
Základy fyzikálněchemických
Základy fyzikálněchemických metod Fyzikálně-chemické metody optické metody elektrochemické metody separační metody kalorimetrické metody radiochemické metody ostatní metody Optické metody Oko je citlivé
Luminiscence. Luminiscence. Fluorescence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) chemicky (chemiluminiscence)
Luminiscence Luminiscence emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence chemicky (chemiluminiscence) teplem (termoluminiscence) zvukem (sonoluminiscence)
Luminiscence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence. chemicky (chemiluminiscence)
Luminiscence Luminiscence emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence chemicky (chemiluminiscence) teplem (termoluminiscence) zvukem (sonoluminiscence)
16. Franck Hertzův experiment
16. Franck Hertzův experiment Zatímco zahřáté těleso vysílá spojité spektrum elektromagnetického záření, mají např. zahřáté páry kovů nebo plyny, v nichž probíhá elektrický výboj, spektrum čárové. V uvedených
Zdroje optického záření
Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon
4. Spektrální metody pro prvkovou analýzu léčiv optická atomová spektroskopie
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 4. Spektrální metody pro prvkovou analýzu léčiv optická atomová spektroskopie Pavel Matějka pavel.matejka@vscht.cz pavel.matejka@gmail.com
Spektroskopie Augerových elektronů AES. KINETICKÁ ENERGIE AUGEROVÝCH e - NEZÁVISÍ NA ENERGII PRIMÁRNÍHO ZDROJE
Spektroskopie Augerových elektronů AES KINETICKÁ ENERGIE AUGEROVÝCH e - NEZÁVISÍ NA ENERGII PRIMÁRNÍHO ZDROJE Spektroskopie Augerových elektronů AES Jev Augerových elektronů objeven 1923 - Lise Meitner
Luminiscenční spektroskopické metody
Luminiscenční spektroskopické metody Luminiscence zahrnuje jevy, kdy látka l odpovídá na dopad elektromagnetického zářenz ení nebo elementárn rních částic emisí viditelného světla v množstv ství větším,
KOMPLEXY EUROPIA(III) LUMINISCENČNÍ VLASTNOSTI A VYUŽITÍ V ANALYTICKÉ CHEMII. Pavla Pekárková
KOMPLEXY EUROPIA(III) LUMINISCENČNÍ VLASTNOSTI A VYUŽITÍ V ANALYTICKÉ CHEMII Pavla Pekárková Katedra analytické chemie, Přírodovědecká fakulta, Masarykova univerzita, Kotlářská 2, 611 37 Brno E-mail: 78145@mail.muni.cz
Úvod do fyziky tenkých vrstev a povrchů. Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál
Úvod do fyziky tenkých vrstev a povrchů Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál ty i hlavní typy nepružných srážkových proces pr chodu energetických
Spektroskopické metody. Ramanova spektroskopie
Spektroskopické metody Ramanova spektroskopie p Objev Ramanova jevu Sir Chandrasekhara ase a a Venkata Raman a spolu s K.S. Krisnanem v roce 1928 v Kalkatě v Indii a nezávisle také v roce 1928 G. Landsberg
Kapitoly z fyzikální chemie KFC/KFCH. VII. Spektroskopie a fotochemie
Kapitoly z fyzikální chemie KFC/KFCH VII. Spektroskopie a fotochemie Karel Berka Univerzita Palackého v Olomouci Katedra Fyzikální chemie karel.berka@upol.cz Spektroskopie Analýza světla Excitované Absorbované
Elektronová a absorpční spektroskopie, Vibrační spektroskopie (absorpční a Ramanova rozptylu)
Elektronová a absorpční spektroskopie, Vibrační spektroskopie (absorpční a Ramanova rozptylu) Průchod optického záření absorbujícím prostředím V dipólové aproximaci platí Einsteinův vztah pro pravděpodobnost
Techniky mikroskopie povrchů
Techniky mikroskopie povrchů Elektronové mikroskopie Urychlené elektrony - šíření ve vakuu, ovlivnění dráhy elektrostatickým nebo elektromagnetickým polem Nepřímé pozorování elektronového paprsku TEM transmisní
IDENTIFIKACE LÉČIVA V TABLETÁCH POMOCÍ RAMANOVY SPEKTROMETRIE
IDENTIFIKACE LÉČIVA V TABLETÁCH POMOCÍ RAMANOVY SPEKTROMETRIE Úvod Ramanova spektrometrie je metodou vibrační molekulové spektrometrie. Za zakladatele této metody je považován indický fyzik Čandrašékhara
FOTOAKUSTIKA. Vítězslav Otruba
FOTOAKUSTIKA Vítězslav Otruba 2010 prof. Otruba 2 The spectrophone 1881 A.G. Bell návrh a Spektrofonu (spectrophone) pro účely posouzení absorpčního spektra subjektů v těch částech, které jsou neviditelné.
IDENTIFIKACE NEZNÁMÉ ORGANICKÉ LÁTKY POMOCÍ INFRAČERVENÉ SPEKTROMETRIE
Úvod Infračervená spektrometrie (IR) je analytická technika určená především k identifikaci a strukturní charakterizaci organických sloučenin a anorganických látek. Tato nedestruktivní analytická technika
Struktura atomů a molekul
Struktura atomů a molekul Obrazová příloha Michal Otyepka tento text byl vysázen systémem L A TEX2 ε ii Úvod Dokument obsahuje všechny obrázky tak, jak jsou uvedeny ve druhém vydání skript Struktura atomů
Využití Ramanovy spektroskopie pro identifikaci inkoustů na českých bankovkách a jejich padělcích
Využití Ramanovy spektroskopie pro identifikaci inkoustů na českých bankovkách a jejich padělcích Using of Raman spectroscopy for inks identification on Czech money and their falsifications Pavel Valášek
ATOMOVÁ SPEKTROMETRIE
ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.
Analýza vrstev pomocí elektronové spektroskopie a podobných metod
1/23 Analýza vrstev pomocí elektronové a podobných metod 1. 4. 2010 2/23 Obsah 3/23 Scanning Electron Microscopy metoda analýzy textury povrchu, chemického složení a krystalové struktury[1] využívá svazek
HMOTNOSTNÍ SPEKTROMETRIE - kvalitativní i kvantitativní detekce v GC a LC - pyrolýzní hmotnostní spektrometrie - analýza polutantů v životním
HMOTNOSTNÍ SPEKTROMETRIE - kvalitativní i kvantitativní detekce v GC a LC - pyrolýzní hmotnostní spektrometrie - analýza polutantů v životním prostředí - farmakokinetické studie - kvantifikace proteinů
Absorpční fotometrie
Absorpční fotometrie - v ultrafialové (UV) a viditelné (VIS) oblasti přechody mezi elektronovými stavy +... - v infračervené (IČ) oblasti přechody mezi vibračními stavy +... - v mikrovlnné oblasti přechody
10/21/2013. K. Záruba. Chování a vlastnosti nanočástic ovlivňuje. velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita
Chování a vlastnosti nanočástic ovlivňuje velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita K. Záruba Optická mikroskopie Elektronová mikroskopie (SEM, TEM) Fotoelektronová
Moderní nástroje pro zobrazování biologicky významných molekul pro zajištění zdraví. René Kizek
Moderní nástroje pro zobrazování biologicky významných molekul pro zajištění zdraví René Kizek 12.04.2013 Fluorescence je fyzikálně chemický děj, který je typem luminiscence. Luminiscence se dále dělí
Plazmové metody. Základní vlastnosti a parametry plazmatu
Plazmové metody Základní vlastnosti a parametry plazmatu Atom je základní částice běžné hmoty. Částice, kterou již chemickými prostředky dále nelze dělit a která definuje vlastnosti daného chemického prvku.
INFRAČERVENÁ A RAMANOVA SPEKTROMETRIE
INFRAČERVENÁ A RAMANOVA SPEKTROMETRIE (c) -2008 INFRAČERVENÁ SPEKTROMETRIE 1 INFRAČERVENÉ ZÁŘENÍ Infračervené (IR) záření: vlnočty 13000 10 cm -1, což odpovídá λ 0,78 1000 µm. DĚLENÍ: blízká IR oblast
CZ.1.07/2.2.00/ AČ (RCPTM) Spektroskopie 1 / 24
MĚŘENÍ SPEKTRA SVĚTLA Antonín Černoch Regionální centrum pokročilých technologií a materiálů CZ.1.07/2.2.00/15.0147 AČ (RCPTM) Spektroskopie 1 / 24 Úvod Obsah 1 Úvod 2 Zobrazovací spektrometry Disperzní
Využití laserů ve vědě. Vojtěch Krčmarský
Využití laserů ve vědě Vojtěch Krčmarský Spektroskopie Vědní obor zabývající se měřením emise a absorpce záření Zakladatelé: Jan Marek Marci, Isaac Newton Spektroskopické metody poskytují informaci o struktuře
Infračervená spektroskopie
Infračervená spektroskopie 1 Teoretické základy Podstatou infračervené spektroskopie je interakce infračerveného záření se studovanou hmotou, kdy v případě pohlcení fotonu studovanou hmotou mluvíme o absorpční
(Návod k praktiku) Produkty. I.typ II.typ. X 1 Σ + g. 1926 nm. 1269 nm. Kyslík
Laserová kinetická spektroskopie aneb laserová zábleská fotolýza (Návod k praktiku) Úvod Jedním ze způsobů diagnostiky a léčení rakoviny je fotodynamická terapie [1]. Využívá vlastností některých sloučenin
Úvod do spektroskopických metod. Ondřej Votava
Úvod do spektroskopických metod Ondřej Votava Osnova přednášky 1. Historický ý úvod 2. Zavedení základních pojmů 3. Fyzikální podstata spektroskopie 4. Vybrané moderní spektrální metody Definice spektroskopie
Základy Mössbauerovy spektroskopie. Libor Machala
Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických
OPTICKÉ METODY. NESPEKTRÁLNÍ při interakci nedochází k výměně energie
OPTICKÉ METODY OM OPTICKÉ METODY Identifikace a kvantifikace sloučenin (organických i anorganických) na základě interakce elektromagnetického záření a hmoty Základní rozdělení optických metod: NESPEKTRÁLNÍ
Fyzikální podstata DPZ
Elektromagnetické záření Vlnová teorie vlna elektrického (E) a magnetického (M) pole šíří se rychlostí světla (c) Charakteristiky záření: vlnová délka (λ) frekvence (ν) Fyzikální podstata DPZ Petr Dobrovolný
Metody spektrální. Základní pojmy a metody prvkové analýzy. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Metody spektrální Základní pojmy a metody prvkové analýzy Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Spektrální analýza elektromagnetické záření vlnový model x částicový model elektrická
jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony
atom jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony molekula Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti seskupení alespoň dvou atomů
Automatizace výrobních procesů ve strojírenství a řemesel, CZ.1.07/1.1.30/01.0038, Přednáška - KA 5
LASER A JEHO FYZIKÁLNÍ PODSTATA Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ.1.07/1.1.30/01.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň
Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření
Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá
MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5
MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5 Ondřej Votava J. Heyrovský Institute of Physical Chemistry AS ČR Opakování z minula Light Amplifier by Stimulated
Úloha 15: Studium polovodičového GaAs/GaAlAs laseru
Petra Suková, 2.ročník, F-14 1 Úloha 15: Studium polovodičového GaAs/GaAlAs laseru 1 Zadání 1. Změřte současně světelnou i voltampérovou charakteristiku polovodičového laseru. Naměřenézávislostizpracujtegraficky.Stanovteprahovýproud