Eutrofizace. Zvyšování úživnosti ekosystémů
|
|
- Jana Bláhová
- před 6 lety
- Počet zobrazení:
Transkript
1 Eutrofizace Zvyšování úživnosti ekosystémů
2 Autochtonní Zdroje živin rozklad organické hmoty vyluhování sedimentů a hornin biogenní fixace dusíku bakterie a cyanobakterie Allochtonní eroze půdy povrchový odtok znečištění atmosféry x odpadní vody odtoky z ČV bez terciálního čištění Splachy hnojiv ze zemědělství
3 TRFIZACE VD antropogenní příčiny P skleníkové plyny x y polyaromatické C x H y dioxiny kovy pesticidy Cl-bifenyly ropné látky S x 3 surfaktanty radionuklidy freony ftaláty nárůst UV radiace?? trofizace vod
4 sinice (cyanobaktérie) nárůst koncentrace C 2 v atmosféře, nárůst UV radiace eutrofizace vodních ekosystémů! LIDSKÉ AKTIVITY! spalování zemědělství, odpadní vody masový rozvoj sinic (vodní květy) C H 3 C H 3 C H 3 H 3 C H H C H C H 3 H H H H 2 C C H 3 H H 2 C H H 3 C H H CYATXIY H 2 3 S H 3 C H H H H H H H H C H 3 C H 3 H C H 3 + H 2 H H H H H H H 2 + GLBÁLÍ EVIRMETÁLÍ PRBLÉM
5 Trofie (úživnost) vody Procesy ve vodách související s biodostupností forem dusíku a fosforu trofizace (eu-, hyper-) Projevy: Vegetační zákal drobné planktonní řasy (zdroj potravy!) Vodní květ větší koloniální nebo vláknité sinice (nebo i řasy), toxiny Bentické sinice a rozsivky na povrchu sedimentů, posléze natantní (hladinové koberce ovlivňují výměnu plynů) Zelené vláknité řasy (ne toxiny, ale alelopatické látky) Vyšší vodní vegetace mezování: Zabránit přísunu živin Zpomalit koloběh živin dstranění živin, odstranění biomasy Indikace Přímé stanovení živin - podle koncentrace a P ve vodě Podle růstové odezvy in vitro Metoda trofického potenciálu laboratorní metoda, růstové testy na řase Scenedesmus quadricauda Stanovení koncentrace řas a sinic jako chlorofyl a - in situ Podle in situ realizované zvýšené koncentrace biomasy fototrofů Bioindikační metody analýza společenstva řas a sinic Hodnocení podle změn v druhovém složení fytoplankton, fytobentos, makrofyta
6 Fosfor jako limitující prvek Element Symbol Supply in water (%) Demand by plants (%) xygen Hydrogen H Carbon C Silicon Si itrogen Calcium Ca Potassium K Phosphorus P Magnesium Mg Sulfur S Sodium a Iron Fe Zákon minima: limitujícím prvkem pro růst rostlin je ten prvek, který je v prostředí v minimu
7 Zdroje fosforu
8 Stupně trofie Trofický stav ligotrophic Mesotrophic Eutrophic Hypertrophic Koncentrace celkového fosforu ve vodě (µg/l) < 10 µg/l µg/l µg/l > 100 µg/l Pro masový rozvoj sinic postačuje koncentrace fosforu cca µg/l Brněnská přehrada: µg/l Plumlov: ug/l Máchovo jezero ug/l
9 Dominanty trofizovaných vod 1. drobné planktonní řasy (vegetační zbarvení) 2. koloniální a vláknité sinice (tzv. vodní květ) 3. bentické sinice a rozsivky 4. litorální vláknité řasy 5. vyšší vodní vegetace - rostliny
10 Vliv živin na potravní řetězec nádrže
11 CH 3 H + - H 2 + H 2 H H H H H H 2 + H C H C H H H 3 3 S H H H C H 3 C H 3 2 C H 3 C H 3 C H C H 3 H H C H 3 C H 3 H H C H H H H 2 C H 3 C H 3 MASVÉ RZVJE SIIC
12 SIICE (=CYABAKTERIE) fotosyntetizující prokaryota osidlují rozmanité biotopy (sladké i slané vody, vlhká půda, ledovce, kůra dřevin, fykobionti v lišejnících ) většina druhů se vyskytuje ve vodních ekosystémech produkce biologicky aktivních látek cca 3.5 mld let staré vytvoření kyslíkové atmosféry Země
13 Masový rozvoj sinic globální problém Upper Saranac River, USA Bedetti Lake, Argentina euse River, USA Baltské moře, Evropa ové Mlýny, Česko Žluté moře, Čína Lake Mokoan, Austrálie Jihoafrická republika
14 Podmínky masového rozvoje Sluneční záření Teplá voda (teplé letní dny) Stojatá nebo pomalu tekoucí voda Živiny (fosfor)
15 Důsledky masového rozvoje sinic - snížení biodiverzity - narušení kyslíkového režimu (ranní anoxické zóny; rozklad biomasy ) - snížení kvality vod (produkce pachů a pachutí) - hospodářský dopad (rekreace, rybářství) - produkce cyanotoxinů - nejznámější producenti: Anabaena, Aphanizomenon, Microcystis, Planktothrix, odularia, Cylindrospermopsis
16 SIICE produkují stovky sekundárních metabolitů rozmanité struktury: peptidy a depsipeptidy (lineární, cyklické) heterocyklické sloučeniny lipidické látky BITXIY - vysoká akutní toxicita pro savce - dle specifických účinků: neurotoxiny, hepatotoxiny,dermatotoxiny,genotoxiny, imunotoxiny a embryotoxiny CYTTXIY biologická aktivita, nízká akutní toxicita (př. protirakovinné metabolity-cryptophyciny)
17 Masový rozvoj sinic CYATXIY nejvýznamnější jsou: microcystiny a nodulariny anatoxiny a saxitoxiny cylindrospermopsin CH 3 H 3 C CH 3 CH 3 MICRCYSTI CH CH 3 H 2 C H 3 C CH 3 CH 3 CH 3 CH H 2 CH 3 toxicitu vykazují také sinicové lipopolysacharidy součást buněčných stěn všech sinic AATXI-A(S) H - P CH 3 CH 3 H 2 CH 3 + H 2 H SAXITXIY H H AATXI-A H H H 2 + desítky dalších metabolitů s biologickou aktivitou (př. herbicidní, fungicidní, protirakovinnou, virocidní, chelatační,anticyanobakteriální) 3 S H 3 C H H H H CYLIDRSPERMPSI
18 Specifické účinky cyanotoxinů eurotoxiny narušení nervového systému Anatoxin-a Anatoxin-a(s) Saxitoxin eosaxitoxin Hepatotoxiny poškození jater Microcystiny odulariny Cylindrospermopsin Dermatotoxiny - poškození kůže - Lyngbyatoxin - Aplysiatoxin Promotory nádorů podporují nádorové bujení Microcystiny, lyngbyatoxin, aplysiatoxin Lipopolysacharidy narušení gastrointestinálního traktu, kožní iritant
19 CEECHE Bratislava, 2006
20 CYATXIY ejvýznamnější rody produkující cyanotoxiny (dosud identifikováno cca 50 druhů produkujících tyto látky): Anabaena (microcystiny, anatoxiny, anatoxin-a(s), saxitoxiny, cylindrospermopsin) Aphanizomenon (anatoxiny, saxitoxiny, cylindrospermopsin) Microcystis, odularia (microcystiny a nodulariny) Planktothrix/scillatoria (microcystiny, anatoxiny, saxitoxiny) Cylindrospermopsis (cylindrospermopsin, saxitoxiny)
21 WH (ČR) 1 µg/l MC-LR v pitné vodě při buněk/ml - zákaz koupání Toxické VKS 80% nádrží a rybníků v ČR? b/ml III. SIGALIZACE II. SIGALIZACE datum datum I. SIGALIZACE 1. VARVÁÍ HRAZ Hráz SKLAK Přístaviště RKLE Sokolské koupaliště
22 WH (ČR) 1 µg/l MC-LR v pitné vodě při buněk/ml - zákaz koupání Toxické VKS 80% nádrží a rybníků v ČR? b/ml III. SIGALIZACE II. SIGALIZACE datum datum I. SIGALIZACE 1. VARVÁÍ HRAZ Hráz SKLAK Přístaviště RKLE Sokolské koupaliště
23 ové cyanotoxiny hromné množství sloučenin (anagnostec.com: 5000 látek) Minimum informací: toxikologie? výskyt a osud v prostředí? vliv na volně žijící organismy? účinky složitých směsí? přirozená funkce těchto látek? Podle mnoha indicií existuje mnoho dalších dosud neobjevených toxických metabolitů sinic (sinice jsou často toxické i když neobsahují žádný z dosud identifikovaných cyanotoxinů!!!). Farmakologicky slibné látky Tříděné látek, nomenklatura.. nejednotné detailní studium nutnost LC/MS instrumentace
24 Sinice & ekosystém MASVÝ RZVJ SIIC
25 Cyanotoxiny zdravotní a ekologická rizika? H 2 H 3C H 3C H H H H3C H 3C H3C H + H 2 H CH 3 2 H H H H H CH 3 CH 3 CH 3 H 2 + H 3C H 3C 2 CH Cyanotoxiny CH H H 2 CH3 2 CH3 H2C H 3C CH H 3C CH3 CH3 H 3C H 3C CH 3 H CH3 CH 3 H CH 3 H 3C H H 3C S + S - H CH 3 CH 3 H 3 C H 3C CH 2 - CH3 H P Cl H 2 C H3C CH 3 CH 3 CH 3 S H 3C CH 3 CH3 S CH 3 S S CH 3 C H 3 H C H 3 C H 3 C H 3 H H C H C H 3 H H H H 2 C H 3 C H 3 H C H
26 Sinicový květ problém? USA AUSTRÁLIE
27 Bioakumulace microcystinu-lr v rybí tkáni Bioakumulace MICRCYSTIU
28 Toxins Animal Health Effects Country Argentina Australia Canada England USA Species Killed cattle cattle, sheep cattle, waterfowl dogs, fish dogs, cattle, human? In July 2002, a Wisconsin teenager died two days after swimming in a golf-course pond that had a bloom of Anabaena flos-aquae. A year later, an autopsy reported the death was due to cyanotoxins in the pond water (Anatoxin-a).
29 Účinky na fotoautotrofní organismy studium alelopatických interakcí objasnění možné funkce některých cyanotoxinů Zelené řasy (Chlorophyta) Rozsivky (Chromophyta) Skrytěnky (Cryptophyta) Sinice (Cyanophyta)
30 Sinice, cyanotoxiny a řasy Pseudokirchneriella subcapitata RR LR kontrola µg/l D (680 nm) D (680 nm) µg/l 100 µg/l 1000 µg/l µg/l µg/l čas (dny) čas (dny)
31 Účinky na živočichy planktonní korýši (Daphnia magna) akutní toxicita, chronická a reprodukční toxicita embrya drápatek (Xenopus laevis) embryotoxicita, teratogenita
32 Sinice, cyanotoxiny a zooplankton Reprodukce Kontrola Frakce - mcystiny Extrakt z řas Celý vod. květ Permeát Extrakt
33 Sinice, cyanotoxiny a vodní obratlovci - embryotoxicita, teratogenita Kontrola
34 Sinice, cyanotoxiny a vodní obratlovci MC-LR Biomasa s / bez MC Týden Vědy 2006, Brno
35 Účinky na obratlovce Úhyny ryb spojené především se snížením obsahu kyslíku Hromadné úhyny ptáků v různých částech světa spojovány s masovými rozvoji sinic nejednonačné důkazy Většinou souhrn více faktorů paraziti, UV, sinice, patogeny oslabení populací
36 Potlačování eutrofizace Metody omezení masového rozvoje sinic Snížení koncentrace živin v povodí nad nádrží - dstranění zdrojů z povodí Bodové zdroje ČV, odpadní vody Plošné zdroje eroze půdy, znečištění ovzduší Zákaz fosfátových detergentů mezení užití umělých hnojiv Snížení koncentrace živin v nádrži vlastní dstraňování inokula sinic ze sedimentů, odtěžení sedimentů z nádrží Regulace rybí obsádky, Biomanipulace Rozšiřování makrofyt (vyšší vodní rostliny) Algicidní zásahy
37 Zdroje fosforu a sinic (nejen) v nádržích
38 Zdroje fosforu v povodí nad nádrží Bodové zdroje lidská sídla (města, vesnice) - průmyslové závody - zemědělské objekty - čistírny odpadních vod! - rybníky atd. Difuzní zdroje atmosferický spad - geologické podloží - roztroušená sídla - pole atd
39 Zdroje fosforu v nádrži Biomasa řasy, rostliny, sinice, zooplankton, ryby Sediment zásobárna fosforu nádrží - zpětné uvolňování do vodního sloupce za anoxických podmínek (role dusičnanů)
40 Zdroje sinic Sinice jsou přirozenou součásti nádrží, avšak bez pomoci člověka by se nikdy znovu nestaly dominantní skupinou autotrofů Povodí nad nádrží rybníky, přehrady s masovým rozvojem sinic Sedimenty v nádržích s masovým rozvojem sinic
41 Inokulum sinic v sedimentech Brněnská Přehrada 2002 Cyanobacterial inoculum millions cells/cm 3 of sediments 0 0,15 0,15 0,8 0,8 1,5 1,5 2,5 2,5 3,5 3, ,5 > 7,5
42 Snižování koncentrace fosforu v povodí Výstavba ČV s terciálním stupněm čištění Zákaz používání fosfátových prášků a mycích prostředků Technická protierozní opatření Vrstevnicové hospodaření chranné travní pásy Zajištění úniků živin z farem Terasy a meze Decentralizované čištění odpadních vod evegetační stabilizace půdy Protipovodňová opatření v citlivých oblastech
43 Snižování koncentrace fosforu v nádrži Aplikace železa/hliníku Aplikace vápna Využití jílů Hypolimnické upouštění
44 šetření sedimentů Překrývání sedimentů aktivní bariéry - pasivní bariéry dstraňování sedimentů sací bagry (Vajgar) xidace sedimentů Riplox - provzdušňování Aplikace bakterií
45 šetření sedimentů
46 šetření sedimentů
47 šetření sedimentů
48 Regulace struktury biotických vztahů Využití mikroorganismů pro omezení masového rozvoje sinic Viry Bakterie Řasy Prvoci Houby a houbové organismy
49 Regulace struktury biotických vztahů Využití rybí obsádky Přímá predace planktofágních ryb ichtyoeutrofizace (Tilapie?) Redukce bentofágních ryb (kapr, candát, cejn) Podpora dravých ryb (okoun, štika ) = podpora růstu vyšších rostlin
50 Biomanipulace s rybí obsádkou
51 Regulace struktury biotický vztahů Využití makrovegetace Podpora rozvoje litorální vegetace redukce živin (, P), stabilizace ekosystému dstranění nežádoucích látek (kumulace těžkých kovů, pesticidů aj.) Produkce alelopatických látek inhibujících růst sinic (Myriophyllum sp.)
52 Aplikace algicidních přípravků Zásahy (pomocí algicidních přípravků) proti autotrofním organismům v eutrofních vodách je finančně náročný a nevede k dlouhodobým efektům pokud nejsou odstraněny živiny v povodí nad nádrží! Ale
53 Proč se tedy provádí algicidní zásahy? Máchovo jezero Založeno Karlem IV 1366 Rozloha 284 ha 1928 otevřena první pláž Denně návštěva až lidí za účelem rekreace Aplikace přípravků sice nemůže vyřešit problém Máchova jezera, může ovšem snížit zdravotní rizika rekreantů a udržet turistický ruch
54 Algicidní zásahy Výhody evýhody (Rizika) Rychlý účinek Relativně levné Snadná manipulace Dostupnost Toxicita pro necílové organismy Akumulace v životním prostředí Vznik rezistence Kyslíkový deficit na dně nádrže Uvolňování toxinů
55 Algicidní látky Přírodní látky - ječná sláma, Myriophyllum, výluhy rostlin (listový opad) Algicidy první generace skalice modrá, dusičnan stříbrný, manganistan draselný Algicidy druhé generace většinou komerční přípravky biologicky rozložitelné, selektivní vůči řasám/sinicím, nezanechávají rezidua v ekosystému Koagulanty síran hlinitý, polyaluminium chlorid, síran železitý (snižují obsah živin ve sloupci, schopny i odstraňovat buňky sinic)
56 Jak na toxické sinice? mezení přísunu živin Cyanocidy (chemické i přírodní) Biologická kontrola (biomanipulace, využití živých organismů) statní (mechanické odstranění, ekotechnické zásahy) v povodí v nádrži eexistuje univerzální návod - kombinace metod - specifický problém podle nádrže
Acidifikace vodních ekosystémů Identifikace zdrojů
Znečišťování vod Globální znečištění Acidifikace vodních ekosystémů Eutrofizace vodních ekosystémů Globální oteplování UV záření Globální znečišťující látky a radionuklidy Lokální bodové a liniové znečištění
= hodnocení biologického vlivu stresorů od
Ekotoxikologie na PřF MU = hodnocení biologického vlivu stresorů od molekulární a buněčné úrovně až po úroveň systémovou dběry vzorků, terénní studie, laboratorní studie Hodnocení toxicity vzorků, jejich
S postupným nárůstem frekvence lokalit se zjevnou nadprodukcí (tzv. hypertrofie) přechází definice v devadesátých letech do podoby
Eutrofizace je definována jako proces zvyšování produkce organické hmoty ve vodě, ke které dochází především na základě zvýšeného přísunu živin (OECD 1982) S postupným nárůstem frekvence lokalit se zjevnou
SINICE. Kde se vzaly? Co jsou to sinice? cyanobakterie (sinice) a řasy přirozená součást života ve vod. nádržích. důsledek eutrofizace.
Kde se vzaly? SINICE charakteristika cyanotoxiny prevence masového rozvoje možnosti jeho omezení odstraňování cyanotoxinů vodárenskými technologiemi cyanobakterie (sinice) a řasy přirozená součást života
Vliv abiotických a biotických stresorů na vlastnosti rostlin 2015, ČZU Praha
Vliv abiotických a biotických stresorů na vlastnosti rostlin 2015, ČZU Praha Sándor T. Forczek #, Josef Holík #, Luděk Rederer &, Václav Koza & # Ústav experimantální botaniky AV ČR, v.v.i. & Povodí Labe
Eutrofizace Acidifikace
Eutrofizace Acidifikace Eutrofizace Eutrofizace Atkins (1923), Juday (1926), Fischer (1924) fosfor limitujícím prvkem, přidání způsobilo vzestup rybí produkce X dusík, draslík 60. léta 20. století vodní
Jak fungují rybníky s rybami a rybníky bez ryb, při nízké a vysoké úrovni živin
Jak fungují rybníky s rybami a rybníky bez ryb, při nízké a vysoké úrovni živin L. Pechar 1,2, M. Baxa 1,2, Z. Benedová 1, M. Musil 1,2, J. Pokorný 1 1 ENKI, o.p.s. Třeboň, 2 JU v Českých Budějovicích,
primární producenti: řasy, sinice, vodní rostliny konkurence o zdroje mikrobiální smyčka
primární producenti: řasy, sinice, vodní rostliny konkurence o zdroje mikrobiální smyčka přirozená jezera (ledovcová, tektonická, ) tůně rybníky přehradní nádrže umělé tůně (lomy, pískovny) Dělení stojatých
Hydrochemie přírodní organické látky (huminové látky, AOM)
Hydrochemie přírodní organické látky (huminové látky, AM) 1 Přírodní organické látky NM (Natural rganic Matter) - významná součást povrchových vod dělení podle velikosti částic: rozpuštěné - DM (Dissolved
Ekosystém II. Koloběh hmoty: uhlík, dusík, fosfor. Člověk a biosféra
Ekosystém II. Koloběh hmoty: uhlík, dusík, fosfor Člověk a biosféra Koloběh hmoty v ekosystému Zásoby (pools) chemických prvků jsou uloženy v různých rezervoárech - atmosféra - hydrosféra - litosféra -
Voda jako životní prostředí rozpuštěné látky : sloučeniny dusíku
Hydrobiologie pro terrestrické biology Téma 9: Voda jako životní prostředí rozpuštěné látky : sloučeniny dusíku Koloběh dusíku Dusík je jedním z hlavních biogenních prvků Hlavní zásobník : atmosféra, plynný
Využití zásoby živin a primární produkce v eutrofních rybnících
Využití zásoby živin a primární produkce v eutrofních rybnících Libor Pechar a kolektiv Jihočeská Univerzita v Českých Budějovicích Zemědělská fakulta, Laboratoř aplikované ekologie a ENKI o.p.s., Třeboň
STAV POVRCHOVÝCH VOD V ČR SINICE A JINÉ PROBLÉMY
STAV POVRCHOVÝCH VOD V ČR SINICE A JINÉ PROBLÉMY Látky produkované sinicemi a lidské zdraví MUDr. Miroslav Šuta, odborný konzultant v oblasti ekologických a zdravotních rizik, Centrum pro životní prostředí
Obr. č. 1 nezbytná údržba aerační věže před zahájením aerační sezóny
Projekt Realizace opatření na Brněnské údolní nádrži Stručný výtah ze závěrečné zprávy k tomuto projektu CÍLE PROJEKTU Cílem projektu Realizace opatření na Brněnské údolní nádrži je snížení eutrofizace
Vysoká eutrofizační účinnost fosforu původem z odpadních vod v nádrži Lipno
Vysoká eutrofizační účinnost fosforu původem z odpadních vod v nádrži Lipno Josef Hejzlar Petr Znachor Zuzana Sobolíková Vladimír Rohlík Biologické centrum AV ČR, v. v. i. Hydrobiologický ústav České Budějovice
KYSLÍKOVÉ DEFICITY - PROJEV NESTABILITY RYBNIČNÍHO EKOSYSTÉMU? Ing. Ivana Beděrková Ing. Zdeňka Benedová doc. RNDr. Libor Pechar, CSc.
KYSLÍKOVÉ DEFICITY - PROJEV NESTABILITY RYBNIČNÍHO EKOSYSTÉMU? Ing. Ivana Beděrková Ing. Zdeňka Benedová doc. RNDr. Libor Pechar, CSc. Úvod do problematiky Fytoplankton=hlavní producent biomasy, na kterém
SINICE. charakteristika cyanotoxiny legislativa prevence masového rozvoje možnosti jeho omezení odstraňování cyanotoxinů vodárenskými technologiemi
SINICE charakteristika cyanotoxiny legislativa prevence masového rozvoje možnosti jeho omezení odstraňování cyanotoxinů vodárenskými technologiemi Kde se vzaly? cyanobakterie (sinice) a řasy přirozená
SINICE. Kde se vzaly? cyanobakterie (sinice) a řasy přirozená součást života ve vod. nádržích. důsledek eutrofizace
SINICE charakteristika cyanotoxiny legislativa prevence masového rozvoje možnosti jeho omezení odstraňování cyanotoxinů vodárenskými technologiemi Kde se vzaly? cyanobakterie (sinice) a řasy přirozená
Problematika hodnocení výskytu sinic a fytoplanktonu
Problematika hodnocení výskytu sinic a fytoplanktonu Seminář Laboratorní metody, vzorkování a způsoby hodnocení povrchových vod ke koupání Výzkumný vodohospodářský T.G.M., v.v.i., 29.4.214 Petr Pumann
Koloběh látek v přírodě - koloběh dusíku
Koloběh látek v přírodě - koloběh dusíku Globální oběh látek v přírodě se žádná látka nevyskytuje stále na jednom místě díky různým činitelům (voda, vítr..) se látky dostávají do pohybu oběhu - cyklu N
POTLAČENÍ MASOVÉHO ROZVOJE ŘAS A SINIC NA PŘÍRODNÍCH VODNÍCH PLOCHÁCH METODOU INAKTIVACE FOSFORU HLINITÝMI SOLEMI PŘÍKLADY ÚSPĚŠNÝCH APLIKACÍ
POTLAČENÍ MASOVÉHO ROZVOJE ŘAS A SINIC NA PŘÍRODNÍCH VODNÍCH PLOCHÁCH METODOU INAKTIVACE FOSFORU HLINITÝMI SOLEMI PŘÍKLADY ÚSPĚŠNÝCH APLIKACÍ 2005-2011 Máchovo jezero: - rozloha 284 hektarů, průměrná hloubka
Ekosystém. tok energie toky prvků biogeochemické cykly
Ekosystém tok energie toky prvků biogeochemické cykly Ekosystém se sestává z abiotického prostředí a biotické složky (společenstva) a jejich vzájemných interakcí. Ekosystém si geograficky můžeme definovat
Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy, poznámky. Poznáváme přírodu
Předmět: PŘÍRODOPIS Ročník: 6. Časová dotace: 2 hodiny týdně Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy, poznámky Konkretizované tematické okruhy realizovaného průřezového tématu Poznáváme přírodu
Konference Vodárenská biologie 2019, února 2019, Interhotel Olympik, Praha
Konference Vodárenská biologie 2019, 6. 7. února 2019, Interhotel Olympik, Praha (neboli top-down effect ) je založena na ovlivnění potravního řetězce vodního ekosystému: dravé ryby plaktonožravé ryby
Realizace opatřen. ení na. Ing. Jan Moronga
Realizace opatřen ení na Brněnsk nské údoln dolní nádr drži Ing. Jan Moronga Kritéria projektu snížení množství sinic v sedimentech o 50% zvýšení koncentrace kyslíku 1,0 m nade dnem na 2 mg/l Kritéria
ZHORŠENÍ JAKOSTI VODY V NÁDRŽI NOVÁ ŘÍŠE VODÁRENSKÁ BIOLOGIE 2017 RODAN GERIŠ, DUŠAN KOSOUR POVODÍ MORAVY, S.P.
ZHORŠENÍ JAKOSTI VODY V NÁDRŽI NOVÁ ŘÍŠE VODÁRENSKÁ BIOLOGIE 2017 RODAN GERIŠ, DUŠAN KOSOUR POVODÍ MORAVY, S.P. Jeden z autorů Vás vítá na prezentaci přímo z nádrže... Nová Říše pohled na povodí Základní
POTLAČENÍ MASOVÉHO ROZVOJE ŘAS A SINIC NA PŘÍRODNÍCH VODNÍCH PLOCHÁCH METODOU INAKTIVACE FOSFORU HLINITÝMI SOLEMI PŘÍKLADY ÚSPĚŠNÝCH APLIKACÍ
POTLAČENÍ MASOVÉHO ROZVOJE ŘAS A SINIC NA PŘÍRODNÍCH VODNÍCH PLOCHÁCH METODOU INAKTIVACE FOSFORU HLINITÝMI SOLEMI PŘÍKLADY ÚSPĚŠNÝCH APLIKACÍ 2005-2012 Máchovo jezero: - rozloha 284 hektarů, průměrná hloubka
SITUACE Hlad po čisté vodě roste Paradox koupacích vod rostou i možnosti finančního krytí pro různé projekty - prudce se zvyšuje počet projektů nebezp
EKOTECHNOLOGICKÉ ZÁSAHY STRUČNÝ PŘEHLED SITUACE V ČR Jindřich DURAS B. Maršálek, D. Kosour, L. Rederer, V. Klouček, E. Janeček SITUACE Hlad po čisté vodě roste Paradox koupacích vod rostou i možnosti finančního
Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR
Celkový dusík Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí Dopady na zdraví člověka, rizika
Jan POTUŽÁK a Kateřina KOLÁŘOVÁ. Povodí Vltavy, státní podnik, VHL České Budějovice
Jan POTUŽÁK a Kateřina KOLÁŘOVÁ Povodí Vltavy, státní podnik, VHL České Budějovice Mapy a umístění rybník Zhejral VN Karhov Rybník Zhejral (49 º 13'12.975''N; 15º18 48.557''E) Zatopená plocha: 14,46 ha
APLIKOVANÁ HYDROBIOLOGIE III - EUTROFIZACE
APLIKOVANÁ HYDROBIOLOGIE III - EUTROFIZACE Eutrofizace je definována jako proces zvyšování produkce organické hmoty ve vodě, ke které dochází především na základě zvýšeného přísunu živin (OECD 1982) S
PROBLEMATIKA ŽIVIN A SINIC V NÁDRŽI SKALKA VÝSLEDKY MEZINÁRODNÍHO PROJEKTU
Evropská unie Evropský fond pro regionální rozvoj Investice do Vaší budoucnosti. Dotační titul: Operační program přeshraniční spolupráce Cíl 3 Česká republika Svobodný stát Bavorsko 2007-2013 Název projektu:
Každý ekosystém se skládá ze čtyř tzv. funkčních složek: biotopu, producentů, konzumentů a dekompozitorů:
9. Ekosystém Ve starších učebnicích nalezneme mnoho názvů, které se v současnosti jednotně synonymizují se slovem ekosystém: mikrokosmos, epigén, ekoid, biosystém, bioinertní těleso. Nejčastěji užívaným
DEKOMPOZICE, CYKLY LÁTEK, TOKY ENERGIÍ
DEKOMPOZICE, CYKLY LÁTEK, TOKY ENERGIÍ Vše souvisí se vším Živou hmotu tvoří 3 hlavní organické složky: Bílkoviny, cukry, tuky Syntézu zajišťuje cca 20 biogenních prvků Nejdůležitější C, O, N, H, P tzv.
Střední škola obchodu, řemesel a služeb Žamberk. Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ
Střední škola obchodu, řemesel a služeb Žamberk Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ Registrační číslo projektu: CZ.1.07/1.5.00/34.0130 Šablona: III/2 Ověřeno ve výuce dne: 7.6.2013
Tlumení rozvoje sinic a řas pomocí mikrobiálněenzymatického
Tlumení rozvoje sinic a řas pomocí mikrobiálněenzymatického preparátu SEKOL Lakus aqua Pokusná aplikace na vodní nádrži Pod Santonem vegetační sezóna 2007 Zemědělská vodohospodářská zpráva Brno 2007 Zpracoval:
Pesticidy. Soldep hnědá tekutina (účinná látka - 25% trichlorfon) Využití v rybářství:
Soldep hnědá tekutina (účinná látka - 25% trichlorfon) Využití v rybářství: k redukci hrubého dafniového zooplanktonu (50 200 ml.ha -1 ) k zabránění kyslíkových deficitů, k převedení na drobné formy zooplanktonu
Dekompozice, cykly látek, toky energií
Dekompozice, cykly látek, toky energií Vše souvisí se vším Živou hmotu tvoří 3 hlavní organické složky: - Bílkoviny, cukry, tuky Syntézu zajišťuje cca 20 biogenních prvků - Nejdůležitější C, O, N, H, P
Nevstoupíš dvakrát do téhož rybníka
Nevstoupíš dvakrát do téhož rybníka aneb vývoj rybničních ekosystémů od Šusty k hypertrofii Jaroslav Vrba Z. Benedová, J. Jezberová, A. Matoušů, M. Musil, J. Nedoma, L. Pechar, J. Potužák, K. Řeháková,
Vliv aerace na množství sinic v sedimentech
Vliv aerace na množství sinic v sedimentech Aerační technologie pro redukci klidových stádií sinic a biodostupnosti živin v sedimentech nádrží Projekt: NAZV QH81012 Prof. Ing. Blahoslav Maršálek, CSc.
Ichtyologické důsledky znečišťování povrchových vod
Sinice, řasy a makrofyta v ekosystémech povrchových vod Ichtyologické důsledky znečišťování povrchových vod Hydrologická situace ČR, vývoj znečištění vod, vodní eroze, specifické polutanty, ohrožené druhy
MIKROORGANISMY EDÍ. Ústav inženýrstv. enýrství ochrany ŽP FT UTB ve Zlíně
MIKROORGANISMY A OCHRANA ŽIVOTNÍHO PROSTŘED EDÍ Ústav inženýrstv enýrství ochrany ŽP FT UTB ve Zlíně Důvody využívání mikroorganismů v procesech ochrany životního prostřed edí jsou prakticky všudypřítomné
Co je to ekosystém? Ekosystém. Fungování Hranice Autoregulační mechanismy Stabilizační mechanismy Biogeocenóza. Otevřený systém.
Ekosystém Co je to ekosystém? Fungování Hranice Autoregulační mechanismy Stabilizační mechanismy Biogeocenóza Hmota Energie Otevřený systém Ekosystém Složky a procesy ekosystému Složky Anorganické látky
Co je to ekosystém? Ekosystém. Fungování Hranice Autoregulační mechanismy Stabilizační mechanismy Biogeocenóza. Otevřený systém.
Ekosystém Co je to ekosystém? 32 Fungování Hranice Autoregulační mechanismy Stabilizační mechanismy Biogeocenóza Hmota Energie Otevřený systém Ekosystém Složky a procesy ekosystému 32 Složky Anorganické
Péče o jezera ve velkých zbytkových jamách po těžbě uhlí. Ivo Přikryl ENKI o.p.s. Třeboň
Péče o jezera ve velkých zbytkových jamách po těžbě uhlí Ivo Přikryl ENKI o.p.s. Třeboň Charakteristika jezer relativně hluboké nádrže s malým přítokem předpoklad velmi kvalitní vody a univerzální využitelnosti
Monitoring toxických sinic ve vodárenských nádržích ČR (tradiční a nové toxiny)
Monitoring toxických sinic ve vodárenských nádržích ČR (tradiční a nové toxiny) Luděk Bláha, Blahoslav Maršálek & kol. Centrum pro Cyanobakterie a jejich Toxiny Botanický ústav AVČR, v.v.i., Brno www.sinice.cz
POTLAČENÍ MASOVÉHO ROZVOJE ŘAS A SINIC NA PŘÍRODNÍCH VODNÍCH PLOCHÁCH METODOU INAKTIVACE FOSFORU HLINITÝMI SOLEMI PŘÍKLADY ÚSPĚŠNÝCH APLIKACÍ
POTLAČENÍ MASOVÉHO ROZVOJE ŘAS A SINIC NA PŘÍRODNÍCH VODNÍCH PLOCHÁCH METODOU INAKTIVACE FOSFORU HLINITÝMI SOLEMI PŘÍKLADY ÚSPĚŠNÝCH APLIKACÍ 2005-2009 Máchovo jezero: - rozloha 284 hektarů, průměrná hloubka
05 Biogeochemické cykly
05 Biogeochemické cykly Ekologie Ing. Lucie Kochánková, Ph.D. Prvky hlavními - biogenními prvky: C, H, O, N, S a P v menších množstvích prvky: Fe, Na, K, Ca, Cl atd. ve stopových množstvích I, Se atd.
4 ROKY HYDROBIOLOGA NA MOSTECKÉM JEZEŘE
4 ROKY HYDROBIOLOGA NA MOSTECKÉM JEZEŘE JANA ŘÍHOVÁ AMBROŽOVÁ, BARBORA KOFROŇOVÁ VŠCHT ÚTVP TECHNICKÁ 5, PRAHA 6 UJEP FŽP KPV KRÁLOVA VÝŠINA 7, ÚSTÍ NAD LABEM V rámci řešeného projektu TA ČR č. TA 01020592,
Profil vod ke koupání - rybník Hnačov Souhrn informací o vodách ke koupání a hlavních příčinách znečištění
Profil vod ke koupání - rybník Hnačov Souhrn informací o vodách ke koupání a hlavních příčinách 1 Profil vod ke koupání Identifikátor profilu vod ke koupání 524005 Název profilu vod ke koupání (NZPFVK)
POTLAČOVÁNÍ MASOVÉHO ROZVOJE SINIC NA BRNĚNSKÉ ÚDOLNÍ NÁDRŽI
POTLAČOVÁNÍ MASOVÉHO ROZVOJE SINIC NA BRNĚNSKÉ ÚDOLNÍ NÁDRŽI 1) Prof. Ing. Blahoslav Maršálek, CSc., 1) Ing. Eliška Maršálková, Ph.D., 2) Ing. Jiří Palčík, Ph.D., 2) Ing. Roman Sládek, 1) Botanický ústav
HLAVNÍ PROBLÉMY V ŽIVOTNÍM PROSTŘEDÍ
HLAVNÍ PROBLÉMY V ŽIVOTNÍM PROSTŘEDÍ Současná etapa je charakterizována: populační explozí a nebývalým rozvojem hospodářské činnosti společnosti řadou antropogenních činností s nadměrnou produkcí škodlivin
Vyhláška č. 154/2016 Sb.
1 z 5 28.02.2018, 10:51 Vyhláška č. 154/2016 Sb. Vyhláška, kterou se mění vyhláška č. 98/2011 Sb., o způsobu hodnocení stavu útvarů povrchových vod, způsobu hodnocení ekologického potenciálu silně ovlivněných
Řasy a sinice ve vodárenství
Řasy a sinice ve vodárenství Sinice a řasy ve vodárenské a hygienické praxi Přírodovědecká fakulta UK, 28.-29.3.2009 Petr Pumann, Rizikové faktory v pitné vodě Je dobré uvědomit, že sinice a řasy nejsou
Malý test znalostí odběrových skupin - fotografie a živé vzorky
Malý test znalostí odběrových skupin - fotografie a živé vzorky správné odpovědi, vyhodnocení a komentáře PT#V/8/2014 Odběry vzorků přírodní koupaliště Připravil: Petr Pumann, Státní zdravotní ústav, 7.6.2014
Potravní a produkční ekologie
Potravní a produkční ekologie Tomáš Zapletal zapletal.tomas@email.cz Autotrofie - heterotrofie autotrofie (fotosyntéza, chemosyntéza u bakterií a sinic) heterotrofie (živočichové, saprofágové houby) mixotrofie
VODNÍ DÍLO PLUMLOV Mgr. Jiří Koudelka
05.10.2017 VODNÍ DÍLO PLUMLOV Příklad dobré spolupráce státní správy a samosprávy při návrhu a realizaci revitalizačních opatření s širokým celospolečenským významem Mgr. Jiří Koudelka vedoucí Pobočky
ON-LINE KVANTIFIKACE SINIC V SUROVÉ VODĚ
ON-LINE KVANTIFIKACE SINIC V SUROVÉ VODĚ Mgr. ZLATICA NOVOTNÁ Doc. Ing. BLAHOSLAV MARŠÁLEK, CSc. Ing. MARTIN TRTÍLEK Ing. TOMÁŠ RATAJ CENTRUM PRO CYANOBAKTERIE A JEJICH TOXINY, BÚ AVČR Photon System Instrument,
CZ.1.07/1.5.00/34.0880. Digitální učební materiály www.skolalipa.cz. Monitorování životního prostředí. Monitoring vody
Název školy Číslo projektu STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace CZ.1.07/1.5.00/34.0880 Název projektu Klíčová aktivita Digitální učební materiály
Zdroje znečištění v povodí rybníka Olšovce
Zdroje znečištění v povodí rybníka Olšovce Rybníky 2019 Praha, 13. 6. 2019 Mgr. Dušan Kosour Povodí Moravy, s.p. Fosfor: klíčová znečišťující látka Fosfor je v našich podmínkách klíčovou živinou, která
PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ PŮDA
PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ PŮDA 2010 Ing. Andrea Sikorová, Ph.D. 1 Problémy životního prostředí - půda V této kapitole se dozvíte: Jak vznikla půda. Nejvýznamnější škodliviny znečištění půd. Co je to
Produkce organické hmoty
Produkce organické hmoty Charakteristika prostředí a života ve vodě Voda nebude nikdy limitním faktorem ostatní limitující faktory jsou jen dočasné neexistují fyzické bariéry Teplotní variabilita nepřesahuje
PRIMÁRNÍ PRODUKCE. CO 2 + H 2 A světlo, fotosyntetický pigment (CH 2 O) + H 2 O + 2A
PRIMÁRNÍ PRODUKCE PP je závislá na biochemických procesech fotosyntézy autotrofních organizmů její množství je dáno množstvím dostupných živin v systému produktem je biomasa vytvořená za časovou jednotku
Profil vod ke koupání - koupaliště Šeberák Souhrn informací o vodách ke koupání a hlavních příčinách znečištění
Souhrn informací o vodách ke koupání a hlavních příčinách Název profilu vod ke koupání (NZPFVK) koupaliště Šeberák (m) (i) Nadmořská výška 280 m n.m. Plocha nádrže 7,5 ha Základní hydrologická charakteristika
Profil vod ke koupání - Písník Bakov nad Jizerou Souhrn informací o vodách ke koupání a hlavních příčinách znečištění
Profil vod ke koupání - Písník Bakov nad Jizerou Souhrn informací o vodách ke koupání a hlavních příčinách 1 Profil vod ke koupání. Identifikátor 112201 profilu vod ke koupání. Název profilu Profil vod
Implementace Water Framework Directive v České republice Směrnice 2000/60 ES, kterou se stanoví rámec Společenství pro oblast vodní politiky
Implementace Water Framework Directive v České republice Směrnice 2000/60 ES, kterou se stanoví rámec Společenství pro oblast vodní politiky Maršálek B., Kodeš, V., Leontovyčová, D. & Šejnohová, L. Botanický
Sdružení Flos Aquae SLEDOVÁNÍ ZMĚN V MNOŽSTVÍ A SLOŽENÍ FYTOPLANKTONNÍCH SPOLEČENSTEV V BRNĚNSKÉ ÚDOLNÍ NÁDRŽI V OBDOBÍ KVĚTEN ŘÍJEN 2010
Sdružení Flos Aquae SLEDOVÁNÍ ZMĚN V MNOŽSTVÍ A SLOŽENÍ FYTOPLANKTONNÍCH SPOLEČENSTEV V BRNĚNSKÉ ÚDOLNÍ NÁDRŽI V OBDOBÍ KVĚTEN ŘÍJEN 21 Autorský kolektiv: Ing. Eliška Maršálková, Ph.D. Doc. Ing. Radovan
1 Profil vod ke koupání VN Plumlov. 2 Voda ke koupání
1 Profil vod ke koupání VN Plumlov Identifikátor profilu vod ke koupání (IDPFVK) 140005 Název profilu vod ke koupání (NZPFVK) VN Plumlov Nadmořská výška [m] 273,58 Plocha nádrţe [ha] 66 Základní hydrologická
Metodický list č. 1. TÉMA: Ekologicky šetrné zemědělství PĚSTOVÁNÍ ROSTLIN. Ochrana krajiny
32 TÉMA: Cíl: uvědomit si vazby mezi zemědělstvím, přírodou a životním prostředím, seznámit žáky s prioritami současné zemědělské výroby v souladu s ochranou životního prostředí Základní pojmy: meliorace,
+ Fytoplankton (producenti) Zooplankton, zoobentos (konzumenti 1.řádu) Ryby (konzumenti 2.řádu)
Trend budování nových rybníků, tůněk a nádrží Sukcese společenstva jako předmět zájmu z pohledu rybářství i ochrany přírody Požadovány komplexní studie ekosystému Fyzikálně-chemické parametry + Fytoplankton
Profil vod ke koupání - VN Harcov Souhrn informací o vodách ke koupání a hlavních příčinách znečištění
Profil vod ke koupání - VN Harcov Souhrn informací o vodách ke koupání a hlavních příčinách 1 Profil vod ke koupání. Identifikátor 207301 profilu vod ke koupání. Název profilu Profil vod ke koupání - VN
Profil vod ke koupání - Babylon Souhrn informací o vodách ke koupání a hlavních příčinách znečištění
Souhrn informací o vodách ke koupání a hlavních příčinách Název 1 Profil vod ke koupání Identifikátor profilu vod ke koupání 524014 Název profilu vod ke koupání (NZPFVK) Babylon (m) (i) Nadmořská výška
Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje
Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 02 Přírodovědné předměty 1 2 3 skupenství ( kapalné
Jaro 2010 Kateřina Slavíčková
Jaro 2010 Kateřina Slavíčková Biogenní prvky Organismy se liší od anorganického okolí mimo jiné i složením prvků. Některé prvky, které jsou v zemské kůře zastoupeny hojně (např. hliník), organismus buď
FAKTORY PROST EDÍ OHRO UJÍCÍ ZDRAVÍ LOV KA
FAKTORY PROSTEDÍ OHROUJÍCÍ ZDRAVÍ LOVKA CIZORODÉ LÁTKY V OVZDUŠÍ VODA (LÁTKY V NÍ OBSAŽENÉ) KONTAMINACE PŮDY HLUK A VIBRACE ZÁŘENÍ TOXICKÉ KOVY PERZISTENTNÍ ORGANICKÉ POLUTANTY Cizorodé látky v ovzduí
Vyhodnocení vývoje jakosti vody v nádržích na území ve správě státního podniku Povodí Labe Rok 2016
Vyhodnocení vývoje jakosti vody v nádržích na území ve správě státního podniku Povodí Labe Rok 2016 Monitoring nádrží: V rámci monitoringu jakosti vody sledoval státní podnik Povodí Labe prostřednictvím
Technická univerzita v Liberci fakulta přírodovědně-humanitní a pedagogická. Doc. RNDr. Petr Anděl, CSc. ZÁKLADY EKOLOGIE.
Technická univerzita v Liberci fakulta přírodovědně-humanitní a pedagogická Doc. RNDr. Petr Anděl, CSc. ZÁKLADY EKOLOGIE Studijní texty 2010 Struktura předmětu 1. ÚVOD 2. EKOSYSTÉM MODELOVÁ JEDNOTKA 3.
Profil vod ke koupání - koupaliště Šeberák Souhrn informací o vodách ke koupání a hlavních příčinách znečištění
1 Profil vod ke koupání Identifikátor profilu vod ke koupání 529013 profilu vod ke koupání (NZPFVK) koupaliště Šeberák (m) (i) Nadmořská výška 280 m n.m. Plocha nádrže 7,5 ha Základní hydrologická charakteristika
Sinice v koupacích vodách ČR v letech
Sinice v koupacích vodách ČR v letech 26 216 Petr Pumann, Filip Kothan, Tereza Pouzarová Vodárenská biologie 217 1. 2. 2. 217, Praha Problémy spojené s kvalitou přírodní koupacích vod Zdravotně významné
Témata k opravným zkouškám a zkouškám v náhradním termínu
Témata k opravným zkouškám a zkouškám v náhradním termínu Marcela Pohanková EKP 1.A Organismus a prostředí - abiotické faktory, biotické faktory - populace, vztahy mezi populacemi, společenstva, ekosystém
1. Z celkového množství vody na zemi zaujímá sladká voda jenom asi 5 %. Většina z toho je ve formě ledovců. SPRÁVNĚ jdi na č.2 ŠPATNĚ jdi na č.
1. Z celkového množství vody na zemi zaujímá sladká voda jenom asi 5 %. Většina z toho je ve formě ledovců. SPRÁVNĚ jdi na č.2 ŠPATNĚ jdi na č.3 2. Sladké vody je ještě méně okolo 2,5%. To že je většina
SINICE. SINICE Mušov 2007 SINICE. Zdroj živin pro sinice??? Eutrofizace. Sinice v ČR. Brněnská přehrada. Nádrž Nové mlýny
2 2 2 Brněnská přehrada Sinice v ČR 2 SIIE - ádrž ové mlýny 2 S SIIE Mušov 2007 SIIE Mušov 2007 SIIE Staré miliardy let-prvotní atmosféra, vždy tu byly Zdroj živin pro sinice??? Eutrofizace 150 rodů, 2000
Základy limnologie pro vzorkaře
Základy limnologie pro vzorkaře Seminář Vzorkování přírodních koupališť (co všechno by vzorkař mohl/měl znát) Státní zdravotní ústav, 10.5.2012 Petr Pumann (s vydatnou pomocí prezentací Jindry Durase)
Změny v chemismu a biologii mezotrofní nádrže po mimořádném snížení hladiny RODAN GERIŠ, DUŠAN KOSOUR POVODÍ MORAVY, S.P.
Změny v chemismu a biologii mezotrofní nádrže po mimořádném snížení hladiny RODAN GERIŠ, DUŠAN KOSOUR POVODÍ MORAVY, S.P. Technicko morfologické parametry Rok uvedení do provozu - 1972 Průtok - 0,190
EKOLOGICKÉ ZEMĚDĚLSTVÍ, PROBLEMATIKA BIOPOTRAVIN A FILOZOFIE KONZUMENTA
EKOLOGICKÉ ZEMĚDĚLSTVÍ, PROBLEMATIKA BIOPOTRAVIN A FILOZOFIE KONZUMENTA Agr.Dr. Josef Dlouhý, Prof.h.c. j.f.dlouhy@gmail.com Problémy konvenčního zemědělství: závislost na fosilní energii závislost na
DRUHY VOD přírodní odpadní atmosférické povrchové podzemní pitná užitková provozní odpadní ATMOSFÉRICKÉ VODY déšť, mrholení, mlha, rosa
DRUHY VOD Vody lze rozlišovat podle původu na přírodní a odpadní, dle výskytu na atmosférické, povrchové a podzemní, dle použití voda pitná, užitková, provozní a odpadní. ATMOSFÉRICKÉ VODY Pod tímto pojmem
SLEDOVÁNÍ ZMĚN V MNOŽSTVÍ A SLOŽENÍ FYTOPLANKTONNÍCH SPOLEČENSTEV BRNĚNSKÉ PŘEHRADY V OBDOBÍ KVĚTEN ŘÍJEN 2008
Centrum pro cyanobakterie a jejich toxiny & Sdružení Flos Aquae SLEDOVÁNÍ ZMĚN V MNOŽSTVÍ A SLOŽENÍ FYTOPLANKTONNÍCH SPOLEČENSTEV BRNĚNSKÉ PŘEHRADY V OBDOBÍ KVĚTEN ŘÍJEN 28 Autorský kolektiv: Doc. Ing.
2. V 2 písm. a) se za slovo, trichlorethylenu vkládá slovo, tetrachlormethanu. 3. V 2 se písmeno g) zrušuje.
Strana 4192 Sbírka zákonů č. 313 / 2015 Částka 132 313 VYHLÁŠKA ze dne 24. listopadu 2015, kterou se mění vyhláška č. 98/2011 Sb., o způsobu hodnocení stavu útvarů povrchových vod, způsobu hodnocení ekologického
J.Lukavský, J.Pilný, H.Strusková
J.Lukavský, J.Pilný, H.Strusková Rybník Svet na medirytine Pavliny Schwarzenbergove Vzorkování Vzorkování bylo v r. 2004 zahuštěno na týdenní intervaly. Celkem bylo odebráno 32 vzorků (každý zahrnoval
Hodnocení CHEMICKÉHO stavu a fyzikálně-chemické složky EKOLOGICKÉHO stavu vodních útvarů. Mgr. Martin Pták Martin.Ptak@mzp.cz Odbor ochrany vod
Hodnocení CHEMICKÉHO stavu a fyzikálně-chemické složky EKOLOGICKÉHO stavu vodních útvarů Mgr. Martin Pták Martin.Ptak@mzp.cz Odbor ochrany vod Proč hodnotit vodní útvary? Směrnice 2000/60/ES Evropského
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Anotace: Inovace a zkvalitnění výuky prostřednictvím ICT Základy ekologie Ekosystém, dělení
Profil vod ke koupání - rybník Kachlička Souhrn informací o vodách ke koupání a hlavních příčinách znečištění
Profil vod ke koupání rybník Kachlička Souhrn informací o vodách ke koupání a hlavních příčinách 1 Profil vod ke koupání Identifikátor profilu vod ke koupání 529004 Název profilu vod ke koupání (NZPFVK)
Rybářství 4. Produktivita a produkce. Primární produkce - rozdělení. Primární produkce - PP 27.11.2014
Rybářství 4 Produktivita a produkce Vztahy v populacích Trofické vztahy Trofické stupně, jejich charakteristika Biologická produktivita vod (produkce, produktivita, primární produkce a její měření) V biosféře
kyslík ve vodě CO 2 (vápenato-)uhličitanová rovnováha alkalita
kyslík ve vodě CO 2 ph (vápenato-)uhličitanová rovnováha alkalita elementární plyny s vodou nereagují, ale rozpouštějí se fyzikálně (N 2, O 2, ) plynné anorganické sloučeniny (CO 2, H 2 S, NH 3 ) s vodou
TAČR gama PoC Remote Guard
TAČR gama PoC Remote Guard Detekce znečištění povrchových vod řasami a sinicemi metodami dálkového průzkumu Země a spektrálního měření Václav Nedbal Jakub Brom, Jindřich Duras, Petr Císař, Mohammadmehdi
Podmínky působící na organismy: abiotické - vlivy neživé části prostředí na organismus biotické - vlivy ostatních živých organismů na život jedince, m
Přednáška č. 4 Pěstitelství, základy ekologie, pedologie a fenologie Země Podmínky působící na organismy: abiotické - vlivy neživé části prostředí na organismus biotické - vlivy ostatních živých organismů
kyslík ve vodě CO 2 (vápenato-)uhličitanová rovnováha alkalita
kyslík ve vodě CO 2 ph (vápenato-)uhličitanová rovnováha alkalita elementární plyny s vodou nereagují, ale rozpouštějí se fyzikálně (N 2, O 2, ) plynné anorganické sloučeniny (CO 2, H 2 S, NH 3 ) s vodou
Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan
Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Moravské gymnázium Brno s.r.o. Autor RNDr. Miroslav Štefan Tematická oblast Chemie chemie a životní prostředí Ročník kvarta Datum tvorby 25.5.2013 Anotace
ostatní rozpuštěné látky: křemík, vápník, železo, síra
uhlík dusík fosfor ostatní rozpuštěné látky: křemík, vápník, železo, síra opakování z minulé lekce: uhličitanová rovnováha CO 2 v povrchových vodách ne více než 20-30 mg l -1 podzemní vody obvykle desítky
Příběh mladistvé nádrže Michal
Příběh mladistvé nádrže Michal I. Přikryl 1, M. Kosík 1, P. Walta 2 1 ENKI o.p.s. 2 Koupaliště Michal s.r.o. Nádrž Michal zatopený lom po těžbě uhlí napuštěn v zimním období 2001/2002 vodní plocha 27,8