Characteristika povrchů, tenkých vrstev a povlaků
|
|
- Tadeáš Svoboda
- před 9 lety
- Počet zobrazení:
Transkript
1 Characteristika povrchů, tenkých vrstev a povlaků Proč jsou povrchy a tenké vrstvy důležité? Ideální a reálné povrchy Krystalografie povrchů Povrchové defekty Čistota povrchů
2 Proč jsou povrchy a tenké vrstvy důležité? Povrchová úprava kovů a kovy se datuje do doby 4000 let p.k., kdy se pro dekorativní účely používalo zlato. Pokovování zlatem a stříbrem (včetně použití jejich slitin amalgámů) bylo dobře známé ve 13. století p.k., a pokovování cínem bylo dokumentováno v Čechách již 1200 p.k. Elektrolytické pokovování používané od poloviny 19. století poskytlo nové možnosti povrchových úprav, které jsou využívány do současné doby. Od poloviny minulého století se masívně využívají nové technologie založené na výbojovém plazmatu.
3 LCD Display Flat TV displays are made on huge production lines. The glass sheets, which can contain four to eight TVs, are larger than a king size bed. A Gen 8 sheet measures m, but is only about 700µm thick. Very large step-and-scan lithography machines from Canon and Nikon are used to print 4.0µm features on Gen 8 sheets. One step-and-scan machine for LC-TV lithography weighs over 100 tons, unpackaged. One sheet is printed in sec. To reach this speed, very large masks are used. A single Nikon mask measures m. A finished mask can cost over $400,000; a set of masks is needed for each TV design. Multimillion dollar mask sets are common. This kind of expensive production line makes economic sense for TVs, where one finished LC-TV module can be sold for $500-$1000.
4 Azores model 9200 photolithography stepper system Lithography for mobile displays Elvino da Silveira, Frank Bok Namgung, Azores Corp., Wilmington, Massachusetts, United States Griff Resor, Resor Associates, Boxborough, Massachusetts, United States
5 SHARP
6 SHARP
7 MEMS - Micro-Electro-Mechanical Systems Digital micromirror device full HD 1080* µm velké zrcátko, 1012 naklopení o cca 12 deg
8 Jak na to? Při výrobě MEMS se využívají 3 základní kameny, které jsou schopné deponovat tenký film materiálu na substrát, který umožňuje použít vymaskování požadovaného tvaru a profilu a jeho vytvarování. K tomu se nejčastěji využívá následujících metod: depozice (Deposition) litografie (Lithography) selektivní leptání (Etching processes) Celý výrobní proces se obvykle skládá ze sekvence operací postupně formující vyžadované mechanické struktury, jako jsou nosníky, ozubená kolečka, ložiska, tyčky apod. Příklad vytváření volných struktur tzv. "vysících" ve vzduchu pomocí vyleptání částí tvořené Sac oxidy
9 Příklady Příklad kompletního MEMS kombinace mechanické mikrostruktury (uprostřed obrázku) a elektronických prvků a spojů (spleť obdélníčků a čar okolo) Akcelerometr pro mobily a tablety
10 Příklady Mikromotor Resonátor Nano tyčky
11 Nejvýznamnější vazebné síly mezi atomy Energie - kovalentní vazba >400 kcal/mol kovová vazba kcal/mol iontová vazba kcal/mol vodíková vazba kcal/mol van der Walls < 1 kcal/mol V tuhém stavu jsou jednotlivé atomy v takových vzdálenostech, při nichž jsou přitažlivé a odpudivé síly ve vzájemné rovnováze. Za dané teploty je vzdálenost mezi nimi konstantní. Tyto přitažlivé a odpudivé síly, zvané vazební síly jsou elektrostatického původu a jsou ovlivněny uspořádáním elektronů v atomovém obalu. Energie vazby mezi atomy určuje i práci, kterou je třeba vynaložit na jejich vychýlení z rovnovážné polohy. Vazební síly tedy zabezpečují soudržnost a pevnost v krystalech
12 Iontová vazba Iontová vazba (heteropolární vazba) je nejjednodušší vazba, která spočívá v elektrické přitažlivosti mezi elektropozitivními a elektronegativními atomy. Elektropozitivní atomy jsou takové, které mají schopnost odevzdávat elektrony, elektronegativní naopak elektrony přijímají. Např. atom kovu (např. Na) odevzdá jeden elektron (stává se kationtem) nekovovému atomu (např. Cl). Přijetím elektronu se atom chloru stává aniontem. Atomy pak drží pohromadě pouze elektrostatickými silami (opačným elektrickým nábojem). V podstatě dojde k přenosu elektronu z jednoho prvku na druhý. Tuto vazbu obsahují například molekuly chloridu sodného (NaCl). Iontové krystaly jsou složeny z kladných a záporných iontů. Podstatou vazby je elektrostatická interakce opačně nabitých iontů.
13 Kovalentní vazba Kovalentní vazba (homeopolární vazba) je charakterizována sdílením jednoho nebo více párů elektronů mezi dvěma elektricky neutrálními atomy (vazba jednoduchá, dvojná, respektive trojná). Atomy v této vazbě si střídavě doplňují valenční vrstvu elektronového obalu tak, že je obtížné posoudit, kterému atomu v určitém okamžiku elektron náleží. Tato vazba je velmi silná a je směrově orientovaná, takže ani tavením nebo rozpouštěním se molekuly nemění. Nejmenšími částečkami plynného chloru jsou dvouatomové molekuly. Vznikají sloučením dvou atomů chloru. Při tomto spojení však nedochází k přechodu elektronu. Dva atomy chloru sdílejí společný elektronový pár.tímto způsobem mohou oba atomy chloru v molekule dosáhnout toho, že mají ve valenční vrstvě elektronový oktet. Každý atom chloru (Cl) má v molekule chloru (Cl2) jeden společný a tři volné elektronové páry. Kovalentní vazba je podle elektronové teorie tvořena sdílením dvou vazebných elektronů s opačnými spiny (Pauliho vylučovací princip) tzv. elektronovým párem, tj. dvěma atomy, kolem nichžse vytvoří elektronová konfigurace nejbližšího vzácného plynu (elektronový oktet).
14 Kovová vazba Kovová vazba se často označuje jako další typ chemické vazby. Vzniká mezi velkými soubory stejných (i nestejných) atomů, jejichž elektronegativity jsou poměrně nízké a vzájemně se příliš neliší. Její podstatou je rovněž překrývání valenčních orbitalů jako u kovalentní vazby.používá se k vyjádření chemické vazby existující mezi atomy kovu v pevném stavu, uskutečněné extrémně delokalizovanými elektrony. Nejjednodušší model kovové vazby předpokládá, že se krystal kovů skládá z kationtů rozmístěných v pravidelné prostorové mřížce. Valenční elektrony jsou volně pohyblivé, označují se často jako elektronový plyn. Překrýváním energeticky stejných valenčních elektronových orbitalů v krystalu kovu vznikají společné energetické pásy. V těchto pásech se mohou elektrony volně pohybovat a dodávat tak látce specifické vlastnosti kovů - lesk, velkou elektrickou a tepelnou vodivost, kujnost a tažnost i jejich chemické vlastnosti.
15 Kovová vazba Symetrie kovové vazby u hořčíku Kovové kationty prostoupené elektronovým plynem
16 Van der Waalsova vazba Van der Waalsova vazba souvisí se vzájemným přitahováním permanentních, resp. indukovaných dipólů malých molekul. Je běžná u prvků nebo chemických sloučenin s velmi stabilní valenční skupinou (např. inertní plyny, polymery). Jejich molekuly jsou v plynném stavu jednoatomové a neslučují se s jinými atomy. Mají mimořádně nízkou teplotu varu a mají ze všech prvků nejmenší meziatomovou soudržnost. Síly van der Waalsovy vazby klesají se čtvrtou, resp. až sedmou mocninou vzdálenosti a jsou tedy v porovnání s iontovými, resp. kovalentními silami podstatně slabší. Proto tento typ vazby dovoluje vytvoření krystalického stavu až při velmi nízkých teplotách. Van der Waalsova vazba se významně uplatňuje při utváření makromolekulárních látek, které jsou měkké a mají nízkou teplotu tání. Původ: elektronová stavba dipolární interakce mezi orbity sousedních atomů Pohyb elektronů v atomových oblastech => periodický pohyb těžiště záporného elektrického náboje elektronů vhledem k těžišti kladného náboje jádra => vznik elektrického dipólu. Vzájemné působení mezi dipóly => příčina vazby. Příklady materiálů: Ne, Ar, Xe, Kr, (As, Sb, Bi, S, Se, Te).
17 Vodíková vazba Vodíková vazba neboli vodíkový můstek vzniká v důsledku vazby vodíku se silně elektronegativními prvky (F, N, O). Vysvětluje se silnou polaritou vazeb H F, O H a N H. Vazebný elektronový pár je natolik posunut k elektronegativnějšímu atomu, že atom vodíku získá kladný náboj a může vytvořit slabou vazbu s volným elektronovým párem na atomu další molekuly. K oddělení molekul je tedy nutné rozštěpení vodíkových vazeb a překonání van der Waalsových sil. Vodíkové vazby způsobují např. vysokou teplotu tání a varu vody v porovnání s ostatními látkami s malými, ale nepolárními molekulami. Příkladem pevné látky je např. led, uplatňuje se také při udržování prostorové struktury bílkovin. Znázornění vodíkové vazby na molekulách vody. Polární vazba způsobí, že každý atom vodíku vykazuje slabý kladný náboj (δ+) a je tedy přitahován k volnému elektronovému páru na kyslíku (δ-).
18 Čisté povrchy Povrchy pevných látek jsou v běžných podmínkách ovlivněny okolním prostředím molekuly plynů a par jsou vázány fyzikálními i chemickými vazbami k hraničním atomovým vrstvám, dochází k difúzi těchto molekul do sousedních atomových vrstev a k dalším jevům. Popis takové soustavy je prakticky nemožný a proto se pro účely fyziky povrchů používají látky s čistým povrchem.
19 Způsoby získávání čistých povrchů štípání a lámání krystalů v podmínkách vysokého vakua, odstraňování cizích molekul z povrchu desorpcí za zvýšené teploty, odstraňování cizích molekul bombardem nízkoenergetickými ionty, vytváření látky v podmínkách vysokého vakua napařováním, naprašováním apod. Udržení čistých povrchů vyžaduje izolaci povrchů od vlivu okolní atmosféry, tj. práci v podmínkách velmi nízkých tlaků. Je např. prokázáno, že za tlaku 10-4 Pa se jedna monomolekulární vrstva adsorbovaných molekul na povrchu vytvoří přibližně za jednu sekundu. V dalším textu předpokládáme, že jsou dodrženy podmínky pro udržení čistých povrchů.
20 Ideální a reálné monokrystalické povrchy Ideální monokrystalický povrch je tvořen poslední atomární rovinou, přičemž její uspořádání odpovídá bezporuchovému uspořádání atomů v objemu látky a neobsahuje jiné atomy nebo molekuly než obdobná rovina uvnitř. Na reálném monokrystalickém povrchu se projeví změny způsobené absencí atomárních rovin na vnější straně, případně nestechiometrické atomy nebo molekuly, které se na povrch dostávají difúzí z objemu.
21 Reálné monokrystalické povrchy Takto způsobené změny se liší podle druhu vazeb a klasifikujeme je takto: - relaxace povrchu je změna mezirovinných vzdáleností posledních několika atomárních rovin rovnoběžných s povrchem. Je charakterizována relativní změnou mezirovinné vzdálenosti dij/dij. Na obr. je jako příklad uvedena relaxace povrchu mědi (100). Směrem do objemu se relaxace rychle zmenšují, povrchová vrstva zahrnuje jen několik atomových rovin.
22 Reálné monokrystalické povrchy - rekonstrukce povrchu je vytvoření vrstvy nebo vrstev se změněným uspořádáním atomů. U kovů se rekonstrukce vyskytuje jen zřídka. U kovalentních krystalů jsou vazby směrované a proto může nastat významná rekonstrukce zasahující i několik atomových vrstev. Na obrázku je jako příklad uvedená známá rekonstrukce povrchu Si(100), kdy se nenasycené vazby propojí a vznikne struktura Si(7x7).
23 Může se na povrchu uchytit i cizí atom? Může, to je přece důvod procesů jako jsou: Koroze (Oxidace) Pasivace Katalíza Adsoprce Jak to bude vypadat?
24 Reálné monokrystalické povrchy - defekty v uspořádání atomů : vytváření teras, vakancí apod.
25 Jak může něco adsorbovat na povrchu?
26 Ionsorption Elektrostaticky vázaný (žádná chem. vazba) Druh iontové vazby Stovky A
27 Kovalentní vazba Chemická vazba viz dříve Lokalizované vazby (platí i pro dipólové a van den Walsovy)
28 Formování oxidů Vznik nové fáze Typické pro oxidaci kovů Kdy se adsorbovaný kyslík převede na oxidovaný kov? Složité, relokace, atd.
29 Krystalografie povrchů Podobně jako v případě trojrozměrného krystalu lze periodické struktuře atomů na povrchu přiřadit dvojrozměrnou krystalografickou mřížku. Z výchozího bodu takové mřížky se do libovolného bodu mřížky dostaneme translací popsanou vektorem R = ma + nb, kde a a b jsou základní translační vektory mřížky a m, n jsou celá čísla. Dva mřížkové vektory tvoří dvě strany trojúhelníka, takže počet typů rovinných mřížek je shodný s počtem druhů trojúhelníků. Protože existuje pět typů trojúhelníků (obecný, rovnoramenný, pravoúhlý nerovnoramenný, pravoúhlý rovnoramenný a rovnostranný), existuje i pět typů rovinných Bravaisových mřížek
30 Rovinné Bravaisovy mřížky
31 Povrch reálného krystalu lze zjednodušeně rozdělit na podložku vyznačující se trojrozměrnou strukturou identickou se strukturou objemu a lem obsahující pouze několik atomových vrstev v blízkosti povrchu. V průběhu všech povrchových změn si lem zachovává dvojrozměrnou periodicitu rovnoběžnou s povrchem. Je pravidlem, že struktura lemu či adsorbátu na povrchu krystalu je koherentní se strukturou podložky. Proto je vhodné popis struktury povrchových vrstev založit na korespondenci mezi Bravaisovou mřížkou podložky a Bravaisovou mřížkou lemu nebo adsorbátu.
32 Povrch reálného krystalu Nejobecnějším způsobem popisu struktury vrchních atomových vrstev je popis maticový. Periodická struktura je popsána základními translačními vektory lemu a a b, které je možno vyjádřit prostřednictvím vektorů a a b: a = G11a + G12b b = G21a + G22b Matice G slouží k označení struktury vrchní vrstvy : G11 G12 G= G21 G22
33 Povrch reálného krystalu Woodova metoda Je udáván vzájemný poměr period buněk absorbátu a podložky a dále úhel, o který je třeba otočit jednu z buněk, aby oba páry bázových vektorů směřovaly ve stejném směru. Tento údaj se doplňuje o označení substrátu, jeho povrchu a označení adsorbátu. Jestliže adsorbát A na povrchu {hkl} substrátu X vytváří strukturu s mřížkovými vektory o velikostech a = p a b = q b a úhlem natočení φ, bude její označení mít tvar. X { hkl} ( p x q ) Rϕ A
34 Povrch reálného krystalu Woodova metoda Příklady označení povrchových struktur, atomy podložky jsou označeny kroužky, atomy adsorbátu či lemu jsou označeny křížky. Tečkovanými čarami jsou označeny Bravaisovy buňky podložky, plnými čarami adsorbátu.
35 Tenké vrstvy Tenké vrstvy jsou pevnolátkové systémy charakterizované tím, že jeden jejich rozměr je velmi malý.
36 Jak tlustá může být tenká vrstva Povrch pevné látky představuje radikální porušení periodicity uspořádání, kterou pozorujeme v objemu pevných látek. V důsledku toho na částice v oblasti povrchu působí jiná silová pole než v objemu, energetické stavy se mohou podstatně lišit od stavů v objemu a na povrchu pak existují povrchové stavy. Fyzikální procesy probíhající na povrchu nebo těsně u něj mohou proto probíhat značně odlišně od procesů v objemu, případně se v této oblasti objevují procesy zcela nové.
37 Jak tlustá může být tenká vrstva Jde tedy o systém, v němž dva povrchy jsou tak blízko, že jejich vliv má podstatný vliv na průběh nejrůznějších fyzikálních procesů a fyzikální vlastnosti tenké vrstvy se tedy mohou podstatně lišit od vlastností téhož objemového materiálu. Obecně lze říci, že hranicí tenké vrstvy jsou ty tloušťky, pro které se začínají projevovat zmíněné odchylky od chování objemového materiálu. Tyto tloušťky se pro různé materiály liší, nalézají se v intervalu od desetin nanometru do několika mikrometrů.
38 Tenká vrstva Technologie přípravy tenkých vrstev umožňují také přípravu materiálů jaké neexistují v objemové formě např. silně nestechiometrické sloučeniny, vícefázové vrstvy složené např. z matrice houževnatého materiálu a tvrdých zrn s rozměry řádu nanometrů atd. To je důsledek toho, že vrstvy lze vytvářet za silně nerovnovážných podmínek, s vysokým vnitřním pnutím a v podmínkách vysokého vakua. Takové tenké vrstvy samozřejmě vykazují extrémní fyzikální vlastnosti.
39 Tenká vrstva Tenké vrstvy lze charakterizovat podle řady hledisek: zjišťují se vlastnosti optické, elektrická vodivost, korozní odolnost, tribologické a tribochemické parametry, tvrdost a mikrotvrdost a další.
40 Více příště
Chemická vazba Něco málo opakování Něco málo opakování Co je to atom? Něco málo opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího
Opakování
Slabé vazebné interakce Opakování Co je to atom? Opakování Opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího protony a neutrony
Fyzikální metody depozice KFY / P223
Fyzikální metody depozice KFY / P223 Obsah Vymezení pojmu tenkých vrstev, význam TV ve vědě a technice, přehled metod vytváření TV Růst tenkých vrstev: módy a fáze růstu TV, vliv parametrů procesu. Napařování
Přednáška 3. Povrchové procesy: vazby molekul a atomů, fyzikální a chemická sorpce a desorpce, adsorpční izotermy. Martin Kormunda
Přednáška 3 Povrchové procesy: vazby molekul a atomů, fyzikální a chemická sorpce a desorpce, adsorpční izotermy. Povrchové procesy Jde o interakci molekul plynu se stěnami vakuového systému a povrchy
Chemická vazba. Příčinou nestability atomů a jejich ochoty tvořit vazbu je jejich elektronový obal.
Chemická vazba Volné atomy v přírodě jen zcela výjimečně (vzácné plyny). Atomy prvků mají snahu se navzájem slučovat a vytvářet molekuly prvků nebo sloučenin. Atomy jsou v molekulách k sobě poutány chemickou
Vazby v pevných látkách
Vazby v pevných látkách Hlavní body 1. Tvorba pevných látek 2. Van der Waalsova vazba elektrostatická interakce indukovaných dipólů 3. Iontová vazba elektrostatická interakce iontů 4. Kovalentní vazba
CHEMICKÁ VAZBA. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: Ročník: osmý
Autor: Mgr. Stanislava Bubíková CHEMICKÁ VAZBA Datum (období) tvorby: 13. 11. 01 Ročník: osmý Vzdělávací oblast: Člověk a příroda / Chemie / Částicové složení látek a chemické prvky; chemické reakce 1
Ch - Elektronegativita, chemická vazba
Ch - Elektronegativita, chemická vazba Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s využitím odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument
Mgr. Jakub Janíček VY_32_INOVACE_Ch1r0118
Chemická vazba Mgr. Jakub Janíček VY_32_INOVACE_Ch1r0118 Chemická vazba Většina atomů má tendenci se spojovat do větších celků (molekul), v nichž jsou vzájemně vázané chemickou vazbou. Chemická vazba je
Valenční elektrony a chemická vazba
Valenční elektrony a chemická vazba Ve vnější energetické hladině se nacházejí valenční elektrony, které se mohou podílet na tvorbě chemické vazby. Valenční elektrony často znázorňujeme pomocí teček kolem
3) Vazba a struktura. Na www.studijni-svet.cz zaslal(a): Lenka
Na www.studijni-svet.cz zaslal(a): Lenka CHEMICKÍ VAZBA = síly, kterými jsou k sobě navzájem vázány sloučené atomy v molekule, popř. v krystalové struktuře - v převážné většině jde o sdílení dvojic elektronů
Nauka o materiálu. Přednáška č.2 Poruchy krystalické mřížky
Nauka o materiálu Přednáška č.2 Poruchy krystalické mřížky Opakování z minula Materiál Degradační procesy Vnitřní stavba atomy, vazby Krystalické, amorfní, semikrystalické Vlastnosti materiálů chemické,
Skupenské stavy látek. Mezimolekulární síly
Skupenské stavy látek Mezimolekulární síly 1 Interakce iont-dipól Např. hydratační (solvatační) interakce mezi Na + (iont) a molekulou vody (dipól). Jde o nejsilnější mezimolekulární (nevazebnou) interakci.
2.3 CHEMICKÁ VAZBA. Molekula bílého fosforu P 4 a kyseliny sírové H 2 SO 4. Předpona piko p je dílčí jednotkou a udává velikost m.
2.3 CHEMICKÁ VAZBA Spojováním dvou a více atomů vznikají molekuly. Jestliže dochází ke spojování výhradně atomů téhož chemického prvku, pak se jedná o molekuly daného prvku (vodíku H 2, dusíku N 2, ozonu
Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou CHEMICKÁ VAZBA VY_32_INOVACE_03_3_07_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou CHEMICKÁ VAZBA Volné atomy v přírodě
Průvodka. CZ.1.07/1.5.00/ Zkvalitnění výuky prostřednictvím ICT. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT
Průvodka Číslo projektu Název projektu Číslo a název šablony klíčové aktivity CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce
Test vlastnosti látek a periodická tabulka
DUM Základy přírodních věd DUM III/2-T3-2-08 Téma: Test vlastnosti látek a periodická tabulka Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý Mgr. Josef Kormaník TEST Test vlastnosti
Složení látek a chemická vazba Číslo variace: 1
Složení látek a chemická vazba Číslo variace: 1 Zkoušecí kartičku si PODEPIŠ a zapiš na ni ČÍSLO VARIACE TESTU (číslo v pravém horním rohu). Odpovědi zapiš na zkoušecí kartičku, do testu prosím nepiš.
Teorie chemické vazby a molekulární geometrie Molekulární geometrie VSEPR
Geometrie molekul Lewisovy vzorce poskytují informaci o tom které atomy jsou spojeny vazbou a o jakou vazbu se jedná (topologie molekuly). Geometrické uspořádání molekuly je charakterizováno: Délkou vazeb
Chemická vazba. John Dalton Amadeo Avogadro
Chemická vazba John Dalton 1766-1844 Amadeo Avogadro 1776-1856 Výpočet molekuly 2, metoda valenční vazby Walter eitler 1904-1981 Fritz W. London 1900-1954 Teorie molekulových orbitalů Friedrich und 1896-1997
Teorie hybridizace. Vysvětluje vznik energeticky rovnocenných kovalentních vazeb a umožňuje předpovědět prostorový tvar molekul.
Chemická vazba co je chemická vazba charakteristiky chemické vazby jak vzniká vazba znázornění chemické vazby kovalentní a koordinační vazba vazba σ a π jednoduchá, dvojná a trojná vazba polarita vazby
Masarykova střední škola zemědělská a Vyšší odborná škola, Opava, příspěvková organizace
Číslo projektu Číslo materiálu Název školy Autor Průřezové téma Tematický celek CZ.1.07/1.5.00/34.0565 VY_32_INOVACE_345_PSP a chemická vazba Masarykova střední škola zemědělská a Vyšší odborná škola,
FYZIKA 6. ročník 1_Látka a těleso _Vlastnosti látek _Vzájemné působení těles _Gravitační síla... 4 Gravitační pole...
FYZIKA 6. ročník 1_Látka a těleso... 2 2_Vlastnosti látek... 3 3_Vzájemné působení těles... 4 4_Gravitační síla... 4 Gravitační pole... 5 5_Měření síly... 5 6_Látky jsou složeny z částic... 6 7_Uspořádání
Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice
KAPITOLA 2: PRVEK Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora
Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější.
Nejjednodušší prvek. Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Vodík tvoří dvouatomové molekuly, je lehčí než
Orbitaly ve víceelektronových atomech
Orbitaly ve víceelektronových atomech Elektrony jsou přitahovány k jádru ale také se navzájem odpuzují. Repulzní síly způsobené dalšími elektrony stíní přitažlivý účinek atomového jádra. Efektivní náboj
Fyzika je přírodní věda, která zkoumá a popisuje zákonitosti přírodních jevů.
Fyzika je přírodní věda, která zkoumá a popisuje zákonitosti přírodních jevů. Násobky jednotek název značka hodnota kilo k 1000 mega M 1000000 giga G 1000000000 tera T 1000000000000 Tělesa a látky Tělesa
7. Elektrický proud v polovodičích
7. Elektrický proud v polovodičích 7.1 Elektrické vlastnosti polovodičů Kromě vodičů a izolantů existují polovodiče. Definice polovodiče: Je to řada minerálů, rud, krystalů i amorfních látek, řada oxidů
Typy molekul, látek a jejich vazeb v organismech
Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Organismy se skládají z molekul rozličných látek Jednotlivé látky si organismus vytváří sám z jiných látek,
Metodika pro učitele Chemická vazba pro ZŠ (teoretické cvičení s tablety)
Metodika pro učitele Chemická vazba pro ZŠ (teoretické cvičení s tablety) Základní charakteristika výukového programu: Délka: 3 vyučovací hodiny; možnost vybrat pouze určité kapitoly Věková kategorie:
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat
Molekulová spektroskopie 1. Chemická vazba, UV/VIS
Molekulová spektroskopie 1 Chemická vazba, UV/VIS 1 Chemická vazba Silová interakce mezi dvěma atomy. Chemické vazby jsou soudržné síly působící mezi jednotlivými atomy nebo ionty v molekulách. Chemická
Gymnázium, Milevsko, Masarykova 183 Školní vzdělávací program (ŠVP) pro vyšší stupeň osmiletého studia a čtyřleté studium 4.
Vyučovací předmět - Chemie Vzdělávací obor - Člověk a příroda Gymnázium, Milevsko, Masarykova 183 Školní vzdělávací program (ŠVP) pro vyšší stupeň osmiletého studia a čtyřleté studium 4. ročník - seminář
02 Nevazebné interakce
02 Nevazebné interakce Nevazebné interakce Druh chemické vazby Určují 3D konfiguraci makromolekul, účastní se mnoha biologických procesů, zodpovědné za uspořádání molekul v krystalu Síla nevazebných interakcí
Částicové složení látek atom,molekula, nuklid a izotop
Částicové složení látek atom,molekula, nuklid a izotop ATOM základní stavební částice všech hmotných těles jádro 100 000x menší než atom působí jaderné síly p + n 0 [1] e - stejný počet protonů a elektronů
John Dalton Amadeo Avogadro
Spojením atomů vznikají molekuly... John Dalton 1766 1844 Amadeo Avogadro 1776 1856 Výpočet molekuly 2, metoda valenční vazby Walter eitler 1904 1981 Fritz W. London 1900 1954 Teorie molekulových orbitalů
Mol. fyz. a termodynamika
Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli
ATOMOVÉ JÁDRO. Nucleus Složení: Proton. Neutron 1 0 n částice bez náboje Proton + neutron = NUKLEON PROTONOVÉ číslo: celkový počet nukleonů v jádře
ATOM 1 ATOM Hmotná částice Dělit lze: Fyzikálně ANO Chemicky Je z nich složena každá látka Složení: Atomové jádro (protony, neutrony) Elektronový obal (elektrony) NE Elektroneutrální částice: počet protonů
Univerzita Tomáše Bati ve Zlíně
Univerzita Tomáše Bati ve Zlíně Ústav elektrotechniky a měření Základní pojmy elektroniky Přednáška č. 1 Milan Adámek adamek@ft.utb.cz U5 A711 +420576035251 Základní pojmy elektroniky 1 Model atomu průměr
DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj
DOUTNAVÝ VÝBOJ Další technologie využívající doutnavý výboj Plazma doutnavého výboje je využíváno v technologiích depozice povlaků nebo modifikace povrchů. Jedná se zejména o : - depozici povlaků magnetronovým
Chemická vazba. Molekula vodíku. Elektronová teorie. Oktetové pravidlo (Kossel, Lewis, 1916) Pevnost vazby vazebná energie.
Elektronová teorie ktetové pravidlo (Kossel, Lewis, 1916) Chemická vazba sdílení 2 valenčních e - opačného spinu 2 atomy za vzniku stabilní elektronové konfigurace vzácného plynu Spojení atomů prvků v
Struktura elektronového obalu
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Struktura elektronového obalu Představy o modelu atomu se vyvíjely tak, jak se zdokonalovaly možnosti vědy
Chemická vazba. Důvody pro vazbu = menší energie atomů ve vázaném stavu než energie jednotlivých oddělených atomů
Chemická vazba Důvody pro vazbu = menší energie atomů ve vázaném stavu než energie jednotlivých oddělených atomů Mechanismus tvorby vazby = sdílení, předávání nebo redistribuce valenčních elektronů Model
Lasery RTG záření Fyzika pevných látek
Lasery RTG záření Fyzika pevných látek Lasery světlo monochromatické koherentní malá rozbíhavost svazku lze ho dobře zfokusovat aktivní prostředí rezonátor fotony bosony laser stejný kvantový stav učební
Uhlíkové struktury vázající ionty těžkých kovů
Uhlíkové struktury vázající ionty těžkých kovů 7. června/june 2013 9:30 h 17:30 h Laboratoř metalomiky a nanotechnologií, Mendelova univerzita v Brně a Středoevropský technologický institut Budova D, Zemědělská
Kvantová fyzika pevných látek
Kvantová fyzika pevných látek Přednáška 2: Základy krystalografie Pavel Márton 30. října 2013 Pavel Márton () Kvantová fyzika pevných látek Přednáška 2: Základy krystalografie 30. října 2013 1 / 10 Pavel
Periodická tabulka prvků
Periodická tabulka prvků 17. století s objevem dalších a dalších prvků nutnost systematizace J. W. Döberreiner (1829) teorie o triádách prvků triáda kovů (lithium, sodík, draslík reagují podobným způsobem)
Jádro se skládá z kladně nabitých protonů a neutrálních neutronů -> nukleony
Otázka: Atom a molekula Předmět: Chemie Přidal(a): Dituse Atom = základní stavební částice všech látek Skládá se ze 2 částí: o Kladně nabité jádro o Záporně nabitý elektronový obal Jádro se skládá z kladně
Nauka o materiálu. Přednáška č.10 Difuze v tuhých látkách, fáze a fázové přeměny
Nauka o materiálu Přednáška č.10 Difuze v tuhých látkách, fáze a fázové přeměny Difuze v tuhých látkách Difuzí nazýváme přesun atomů nebo iontů na vzdálenost větší než je meziatomová vzdálenost. Hnací
Stavba atomu. Created with novapdf Printer (www.novapdf.com). Please register to remove this message.
Stavba atomu Atom je v chemii základní stavební částice, jeho průměr je přibližně 10-10 m. Je složen z jádra a obalu. Atomové jádro obsahuje protony p + (kladný náboj) a neutrony n 0 (neutrální částice).
Elektronová struktura
Elektronová struktura Přiblížení pohybu elektronů v periodickém potenciálu dokonalého krystalu. Blochůvteorémpak říká, že řešení Schrödingerovy rovnice pro elektron v periodickém potenciálu je ve tvaru
Chemické repetitorium. Václav Pelouch
ZÁKLADY OBECNÉ A KLINICKÉ BIOCHEMIE 2004 Chemické repetitorium Václav Pelouch kapitola ve skriptech - 1 Anorganická a obecná chemie Stavba atomu Atom je nejmenší částice hmoty, která obsahuje jádro (složené
Geochemie endogenních procesů 1. část
Geochemie endogenních procesů 1. část geochemie = použití chemických nástrojů na studium Země a dalších planet Sluneční soustavy počátky v 15. století spjaté zejména s kvalitou vody a půdy rozmach a první
Vnitřní stavba pevných látek přednáška č.1
1 2 3 Nauka o materiálu I Vnitřní stavba pevných látek přednáška č.1 Ing. Daniela Odehnalová 4 Pevné látky - rozdělení NMI Z hlediska vnitřní stavby PL dělíme na: Krystalické všechny kovy za normální teploty
DUSÍK NITROGENIUM 14,0067 3,1. Doplňte:
Doplňte: Protonové číslo: Relativní atomová hmotnost: Elektronegativita: Značka prvku: Latinský název prvku: Český název prvku: Nukleonové číslo: Prvek je chemická látka tvořena z atomů o stejném... čísle.
Předmět: Ročník: Vytvořil: Datum: CHEMIE PRVNÍ Mgr. Tomáš MAŇÁK 15. června 2013. Název zpracovaného celku: CHEMICKÁ VAZBA
Předmět: Ročník: Vytvořil: Datum: CHEMIE PRVNÍ Mgr. Tomáš MAŇÁK 15. června 2013 Název zpracovaného celku: CHEMICKÁ VAZBA CHEMICKÁ VAZBA (chemical bond) CHEMICKÉ VAZBY soudržné síly působící mezi jednotlivými
MŘÍŽKY A VADY. Vnitřní stavba materiálu
Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10;s platností do r. 2016 v návaznosti na platnost norem. Zákaz šířění a modifikace těchto materálů. Děkuji Ing. D.
Mezimolekulové interakce
Mezimolekulové interakce Interakce molekul reaktivně vzniká či zaniká kovalentní vazba překryv elektronových oblaků, mění se vlastnosti nereaktivně vznikají molekulové komplexy slabá, nekovalentní, nechemická,
Nekovalentní interakce
Nekovalentní interakce Jan Řezáč UOCHB AV ČR 3. listopadu 2016 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 3. listopadu 2016 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii
Veličiny- základní N A. Látkové množství je dáno podílem N částic v systému a Avogadrovy konstanty NA
YCHS, XCHS I. Úvod: plán přednášek a cvičení, podmínky udělení zápočtu a zkoušky. Základní pojmy: jednotky a veličiny, základy chemie. Stavba atomu a chemická vazba. Skupenství látek, chemické reakce,
ZŠ ÚnO, Bratří Čapků 1332
Animovaná chemie Top-Hit Analytická chemie Analýza anorganických látek Důkaz aniontů Důkaz kationtů Důkaz kyslíku Důkaz vody Gravimetrická analýza Hmotnostní spektroskopie Chemická analýza Nukleární magnetická
Nekovalentní interakce
Nekovalentní interakce Jan Řezáč UOCHB AV ČR 31. října 2017 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 31. října 2017 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii 4 Výpočty
Elektrické vlastnosti látek
Elektrické vlastnosti látek Elektrické jevy Již z doby starověku jsou známy tyto elektrické jevy: Blesk Polární záře statická elektřina ODKAZ Elektrování těles Tělesa se mohou třením dostat do stavu, ve
2. Molekulová stavba pevných látek
2. Molekulová stavba pevných látek 2.1 Vznik tuhého tělesa krystalizace Při přeměně kapaliny v tuhou látku vzniknou nejprve krystalizační jádra, v nichž nastává tuhnutí kapaliny. Ochlazování kapaliny se
Periodický systém víceelektronové systémy elektronová konfigurace periodický systém periodicita fyzikálních a chemických vlastností
Periodický systém víceelektronové systémy elektronová konfigurace periodický systém periodicita fyzikálních a chemických vlastností obrázky molekul a Lewisovy vzorce molekul v této přednášce čerpány z:
Základy molekulové fyziky a termodynamiky
Základy molekulové fyziky a termodynamiky Molekulová fyzika je částí fyziky, která zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného silového působení částic, z nichž jsou
Molekulární krystal vazebné poměry. Bohumil Kratochvíl
Molekulární krystal vazebné poměry Bohumil Kratochvíl Předmět: Chemie a fyzika pevných léčiv, 2017 Složení farmaceutických substancí - API Z celkového portfolia API tvoří asi 90 % organické sloučeniny,
2. Elektrotechnické materiály
. Elektrotechnické materiály Předpokladem vhodného využití elektrotechnických materiálů v konstrukci elektrotechnických součástek a zařízení je znalost jejich vlastností. Elektrické vlastnosti materiálů
Inovace a zkvalitnění výuky prostřednictvím ICT Elektrický proud stejnosměrný
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Anotace: Inovace a zkvalitnění výuky prostřednictvím ICT Elektrický proud stejnosměrný Rozdělení
Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1
DUM Základy přírodních věd DUM III/2-T3-2-12 Téma: Kovy Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý VÝKLAD Kovy KOVY UMÍSTĚNÍ V PERIODICKÉ SOUSTAVĚ PRVKŮ přibližně tři čtvrtiny
Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta
Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : CHEMIE Ročník: 1.ročník a kvinta Obecná Bezpečnost práce Názvosloví anorganických sloučenin Zná pravidla bezpečnosti práce a dodržuje je.
Přehled metod depozice a povrchových
Kapitola 5 Přehled metod depozice a povrchových úprav Tabulka 5.1: První část přehledu technologií pro depozici tenkých vrstev. Klasifikované podle použitého procesu (napařování, MBE, máčení, CVD (chemical
Molekuly 1 12/4/2011. Molekula definice IUPAC. Molekuly. Proč existují molekuly? Kosselův model. Představy o molekulách
1/4/011 Molekuly 1 Molekula definice IUPC elektricky neutrální entita sestávající z více nežli jednoho atomu. Přesně, molekula, v níž je počet atomů větší nežli jedna, musí odpovídat snížení na ploše potenciální
6.3.2 Periodická soustava prvků, chemické vazby
6.3. Periodická soustava prvků, chemické vazby Předpoklady: 060301 Nejjednodušší atom: vodík s jediným elektronem v obalu. Ostatní prvky mají více protonů v jádře i více elektronů v obalu změny oproti
Protonové číslo Z - udává počet protonů v jádře atomu, píše se jako index vlevo dole ke značce prvku
Stavba jádra atomu Protonové Z - udává protonů v jádře atomu, píše se jako index vlevo dole ke značce prvku Neutronové N - udává neutronů v jádře atomu Nukleonové A = Z + N, udává nukleonů (protony + neutrony)
- zabývá se pozorováním a zkoumáním vnitřní stavby neboli struktury (slohu) kovů a slitin
2. Metalografie - zabývá se pozorováním a zkoumáním vnitřní stavby neboli struktury (slohu) kovů a slitin Vnitřní stavba kovů a slitin ATOM protony, neutrony v jádře elektrony v obalu atomu ve vrstvách
Metalografie ocelí a litin
Metalografie ocelí a litin Metalografie se zabývá pozorováním a zkoumáním vnitřní stavby neboli struktury kovů a slitin. Dále také stanoví, jak tato struktura souvisí s chemickým složením, teplotou a tepelným
Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 08.03.2013 Číslo DUMu: VY_32_INOVACE_09_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné
Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 08.03.2013 Číslo DUMu: VY_32_INOVACE_09_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Chemie Tematický okruh: Obecná
LOGO. Struktura a vlastnosti pevných látek
Struktura a vlastnosti pevných látek Rozdělení pevných látek (PL): monokrystalické krystalické Pevné látky polykrystalické amorfní Pevné látky Krystalické látky jsou charakterizovány pravidelným uspořádáním
PERIODICKÁ TABULKA. Všechny prvky v tabulce můžeme rozdělit na kovy, nekovy a polokovy.
PERIODICKÁ TABULKA Je známo více než 100 prvků 90 je přirozených (jsou v přírodě) 11 plynů 2 kapaliny (brom, rtuť) Ostatní byly připraveny uměle. Dmitrij Ivanovič Mendělejev uspořádal 63 tehdy známých
Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A
Doporučená literatura Přípravný kurz Chemie 2006/07 07 RNDr. Josef Tomandl, Ph.D. Mailto: tomandl@med.muni.cz Předmět: Přípravný kurz chemie J. Vacík a kol.: Přehled středoškolské chemie. SPN, Praha 1990,
Vlastnosti a zkoušení materiálů. Přednáška č.1 Konstrukční materiály
Vlastnosti a zkoušení materiálů Přednáška č.1 Konstrukční materiály Základní skupiny konstrukčních materiálů Materiál: Je každá pevná látka, která je určená pro další technologické zpracování ve výrobě.
Skupenské stavy. Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe
Skupenské stavy Plyn Zcela neuspořádané Hodně volného prostoru Zcela volný pohyb částic Částice daleko od sebe Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe
Uhlík Ch_025_Uhlovodíky_Uhlík Autor: Ing. Mariana Mrázková
Registrační číslo projektu: CZ.1.07/1.1.38/02.0025 Název projektu: Modernizace výuky na ZŠ Slušovice, Fryšták, Kašava a Velehrad Tento projekt je spolufinancován z Evropského sociálního fondu a státního
Plazmové metody. Základní vlastnosti a parametry plazmatu
Plazmové metody Základní vlastnosti a parametry plazmatu Atom je základní částice běžné hmoty. Částice, kterou již chemickými prostředky dále nelze dělit a která definuje vlastnosti daného chemického prvku.
12. Struktura a vlastnosti pevných látek
12. Struktura a vlastnosti pevných látek Osnova: 1. Látky krystalické a amorfní 2. Krystalová mřížka, příklady krystalových mřížek 3. Poruchy krystalových mřížek 4. Druhy vazeb mezi atomy 5. Deformace
Chemické výpočty. výpočty ze sloučenin
Cheické výpočty výpočty ze sloučenin Cheické výpočty látkové nožství n, 1 ol obsahuje stejný počet stavebních částic, kolik je atoů ve 1 g uhlíku 1 C počet částic v 1 olu stanovuje Avogadrova konstanta
Úvod do strukturní analýzy farmaceutických látek
Úvod do strukturní analýzy farmaceutických látek Garant předmětu: Vyučující: doc. Ing. Bohumil Dolenský, Ph.D. prof. RNDr. Pavel Matějka, Ph.D., A136, linka 3687, matejkap@vscht.cz doc. Ing. Bohumil Dolenský,