Laminy a laminopatie. Co jsou to laminy? intermediální filamenta - V. třída. nacházejí se v jádře
|
|
- Ivo Staněk
- před 9 lety
- Počet zobrazení:
Transkript
1 Laminy a laminopatie Co jsou to laminy? intermediální filamenta - V. třída nacházejí se v jádře
2 Intermediáln lní filamenta (IFs) filamenta o průměru nm strukturální funkce, ochrana proti mechanickému stresu nejméně strukturálně charakterizované z cytoskeletálních komponent objev až později v evoluci jen u metazoí (nejsou u rostlin ani u hub) Třídy IFs: - 4 typy - cytoplazmatické - 5. typ - jaderné laminy
3 Intermediáln lní filamenta - struktura Tripartitní struktura IFs: cetrální α-helikální doména (rod domain) - repetice 7 AK, kdy každá 1. a 4. AK je nepolární coiled-coil stuktura koncové nehelikáln lní domény - hlava (N-konec) - ocas (C-konec) - velmi se různí (délkou, sekvencí) mezi odliš. IF -důležité pro tvorbu vláken Struktura laminů - C-koncová doména velmi krátká (33 AMK) - segment 1B o 6 heptad delší (42 AMK) - N-koncová doména - NLS - Caax box Intermediáln lní filamenta - skládání 3 assembly skupiny IFs keratiny (A) - tvoří heterodimery - laterální a longitudinální asociace většina ostatních cytoplasmatických IFs (B) -tvoří homopolymery - laterální asociace; ULF jaderné laminy (C) - longitudinální asociace (head-to-tail)
4 Laminy člověk - 3 geny kódující 7 proteinů: A-typ a B-typ laminy typu A: A gen LMNA: lamin A, lamin C, lamin A 10, lamin C2 (jen v testes) laminy typu B: B gen LMNB1: lamin B1 gen LMNB2: lamin B2, lamin B3 (jen spermatocyty) laminy typu B - exprimovány téměř ve všech buňkách, během celého vývoje - esenciální pro životnost buněk laminy typu A - vývojově regulované - exprese hlavně v somatických diferencovaných buňkách - specializované funkce Laminy
5 Postranslační úpravy laminů Isoprenylace a metylace (laminy B, prelamina): 1. farnesylace Cys v CaaX boxu (A-alifatická AK, X-obvykle S,M,C,A,Q) - farnesyl transferasa 2. odštěpení tripeptidu AAX - AAX endoproteasa 3. methylace nyní koncového Cys - karboxymethyltransferasa u prelaminu A: 4. odštěpení ještě dalších 15 AK - odstranění farnesylovaného konce! - prelamin A: 74 kda 72 kda: lamin A Metalloproteinasa Zmpste24 (FACE-1) - oba proteolytické kroky u prelaminu A Fosforylace - interfáze, mitóza Postranslační úpravy laminů - P-místa - na N-konci laminů (u coil 1A) - na C-konci (blízko coil 2B) - cdc2 kináza, proteinkináza (PKC), cyklin-amp-dependentní kináza (PKA) - regulace skládání a rozkládání laminy Dynamika laminů během BC Rozpad laminy - profáze/metafáze - kináza p34cdc2 (cdk1) - savčí buňky: A-laminy- disociace z jaderné laminy v časné profázy; rozptýleny do cytoplasmy B-laminy- disociace později; asociovány s membránou Skládání laminy - pozdní telofáze - defosforylace Lamin B1- v pozdní anafázy vazba na periferní části chromosomů -telofáze- reasociuje s membránovými partikulemi Lamin A - vazba k lamině během G1 fáze
6 Jaderná lamina Xenopus oocyty: -síť 10 nm laminových filament bezprostředně pod jadernou membránou Málo známo o přesném uspořádání U ostatních buněčných typů: - lamin není podél jaderného obalu distribuován homogenně - i v nukleoplazmě - malé shluky (lamin A, B) - difúzně rozptýlen nukleoskelet Spread NE prepared from Xenopus oocytes after extraction with Triton X-100 and prepared for transmission electron microscopy by freeze drying/unidirectional metal shadowing (Aebi et al., Nature, 1986) Visualization of an internal nucleoskeleton in HeLa cells from which ~90% chromatin had been removed. (C) Nuclear region; pan-intermediate-filament antibody; more core filaments are visible. (D) Nuclear and cytoplasmic regions; anti-vimentin antibody. nu, nucleolus; ns, nucleoskeleton; n, nucleus; l, lamina; cf, core filaments (Hozák et al. 1995, Journal of Cell Science) Interakce laminů s jadernými komponentami LAPs (lamina-associated polypeptides) LAP2-6 alternativně sestřižených izoform - exprese v půběhu vývoje - esenciální LAP2α - v nukleoplazmě, váže lamin A/C LAP2β - interaguje s rod doménou B-laminů -důležitý pro assembly B-laminů do laminy LBR (p58) - lamin B receptor nukleoplasmatická doména: - interakce s B-laminy, HP1 (human chromatinassociated protein), chromatinem - fosforylační místo pro PKA, cdc2, arginin-serin (RS)-specific kinásu Emerin - 34 kda - gen EMD (STA) na X chromosomu mutace způsobuje X-linked formu Emery-Dreifuss svalové dystrofie - distribuce v INM závislá na laminu A MAN1 - funkce v časném vývoji (překryvné funkce s emerinem) LEM motiv LEM motiv- u LAP2, emerinu, MAN1 - cca 40 AMK - vazba laminů a BAF (barrier to autointergal factor)
7 Interakce laminů s jadernými komponentami Nespriny - tzv. spectrin repeat proteiny; - spectrin repetice v jádru proteinu - NH2- terminální calponin homologická doména - COOH-terminální Klarsicht doména Izoformy nesprin1: CPG2, syne-1, myne-1, Enaptin Izoformy nesprin 2: syne-2, NUANCE -v INM i ONM - interakce: aktin, lamin A,C, emerin Izoformy nesprin 3: bez aktin-vazebné domény - asociace s plectinem SUN domain proteiny - Caenorhabditis e.- UNC-84, UNC-83 - Lidské homology SUN1, SUN2 určuje velikost, tvar a sílu jádra Jaderná lamina - funkce odolává deformaci, chrání chromatin laminy - ukotvení a rozmístění elementů jaderného obalu do správných pozic (jaderné póry, různé membránové proteiny) asociace s chromatinem (proteiny v lamině - interakce s chromatinovými proteiny: LBR-HP1; LAP2b-BAF; laminy-histony) role v apoptóze - laminy, LAPs - časné cíle kaspas - usnadnění aktivace nukleas - lamina - místo pro ukotvení apoptotické signální mašinerie? - mutace laminů - mohou působit citlivost buněk k apoptóze role při rozpadu a složení jaderného obalu během cytokineze interakce s cytoskeletem (SUN doménové proteiny, nespriny) - bridging NE
8 Jaderná lamina - funkce chybí Nup153 chybí laminy Role laminů v replikaci DNA představa o mechanismu zatím sporná Jaderná lamina - funkce funkce laminy - uspořádání replikačních center lamin B - asociace s replikačními ohnisky v S-fázi lamin A/C - replikační ohniska kolem jadérka komplex LAP2β a HA95 - iniciační fáze replikace Role laminů v transkripci laminy typu B: B - vazba RNA poly II - vliv na základní procesy syntézy RNA - asociace: s periferním heterochromatinem (přes LBR a jeho interakce s HA95, HP1) Oct1 (represor kolagenázového genu) s LAP2β+ GCL+ DP3: represe E2F-DP3
9 Role laminů v transkripci Jaderná lamina - funkce laminy typu A: - ovlivnění aktivity proteinů regulujících transkripci - dynamičtější - ovlivnění transkripce i v místech dál od j. membrány -s LAP2α -v různých tělíscích v nukleoplasmě - asociace se speciálními TF: SREBP1 (Sterol-Response Element Binding Protein 1) Rb - funkční interakce (s laminema +LAP2α) přes emerin: s GCL / BAF Laminopatie mutace v laminech (typu A) a v proteinech interagujících s laminy (např. geny EMD, LBR, MAN1, LAP2, AAS, FACE1-ZMPSTE24) působí mnoho dědičných či sporadických onemocnění Společné symptomy: ochabnutí svalů lokomoční problémy kardiovaskulární problémy Přes 180 mutací v LMNA, které způsobují laminopathie
10 Laminopatie Pruhované svalstvo - Emery-Dreifusova svalová dystrofie (EDMD) - Svalová dystrofie končetinových pletenců typu 1B (LGMD-1B) - Forma dilatační kardiomyopatie (DCM) Tuková tkáň - Dunniganova familiární parciální lipodystrofie (FPLD-1B) Periferní nervy - Autosomální recesivní syndrom Charcot-Marie-Toothův typu 2B1 (AR-CMT2-B1) Systemické laminopatie - Mandibuloakrální dysplázie (MAD) - Hutchinson-Gilfordova progerie (HGPS) - Atypický Wernerův syndrom (WS) - Novorozenecká restriktivní dermopatie (RD) + překryvné laminopatie Emery-Dreifusova svalová dystrofie (EDMD) projevy: - časné zkrácení šlach v kotníku, lokti a zkrácení páteřních svalů (první projevy už roku) - postupně ochabování a ubývání svalů proximálně v horních a distálně v dolních končetinách - rozvinutí kardiomyopatie - defekty v přenosu impulzů EDMD - X-linked (XL-EDMD) - mutace v genu STA (EDM) na chromosomu q28 - autosomálně dominantní (AD-EDMD) - mutace v genu LMNA na chromosomu 1q autosomálně recesivní (AR-EDMD) -vzácně
11 Svalová dystrofie končetinových pletenců typu 1B (LGMD, limb-girdle muscular dystrophy ) mutace v LMNA ovlivňující pruhovanou svalovinu- podél celého genu projevy: mírnější projev, pozdější propuknutí - ochabování svalstva pánevních a ramenních pletenců - zkracování šlach, občas zbytnění lýtka -srdeční poruchy - později v životě Způsob dědid dičnosti: -dominantní LGMD1 - recesivní LGMD2 Forma dilatační kardiomyopatie (DCM) dilated cardiomyopathy - těžké onemocnění srdeční svaloviny projevy: - postupné rozšíření komor, narušená systolická funkce -příčně pruhované svaly buď nezasaženy, nebo zasaženy jen mírně -srdeční selhání možné již v mladém věku EDMD, LGMD, DCM EDMD, LGMD, DCM - velmi podobné, překrývající se fenotypy - mohou reprezentovat různé stupně jedné a té samé choroby
12 Dunniganova familiárn rní parciáln lní lipodystrofie (FPLD-1B) projev: (AD charakter) - ztráta podkožního tuku v končetinách a trupu + nadměrné hromadění tukové tkáně kolem krku, obličeje (dvojitá brada) a ramen - tzv. buvolí hrb - různé stupně rezistence k inzulínu, diabetes II, hypertriglyceridemie - redistribuce tukové tkáně - zjevná v/po pubertě mutace v LMNA - v C-koncové globulární části, Hutchinson-Gilfordova progerie (HGPS) 6 let 15 let vzácný syndrom předčasného stárnutí - nejdramatičtější fenotyp (1: porodů) projev: - předčasné známky senility - překvapivého stupně: zpomalený růst, ztráta podkožního tuku, ztráta vlasů, řídnutí kostí, rezistence k inzulínu, slabě vyvinuté svalstvo, nedokončený sexuální vývoj, arterioskleróza, vystupující oči, zobákovitý nos,... - nástup během prvních let života (jeví se normální při porodu) - mentální a emocionální vývoj nenarušen -střední délka života 13,4 roku (smrt mezi 7 a 25,5 roku)
13 Nuclear laminopathies AR (autosomal recessive) and AD (autosomal dominant) designate the mode of inheritance of the diseases.
14 Laminopatie Mutace v laminu typu B: Letální v embryonálním stádiu Více neidentifikované laminopatie Mutace v LMNB1 - autosomal dominant leukodystrophy (ADLD) Mutace v LMNB2 - Barraquer-Simons syndrome (APL) Spektrum nemocí spojeno s mutacemi laminb-receptoru LBR - Greenberg dysplasia - Pelger-Huet anomaly Jak mutované laminy působp sobí laminopatie? zatím neexituje přesný model k vysvětlení molekulární podstaty laminopatií několik hypotéz: - strukturální hypotéza - hypotéza genové exprese - teorie zadržení v ER - hypotéza buněčné proliferace - toxicita prelaminu A asi kombinace všech těchto mechanismů - mohou přispívat v různé míře k patogenezi nemocí - žádná z teorií nefunguje exkluzivně
15 Děkuji za pozornost
BUŇEČNÝ CYKLUS A JEHO KONTROLA
BUŇEČNÝ CYKLUS A JEHO KONTROLA MITOSA - fáze: Profáze - kondensace chromosomů - 30 nm chromatine fibres vázané na matrix Rozpad Metafáze - párové ( sesterské ) chromatidy - vázané centromerou, seřazené
Genetika člověka GCPSB
Inovace předmětu Genetika člověka GCPSB Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/28.0032 Genetika člověka / GCPSB 7. Genetika
8 cyklinů (A, B, C, D, E, F, G a H) - v jednotlivých fázích buněčného cyklu jsou přítomny určité typy cyklinů
Buněč ěčné dělení BUNĚČ ĚČNÝ CYKLUS ŘÍZENÍ BUNĚČ ĚČNÉHO CYKLU cykliny a na cyklinech závislé proteinkinázy (Cyclin-Dependent Protein Kinases; Cdk-proteinkinázy) - proteiny, které jsou součástí řídícího
Buněčné dělení ŘÍZENÍ BUNĚČNÉHO CYKLU
BUNĚČNÝ CYKLUS Buněčné dělení Cykliny a na cyklinech závislé proteinkinázy (Cyclin- Dependent Protein Kinases; Cdk-proteinkinázy) - proteiny, které jsou součástí řídícího systému buněčného cyklu 8 cyklinů
Cytoskelet a jaderná matrix. Eva Bártová Biofyzikální ústav AV ČR Brno
Cytoskelet a jaderná matrix. Eva Bártová Biofyzikální ústav AV ČR Brno Eukaryotic Cells All cells are surrounded by a plasma membrane made of phospholipids and proteins. Eukaryotic cells have membrane
Buněčný cyklus. Replikace DNA a dělení buňky
Buněčný cyklus Replikace DNA a dělení buňky 2 Regulace buněčného dělení buněčný cyklus: buněčné dělení buněčný růst kontrola kvality potomstva (dceřinných buněk) bránípřenosu nekompletně zreplikovaných
Buněčné jádro a viry
Buněčné jádro a viry Struktura virionu Obal kapsida strukturni proteiny povrchove glykoproteiny interakce s receptorem na povrchu buňky uvnitř nukleocore (ribo )nukleova kyselina, virove proteiny Lokalizace
DMPK (ZNF9) V DIFERENCOVANÝCH. Z, Kroupová I, Falk M* M
FISH ANALÝZA m-rna DMPK (ZNF9) V DIFERENCOVANÝCH TKÁNÍCH PACIENT IENTŮ S MYOTONICKOU DYSTROFI FIÍ Lukáš Z, Kroupová I, Falk M* M Ústav patologie FN Brno *Biofyzikáln lní ústav AVČR R Brno Definice MD Myotonická
Buňky, tkáně, orgány, soustavy
Lidská buňka buněčné organely a struktury: Jádro Endoplazmatické retikulum Goldiho aparát Mitochondrie Lysozomy Centrioly Cytoskelet Cytoplazma Cytoplazmatická membrána Buněčné jádro Jadérko Karyoplazma
Genetika kardiomyopatií. Pavol Tomašov Kardiologická klinika 2. LF UK a FN v Motole, Praha
Genetika kardiomyopatií Pavol Tomašov Kardiologická klinika 2. LF UK a FN v Motole, Praha Úvod 1. Některé kardiomyopatie jsou monogenně podmíněná dědičná onemocnění 2. Dědičné kardiomyopatie mají velkou
Apoptóza Onkogeny. Srbová Martina
Apoptóza Onkogeny Srbová Martina Buněčný cyklus Regulace buněčného cyklu 1. Cyklin-dependentní kináza (Cdk) cyclin Regulace buněčného cyklu 2. Retinoblastomový protein (prb) E2F Regulace buněčného cyklu
Cytoskelet a jaderná matrix. Eva Bártová Biofyzikální ústav AV ČR Brno
Cytoskelet a jaderná matrix. Eva Bártová Biofyzikální ústav AV ČR Brno Eukaryotic Cells All cells are surrounded by a plasma membrane made of phospholipids and proteins. Eukaryotic cells have membrane
INTRACELULÁRNÍ SIGNALIZACE II
INTRACELULÁRNÍ SIGNALIZACE II 1 VÝZNAM INTRACELULÁRNÍ SIGNALIZACE V MEDICÍNĚ Příklad: Intracelulární signalizace: aktivace Ras proteinu (aktivace receptorové kinázy aktivace Ras aktivace kinázové kaskády
NEUROGENETICKÁ DIAGNOSTIKA NERVOSVALOVÝCH ONEMOCNĚNÍ
NEUROGENETICKÁ DIAGNOSTIKA NERVOSVALOVÝCH ONEMOCNĚNÍ Doc. MUDr. A. Šantavá, CSc. Ústav lékařské genetiky a fetální medicíny LF a UP Olomouc Význam genetiky v diagnostice neuromuskulárních onemocnění Podílí
http://www.accessexcellence.org/ab/gg/chromosome.html
3. cvičení Buněčný cyklus Mitóza Modifikace mitózy 1 DNA, chromosom genetická informace organismu chromosom = strukturní podoba DNA během dělení (mitózy) řetězec DNA (chromonema) histony další enzymatické
Sylabus témat ke zkoušce z lékařské biologie a genetiky. Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně
Sylabus témat ke zkoušce z lékařské biologie a genetiky Buněčná podstata reprodukce a dědičnosti Struktura a funkce prokaryot Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně
Endocytóza o regulovaný transport látek v buňce
. Endocytóza o regulovaný transport látek v buňce Exocytóza BUNĚČNÝ CYKLUS OMNIS CELLULA ET CELLULA - buňka vzniká jen z buňky Sled akcí, ve kterých buňka zdvojí svůj obsah a pak se rozdělí systém regulace
Stavba dřeva. Základy cytologie. přednáška
Základy cytologie přednáška Buňka definice, charakteristika strana 2 2 Buňky základní strukturální a funkční jednotky živých organismů Základní charakteristiky buněk rozmanitost (diverzita) - např. rostlinná
Nejmenší jednotka živého organismu schopná samostatné existence. Výměnu látek Růst Pohyb Rozmnožování Dědičnost
BUŇKA Nejmenší jednotka živého organismu schopná samostatné existence Buňka je schopna uskutečňovat základní funkce organismu: obrázky použity z Nečas: BIOLOGIE LIDSKÉ TĚLO Alberts: ZÁKLADY BUNĚČNÉ BIOLOGIE
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Mária Čudejková 2. Transkripce genu a její regulace Transkripce genetické informace z DNA na RNA Transkripce dvou genů zachycená na snímku z elektronového mikroskopu.
BUNĚČNÁ MOTILITA A MOLEKULÁRNÍ MOTORY
BUNĚČNÁ MOTILITA A MOLEKULÁRNÍ MOTORY 1 VÝZNAM BUNĚČNÉ MOTILITY A MOLEKULÁRNÍCH MOTORŮ V MEDICÍNĚ Příklad: Molekulární motor: dynein Onemocnění: Kartagenerův syndrom 2 BUNĚČNÁ MOTILITA A MOLEKULÁRNÍ MOTORY
44 somatických chromozomů pohlavní hormony (X,Y) 46 chromozomů
Buněčný cyklus MUDr.Kateřina Kapounková Inovace studijního oboru Regenerace a výţiva ve sportu (CZ.107/2.2.00/15.0209) 1 DNA,geny genom = soubor všech genů a všechna DNA buňky; kompletní genetický materiál
AUG STOP AAAA S S. eukaryontní gen v genomové DNA. promotor exon 1 exon 2 exon 3 exon 4. kódující oblast. introny
eukaryontní gen v genomové DNA promotor exon 1 exon 2 exon 3 exon 4 kódující oblast introny primární transkript (hnrna, pre-mrna) postranskripční úpravy (vznik maturované mrna) syntéza čepičky AUG vyštěpení
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 7. Interakce DNA/RNA - protein Ivo Frébort Interakce DNA/RNA - proteiny v buňce Základní dogma molekulární biologie Replikace DNA v E. coli DNA polymerasa a
7. Regulace genové exprese, diferenciace buněk a epigenetika
7. Regulace genové exprese, diferenciace buněk a epigenetika Aby mohl mnohobuněčný organismus efektivně fungovat, je třeba, aby se jednotlivé buňky specializovaly na určité funkce. Nový jedinec přitom
VÝZNAM REGULACE APOPTÓZY V MEDICÍNĚ
REGULACE APOPTÓZY 1 VÝZNAM REGULACE APOPTÓZY V MEDICÍNĚ Příklad: Regulace apoptózy: protein p53 je klíčová molekula regulace buněčného cyklu a regulace apoptózy Onemocnění: více než polovina (70-75%) nádorů
Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza
Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových
Uspořádání genomu v jádře buňky a jeho možná funkce. Stanislav Kozubek Biofyzikální ústav AV ČR, v.v.i.
Uspořádání genomu v jádře buňky a jeho možná funkce Stanislav Kozubek Biofyzikální ústav AV ČR, v.v.i. DNA, nukleosomy, chromatin, chromosom a genom Chromosom Genom v jádře Buňka Chromatinové vlákno Nukleosomy
Genetická kontrola prenatáln. lního vývoje
Genetická kontrola prenatáln lního vývoje Stádia prenatáln lního vývoje Preembryonální stádium do 6. dne po oplození zygota až blastocysta polární organizace cytoplasmatických struktur zygoty Embryonální
Kosterní svalstvo tlustých a tenkých filament
Kosterní svalstvo Základní pojmy: Sarkoplazmatické retikulum zásobárna iontů vápníku - depolarizace membrány uvolnění vápníku v blízkosti kontraktilního aparátu vazba na proteiny zajišťující kontrakci
Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor)
RNAi Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor) Místo silné pigmentace se objevily rostliny variegované a dokonce bílé Jorgensen pojmenoval tento fenomén
VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ
FUNKCE PROTEINŮ 1 VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ Příklad: protein: dystrofin onemocnění: Duchenneova svalová dystrofie 2 3 4 FUNKCE PROTEINŮ: 1. Vztah struktury a funkce proteinů 2. Rodiny proteinů
BUNĚČNÝ CYKLUS. OMNIS CELLULA ET CELLULA - buňka vzniká jen z buňky. Sled akcí, ve kterých buňka zdvojí svůj obsah a pak se rozdělí
(1 BUNĚČNÝ CYKLUS BUNĚČNÝ CYKLUS OMNIS CELLULA ET CELLULA - buňka vzniká jen z buňky Sled akcí, ve kterých buňka zdvojí svůj obsah a pak se rozdělí systém regulace kontrolní body molekulární brzdy Jednobuněčné
RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA
RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA 1. Genotyp a jeho variabilita, mutace a rekombinace Specifická imunitní odpověď Prevence a časná diagnostika vrozených vad 2. Genotyp a prostředí Regulace buněčného
TUBULIN-FOLDING COFACTOR A (TFC A) u Arabidopsis
TUBULIN-FOLDING COFACTOR A (TFC A) u Arabidopsis Mikrotubuly Formace heterodimerů α/βtubulinu Translace α a β -tubulin monomerů chaperonin c-cpn správný folding α-tubulin se váže na TFC B a β na TFC
Molekulární diagnostika pletencové svalové dystrofie typu 2A
Molekulární diagnostika pletencové svalové dystrofie typu 2A Lenka Fajkusová Centrum molekulární biologie a genové terapie Fakultní nemocnice Brno Pletencové svalové dystrofie (Limb Girdle Muscular Dystrophy
(Vývojová biologie) Embryologie. Jiří Pacherník
(Vývojová biologie) Embryologie Jiří Pacherník jipa@sci.muni.cz Podpořeno projektem FRVŠ 524/2011 buňka -> tkáně -> orgány -> organismus / jedinec Základní procesy na buněčné úrovni dělení buněk proliferace
Inovace studia molekulární. a buněčné biologie
Inovace studia molekulární I n v e s t i c e d o r o z v o j e v z d ě l á v á n í a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 10. Struktury signálních komplexů Ivo Frébort Typy hormonů Steroidní hormony deriváty cholesterolu, regulují metabolismus, osmotickou rovnováhu, sexuální funkce
GENETIKA. Dědičnost a pohlaví
GENETIKA Dědičnost a pohlaví Chromozómové určení pohlaví Dvoudomé rostliny a gonochoristé (živočichové odděleného pohlaví) mají pohlaví určeno dědičně chromozómovou výbavou jedince = dvojicí pohlavních
DUM č. 1 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika
projekt GML Brno Docens DUM č. 1 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 02.06.2014 Ročník: 6AF, 6BF Anotace DUMu: Charakteristika buněčného cyklu eukaryot
MITÓZA V BUŇKÁCH KOŘÍNKU CIBULE
Cvičení 6: BUNĚČNÝ CYKLUS, MITÓZA Jméno: Skupina: MITÓZA V BUŇKÁCH KOŘÍNKU CIBULE Trvalý preparát: kořínek cibule obarvený v acetorceinu V buňkách kořínku cibule jsou viditelné různé mitotické figury.
Buněčný cyklus a molekulární mechanismy onkogeneze
Buněčný cyklus a molekulární mechanismy onkogeneze Imunofluorescence DAPI Přehled regulace buněčného cyklu Základní terminologie: Cycliny evolučně konzervované proteiny s homologními oblastmi; jejich
The cell biology of rabies virus: using stealth to reach the brain
The cell biology of rabies virus: using stealth to reach the brain Matthias J. Schnell, James P. McGettigan, Christoph Wirblich, Amy Papaneri Nikola Skoupá, Kristýna Kolaříková, Agáta Kubíčková Historie
Buňka V. Jádro. Buněčný cyklus a buněčné dělení (mitosa). Ústav histologie a embryologie 1. LF UK
Buňka V Jádro. Buněčný cyklus a buněčné dělení (mitosa). Ústav histologie a embryologie 1. LF UK Autor: doc. MUDr. Tomáš Kučera, Ph.D. Předmět: Obecná histologie a obecná embryologie, kód B02241 Datum:
Co nás učí nádory? Prof. RNDr. Jana Šmardová, CSc. Ústav patologie FN Brno Přírodovědecká a Lékařská fakulta MU Brno
Co nás učí nádory? Prof. RNDr. Jana Šmardová, CSc. Ústav patologie FN Brno Přírodovědecká a Lékařská fakulta MU Brno Brno, 17.5.2011 Izidor (Easy Door) Osnova přednášky 1. Proč nás rakovina tolik zajímá?
NEMEMBRÁNOVÉ ORGANELY. Ribosomy Centrioly (jadérko) Cytoskelet: aktinová filamenta (mikrofilamenta) intermediární filamenta mikrotubuly
NEMEMBRÁNOVÉ ORGANELY Ribosomy Centrioly (jadérko) Cytoskelet: aktinová filamenta (mikrofilamenta) intermediární filamenta mikrotubuly RIBOSOMY Částice složené z rrna a proteinů, skládají se z velké kulovité
EPIGENETIKA reverzibilních změn funkce genů, Epigenetické faktory ovlivňují fenotyp bez změny genotypu. Epigenetická
EPIGENETIKA Epigenetika se zabývá studiem reverzibilních změn funkce genů, aniž by při tom došlo ke změnám v sekvenci jaderné DNA. Epigenetické faktory ovlivňují fenotyp bez změny genotypu. Epigenetická
Stárnutí organismu Fyziologické hodnoty odchylky během stárnutí
Stárnutí organismu Stárnutí organismu Fyziologické hodnoty odchylky během stárnutí poklesy funkcí se liší mezi orgánovými systémy Některé projevy stárnutí ovlivňuje výživa Diagnostické metody odlišují
DUM č. 3 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika
projekt GML Brno Docens DUM č. 3 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 02.06.2014 Ročník: 6AF, 6BF Anotace DUMu: chromatin - stavba, organizace a struktura
Genová etiologie nemocí
Genová etiologie nemocí 1. Obecná etiologie nemocí 1. Obecná etiologie nemocí 2. Mutace genů v germinativních a somatických buňkách 3. Molekulární fyziologie genu 4. Regulace aktivity genu (genové exprese)
Fyziologie AUTOFAGIE. MUDr. JAN VARADY KARIM FNO
Fyziologie AUTOFAGIE MUDr. JAN VARADY KARIM FNO 29.1.2019 Autofagie?? Autofagie Self-eating Regulovaný katabolický jev Degradace a recyklace buněčných cytoplasmatických komponent: malfunkční a staré proteiny,
Struktura a funkce biomakromolekul KBC/BPOL
Struktura a funkce biomakromolekul KBC/BPOL 2. Posttranslační modifikace a skládání proteinů Ivo Frébort Biosyntéza proteinů Kovalentní modifikace proteinů Modifikace proteinu může nastat předtím než je
Biomarkery - diagnostika a prognóza nádorových onemocnění
Biomarkery - diagnostika a prognóza nádorových onemocnění O. Topolčan,M.Pesta, J.Kinkorova, R. Fuchsová Fakultní nemocnice a Lékařská fakulta Plzeň CZ.1.07/2.3.00/20.0040 a IVMZČR Témata přednášky Přepdpoklady
A. chromozómy jsou rozděleny na 2 chromatidy spojené jen v místě centromery. B. vlákna dělícího vřeténka jsou připojena k chromozómům
Karlova univerzita, Lékařská fakulta Hradec Králové Obor: všeobecné lékařství - test z biologie Vyberte tu z nabídnutých odpovědí (1-5), která je nejúplnější. Otázka Odpověď 1. Mezi organely membránového
Mitóza a buněčný cyklus
Mitóza a buněčný cyklus Něco o chromosomech - Chromosom = 1 molekula DNA + navázané proteiny -V diploidní buňce jsou od každého chromosomu 2 kopie (= homologní chromosomy) - Homologní chromosomy nesou
Bakalářské práce. Magisterské práce. PhD práce
Bakalářské práce Magisterské práce PhD práce Témata bakalářských prací na školní rok 2015-2016 1 Název Funkční analýza jaderných proteinů fosforylovaných pomocí mitogenaktivovaných proteinkináz. Školitel
Základy buněčné biologie
Maturitní otázka č. 8 Základy buněčné biologie vypracovalo přírodozpytné sympózium LP, AM & DK na konferenci v Praze, 1. Máje 2014 Buňka (cellula) je nejmenší známý útvar, který je schopný všech životních
Interakce buněk s mezibuněčnou hmotou. B. Dvořánková
Interakce buněk s mezibuněčnou hmotou B. Dvořánková Obsah přednášky Buňka a její organely Extracelulární matrix Interakce buněk s ECM i navzájem Kultivace buněk in vitro Buněčné jádro Alberts: Molecular
Lodish et al, Molecular Cell Biology, 4-6 vydání Alberts et al, Molecular Biology of the Cell, 4 vydání
Lodish et al, Molecular Cell Biology, 4-6 vydání Alberts et al, Molecular Biology of the Cell, 4 vydání http://web.natur.cuni.cz/~zdenap/zdenateachingnf.html CHEMICKÉ SLOŽENÍ BUŇKY BUŇKA: 99 % C, H, N,
ZÁKLADY FUNKČNÍ ANATOMIE
OBSAH Úvod do studia 11 1 Základní jednotky živé hmoty 13 1.1 Lékařské vědy 13 1.2 Buňka - buněčné organely 18 1.2.1 Biomembrány 20 1.2.2 Vláknité a hrudkovité struktury 21 1.2.3 Buněčná membrána 22 1.2.4
Cvičeníč. 4: Chromozómy, karyotyp a mitóza. Mgr. Zbyněk Houdek
Cvičeníč. 4: Chromozómy, karyotyp a mitóza Mgr. Zbyněk Houdek Chromozomy Geny jsou u eukaryotických organizmů z převážnéčásti umístěny právě na chromozómech v b. jádře. Jejich velikost a tvar jsou rozmanité,
Univerzita Karlova v Praze Přírodovědecká fakulta
Univerzita Karlova v Praze Přírodovědecká fakulta Studijní program: Speciální chemicko-biologické obory Studijní obor: Molekulární biologie a biochemie organismů Martin Štach Interakce jaderné membrány
2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:
Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících
Genetika. Genetika. Nauka o dědid. dičnosti a proměnlivosti. molekulárn. rní buněk organismů populací
Genetika Nauka o dědid dičnosti a proměnlivosti Genetika molekulárn rní buněk organismů populací Dědičnost na úrovni nukleových kyselin Předávání vloh z buňky na buňku Předávání vlastností mezi jednotlivci
Struktura chromatinu. Co je to chromatin?
Struktura chromatinu Buněčné jádro a genová exprese Lenka Rossmeislová struktura-význam-modifikace Co je to chromatin? hmota, ze které jsou vytvořeny chromozomy DNA asociovaná s proteiny, které napomáhají
Centrální dogma molekulární biologie
řípravný kurz LF MU 2011/12 Centrální dogma molekulární biologie Nukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Mendel) 1869 objev nukleových kyselin (Miescher) 1944 genetická informace v nukleových
3. Nukleocytoplasmatický kompartment rostlinných buněk
3. Nukleocytoplasmatický kompartment rostlinných buněk Co je nukleocytoplasmatický kompartment a jak vypadá u typické rostlinné buňky Jádro buněčné Nositel naprosté většiny genetické informace buňky Jak
Růst a vývoj rostlin - praktikum MB130C78
Růst a vývoj rostlin - praktikum MB130C78 Blok 3 Role aktinového cytoskeletu v morfogenezi rostlinných buněk - analýza fenotypu Úlohy: 1. Kvantifikace počtu zkroucených a správně tvarovaných trichomů u
Rozmnožování buněk Vertikální přenos GI. KBI / GENE Mgr. Zbyněk Houdek
Rozmnožování buněk Vertikální přenos GI KBI / GENE Mgr. Zbyněk Houdek Buněčný cyklus Buňky vznikají z bb. a jedinou možnou cestou, jak vytvořit více bb. je jejich dělením. Vertikální přenos GI: B. (mateřská)
rodokmeny vazby mezi členy rodiny + popis pro konkrétní sledovaný znak využití Mendelových zákonů v lékařství genetické konzultace o možném výskytu
Genealogie Monogenní dědičnost rodokmeny vazby mezi členy rodiny + popis pro konkrétní sledovaný znak využití Mendelových zákonů v lékařství genetické konzultace o možném výskytu onemocnění v rodině Genealogické
Základní morfogenetické procesy
Základní morfogenetické procesy 502 Základní morfogenetické procesy Mechanismy, které se uplatňují v ontogenesi, tedy při vývoji jedince od zygoty k mnohobuněčnému organismu Buněčná úroveň diferenciace
Úvod do studia biologie kmenových buněk. Jiří Pacherník tel:
Úvod do studia biologie kmenových buněk Jiří Pacherník e-mail: jipa@sci.muni.cz tel: 532 146 223 Co jsou kmenové buňky? - buňky schopné vlastní obnovy (sebeobnova) - buňky schopné dávat vznik jiným typům
Autofagie a výživa u kriticky nemocného pacienta
Autofagie a výživa u kriticky nemocného pacienta Igor Satinský Nemocnice Havířov Mezioborová JIP Colours of Sepsis, Ostrava, 28.1.2015 Autofagie a výživa u kriticky nemocného pacienta Igor Satinský Nemocnice
Genetika člověka / GCPSB. Radim Vrzal
Genetika člověka / GCPSB Radim Vrzal Genetika svalových poruch Molekulární genetika svalových poruch cca 650 svalů - pohyb - postoj - stání na nohou - podpora vnitřních orgánů - produkce tepla - uzavíraní/otevírání
Progerie, aneb fyzická nesmrtelnost
Progerie, aneb fyzická nesmrtelnost V roce 1886 Dr. Jonathan Hutchinson a v roce 1897 Dr. Hastins Gilford v Anglii poprvé popsali nemoc, označovanou jako progerie (progeria, Progeria Infantiles) či Hutschinson-Gilford
Senescence v rozvoji a léčbě nádorů. Řezáčová Martina
Senescence v rozvoji a léčbě nádorů Řezáčová Martina Replikační senescence Alexis Carrel vs. Leonard Hayflick and Paul Moorhead Diferencované bb mohou prodělat pouze omezený počet dělení - Hayflickův limit
B9, 2015/2016, I. Literák, V. Oravcová CYTOSKELETÁLNÍ PRINCIP BUŇKY
B9, 2015/2016, I. Literák, V. Oravcová CYTOSKELETÁLNÍ PRINCIP BUŇKY CYTOSKELETÁLNÍ PRINCIP BUŇKY mikrotubuly střední filamenta aktinová vlákna CYTOSKELETÁLNÍ PRINCIP BUŇKY funkce cytoskeletu - udržovat
Projekt realizovaný na SPŠ Nové Město nad Metují
Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 02 Přírodovědné předměty Hana Gajdušková 1 Viry
25.2.2014. Genomika. Obor genetiky, který se snaží. stanovit úplnou genetickou informaci. organismu a interpretovat ji v. termínech životních pochodů.
Genomika Obor genetiky, který se snaží stanovit úplnou genetickou informaci organismu a interpretovat ji v termínech životních pochodů. 1 Strukturní genomika stanovení sledu nukleotidů genomu organismu,
Vytvořilo Oddělení lékařské genetiky FN Brno
GONOSOMY GONOSOMY CHROMOSOMY X, Y Obr. 1 (Nussbaum, 2004) autosomy v chromosomovém páru homologní po celé délce chromosomů crossingover MEIÓZA Obr. 2 (Nussbaum, 2004) GONOSOMY CHROMOSOMY X, Y ODLIŠNOSTI
Molekulární mechanismy diferenciace a programované buněčné smrti - vztah k patologickým procesům buněk. Aleš Hampl
Molekulární mechanismy diferenciace a programované buněčné smrti - vztah k patologickým procesům buněk Aleš Hampl Tkáně Orgány Živé buňky, které plní různé funkce (podpora struktury, přijímání živin, lokomoce,
Jaderné receptory. ligand. cytoplazmatická membrána. jaderný receptor DNA. - ligandem aktivované transkripční faktory
Jaderné receptory Jaderné receptory - ligandem aktivované transkripční faktory - pokud není znám ligand ORPHAN receptors - ligand nalezen adopted orphan ligand DNA cytoplazmatická membrána jaderný receptor
Základy molekulární a buněčné biologie. Přípravný kurz Komb.forma studia oboru Všeobecná sestra
Základy molekulární a buněčné biologie Přípravný kurz Komb.forma studia oboru Všeobecná sestra Genetický aparát buňky DNA = nositelka genetické informace - dvouvláknová RNA: jednovláknová mrna = messenger
Molekulární procesy po fertilizacinormální či abnormální po ART?
Molekulární procesy po fertilizacinormální či abnormální po ART? Aleš Hampl Již více jak MILION dětí bylo na světě počato pomocí ART ART jako zdroj zvýšeného rizika:? Kongenitální malformace (Ericson and
Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115
Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: CZ.1.07/1.5.00/34.0410 Číslo šablony: V/2 - inovace směřující k rozvoji odborných kompetencí Název materiálu: Buněčný cyklus
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Potřebné genetické testy pro výzkum a jejich dostupnost, spolupráce s neurology Taťána Maříková. Parent projekt. Praha 19.2.2009
Potřebné genetické testy pro výzkum a jejich dostupnost, spolupráce s neurology Taťána Maříková Parent projekt Praha 19.2.2009 Diagnostika MD její vývoj 1981-1986: zdokonalování diferenciální diagnostiky
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Biologie 11, 2014/2015, Ivan Literák BUNĚČNÝ CYKLUS A JEHO REGULACE
Biologie 11, 2014/2015, Ivan Literák BUNĚČNÝ CYKLUS A JEHO REGULACE BUNĚČNÝ CYKLUS PROGRAMOVANÁ BUNĚČNÁ SMRT KONTINUITA ŽIVOTA: R. R. Virchow: Virchow: buňka buňka z buňky, z buňky, živočich živočich z
P1 AA BB CC DD ee ff gg hh x P2 aa bb cc dd EE FF GG HH Aa Bb Cc Dd Ee Ff Gg Hh
Heteroze jev, kdy v F1 po křížení geneticky rozdílných genotypů lze pozorovat zvětšení a mohutnost orgánů, zvýšení výnosu, životnosti, ranosti, odolnosti ve srovnání s lepším rodičem = heterózní efekt
růstu a buněčného dělění
Buněčný cyklus - principy regulace buněčného Buněčný cyklus - principy regulace buněčného růstu a buněčného dělění Mitóza Průběh mitózy v buněčné kultuře fibroblastů Buněčný cyklus Kinázy závislé na cyklinech
Mechanismy hormonální regulace metabolismu. Vladimíra Kvasnicová
Mechanismy hormonální regulace metabolismu Vladimíra Kvasnicová Osnova semináře 1. Obecný mechanismus působení hormonů (opakování) 2. Příklady mechanismů účinku vybraných hormonů na energetický metabolismus
www.printo.it/pediatric-rheumatology/cz/intro
www.printo.it/pediatric-rheumatology/cz/intro Candle Verze č 2016 1. CO JE CANDLE 1.1 Co je to? Chronická atypická neutrofilní dermatóza s lipodystrofií a zvýšenou teplotou (CANDLE) patří mezi vzácná dědičná
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy 1/75 Genetika = věda o dědičnosti Studuje biologickou informaci. Organizmy uchovávají,
BAKTERIÁLNÍ GENETIKA. Lekce 12 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc.
BAKTERIÁLNÍ GENETIKA Lekce 12 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc. -dědičnost u baktérií principiálně stejná jako u komplexnějších organismů -genom haploidní a značně menší Bakteriální genom
Syntéza a postranskripční úpravy RNA
Syntéza a postranskripční úpravy RNA 2016 1 Transkripce Proces tvorby RNA na podkladu struktury DNA Je přepisován pouze jeden řetězec dvoušroubovice DNA templátový řetězec Druhý řetězec se nazývá kódující
Rozdíly mezi prokaryotní a eukaryotní buňkou. methanobacterium, halococcus,...
Dělení buňky Biologie člení živé organizmy do dvou hlavních kategorií: prokaryotní a eukaryotní organizmy. Na základě srovnání 16S rrna se zjistilo, že na naší planetě jsou 3 hlavní nadříše buněčných forem:
NUKLEOVÉ KYSELINY. Základ života
NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním
Chromatin. Struktura a modifikace chromatinu. Chromatinové domény
Chromatin Struktura a modifikace chromatinu Chromatinové domény 2 DNA konsensus 5 3 3 DNA DNA 4 RNA 5 ss RNA tvoří sekundární strukturu s ds vlásenkami ds forms 6 of nucleic acids Forma točivost bp/turn