Prvek, nuklid, izotop, izobar, izoton
|
|
- Radka Müllerová
- před 6 lety
- Počet zobrazení:
Transkript
1 Prvek, nuklid, izotop, izobar, izoton A = Nukleonové (hmotnostní) číslo A = počet protonů + počet neutronů A = Z + N Z = Protonové číslo, náboj jádra Prvek = soubor atomů se stejným Z Nuklid = soubor atomů se stejným A a Z Izotopy = soubor nuklidů daného prvku Frederick Soddy ( ) NP za chemii 1921 (objev izotopů) Izobary = nuklidy se stejným A a různým Z ( 14 C- 14 N; 3 H- 3 He) Izotony = nuklidy se stejným počtem neutronů, N = A Z Izomery = stejné nuklidy, liší se obsahem energie 1
2 Izotopy Izotopy jsou souborem nuklidů pro daný prvek existuje asi 2600 nuklidů (stabilních i radioaktivních) 340 nuklidů se vyskytuje v přírodě 270 stabilních a 70 radioaktivních, ostatní uměle připravené Monoizotopické prvky: 9 Be, 19 F, 23 Na, 27 Al, 31 P, 59 Co, 127 I, 197 Au Polyizotopické prvky: 1 H, 2 H (D), 3 H (T) 10 B, 11 B Sn má největší počet stabilních izotopů , 114, 115, 116, 117, 118, 119, 120, 122, 124 Sn 2
3 Stabilita jader Stabilita (vzhledem k radioaktivnímu rozpadu) je určena počtem protonů a neutronů Zóna stability Lehké nuklidy stabilní pro Z ~ N Jen 1 H a 3 He mají více p než n. 2 H, 4 He, 6 Li, 10 B, 12 C, 14 N, 16 O, 20 Ne, 24 Mg, 28 Si, 32 S, 36 Ar a 40 Ca mají stejný počet p a n Všechny ostatní nuklidy mají více n než p N > Z Mattauchovo pravidlo: ze dvojice izobarů, které se liší o 1 v protonovém čísle, je jeden radioaktivní. 40 Ar 40 Ca ΔZ = 2 40 Ar 40 K 40 Ca ΔZ = 1 40 K je radioaktivní 3
4 Stabilita jader Počet protonů, Z 4 Počet neutronů, N
5 7000 možných kombinací protonů a neutronů pro jádra s až 120 protony Počet protonů, Z He 2 p a max 6 n Počet neutronů, N 5
6 Stabilita jader U některých prvků existují v přírodě radioaktivní izotopy s dlouhým poločasem přeměny 40 K, 0.012%, roků Prvky s Z 83 (Bi) mají alespoň jeden stabilní izotop Z = 43 (Tc), 61 (Pm) se nevyskytují v přírodě Umělé radioaktivní izotopy připravené jadernými reakcemi Nuklidy s Z 84 (Po) jsou nestabilní vzhledem k radioaktivnímu rozpadu, radioaktivní prvky 6
7 Magická čísla Počet Protonů, Z Počet Neutronů, N Počet stabilních nuklidů Sudá Sudá 168 Sudá Lichá 57 Lichá Sudá 50 Lichá Lichá 4 Nuklidy se sudým počtem p a n jsou nejčastější Astonovo pravidlo: prvky se sudým Z mají více izotopů, prvky s lichým Z nemají více než dva izotopy, z toho jeden nestabilní, prvky s lichým počtem nukleonů (A) mají jen jeden stálý izotop ( 19 F, 23 Na, 27 Al, 31 P). Jen 2 H, 6 Li, 10 B, 14 N, 40 K, 50 V, 138 La, 176 Lu mají lichý počet jak p 7 tak n
8 Magická čísla Magická čísla 2, 8, 20, 28, 50, 82 a 126 Prvky s Z = magické číslo mají velký počet stabilních izotopů, pokud je izotop radioaktivní, pak má dlouhý poločas rozpadu Sn Z = 50, 10 stabilních izotopů Nuklidy 4 He, 16 O, 40 Ca, 48 Ca a 208 Pb mají magický počet p i n 8
9 Ostrov stability Pb 9 Počet neutronů, N Počet protonů, Z
10 Hmotnost elektronu a nukleonů Symbol m / kg m / u e p n u = kg 10
11 Hmotnostní úbytek Hmotnost jádra je vždy menší než součet hmotností nukleonů M j <Z m p + (A Z) m n Hmotnostní úbytek Δm < 0 [Δm v jednotkách amu] Vazebná energie jádra E v = Δm c 2 E v = Δm [MeV] NP za fyziku
12 Vazebná energie jádra, E v Nuklid E v, MeV 2 H He N O Ca Fe Pb U
13 Střední vazebná energie jádra, E v (st) Nuklid E v (st), MeV E v, MeV 2 H He N O F Ca Mn Fe Ni Pb U E v (st) = E v /A Energie na odtržení 1 nukleonu 13
14 12 C 16 4 O He Střední vazebná energie jádra 14
15 Střední vazebná energie jádra Tato jádra mají sudé A a sudé Z 15
16 Výskyt prvků ve vesmíru 16
17 Vazebná energie jádra a chemické vazby Střední vazebná energie jádra 58 Fe MeV Energie vazby C-H 411 kj mol 1 = 4.25 ev Jaderná vazebná energie je milionkrát větší než chemická vazebná energie. 17
18 Vazebná energie jádra a chemické Chemické reakce se odehrávají ve vnější elektronové slupce, atomové jádro zůstává neovlivněno. Energetické změny při chemických reakcích jednotky ev 1 ev (molekula) 1 = kj mol 1 Hmotnostní úbytek neměřitelný, platí zákon zachování hmotnosti. Jaderné reakce mění složení jader, elektronový obal nehraje žádnou roli. Energetické změny řádu MeV. Významné hmotnostní úbytky, platí zákon zachování energie a ekvivalence hmoty a energie. E= m c 2 18
19 Objev radioaktivity Uran, Thorium Antoine Henri Becquerel ( ) Radium, Polonium Marie Curie ( ) Pierre Curie ( ) Objev radioaktivity 1896 NP za fyziku 1903 NP za fyziku 1903 M. C. NP za chemii
20 Radioaktivita Má-li jádro příliš málo nebo mnoho neutronů Radioaktivita = schopnost některých jader přeměňovat se na jiné jádro, emitují se menší částice a uvolňuje se energie (exo) Radioaktivita = samovolný děj, produkty mají nižší obsah energie a jsou stabilnější Geigerův čítač 20
21 Geigerův čítač Hans Geiger ( ) Ionizace = proud částice 21
22 Měření radioaktivity Radioaktivita 1 Bq (becquerel) = 1 rozpad za 1 s ( 40 K v lidském těle 4 kbq) 1 Ci (curie) = Bq Radiační dávka 1 Gy (gray) = absorpce 1 J v 1 kg 1 Gy = 100 rad Ekvivalentní dávka 1 Sv (sievert) = 1 Gy Q faktor 1 Sv = 100 rem 3 Sv = LD 50/30 2 msv/rok = dávka od kosmického záření a přirozeného radiačního pozadí v ČR Fotony a elektrony všech energií Q = 1 Protony Q = 2 Neutrony Q je funkcí energie Alfa částice a jiná jádra Q = 20 22
23 Jaderné reakce Rutherford odklon radioaktivního záření v elektrickém a magnetickém poli Alfa = pozitivně nabité částice Beta = negativně nabité částice Gama = neutrální částice Tvorba nového nuklidu Posuvové zákony změny v Z a N Posun v periodické tabulce Radioaktivní látka 23
24 Emise alfa částice U těžkých jader Alfa částice opouští jádro rychlostí 10% c Velmi malá penetrace, několik cm ve vzduchu, zastaví je list papíru Velmi škodlivé pro buňky Inhalace Rn Po He 24
25 Alfa emise Posun v periodické tabulce o dva prvky doleva A Z N 1 A 4 Z 2 N 2 25
26 Radium-226 Alfa emise Curium-240 Uran-232 A Z N 1 A 4 Z 2 N 2 Zlato-185 Thorium-230 Posun v periodické tabulce o dva prvky doleva Americium-241 detektory kouře Polonium
27 Beta částice Jádra s nadbytkem neutronů, nedostatek protonů Beta částice jsou elektrony (ale ne z elektronového obalu!!!) Vznikají rozpadem neutronu e opouští jádro rychlostí 90% c 1 1 n p e Penetrace větší než alfa, několik m ve vzduchu, zastaví je 1cm Al folie C N e 27
28 Beta emise Posun v periodické tabulce o jeden prvek doprava A A Z N 1 Z +1 N 2 28
29 Krypton-87 Beta emise Zinek-71 Křemík-32 Kobalt-60 Hořčík-27 A Z N 1 A Z +1 N 2 Sodík-24 Železo-59 Fosfor-32 Posun v periodické tabulce o jeden prvek doprava 29
30 Gama částice Jádra s nadbytkem energie emitují gama částice Elektromagnetické záření s velmi krátkou vlnovou délkou, Vysoká energie, MeV Rychlost světla Hluboká penetrace, 500 m ve vzduchu m99 Tc 99 Tc + γ 30
31 Tracer Gyorgy Hevesy 1913 NP 1943 m99 Tc 99 Tc + γ 31
32 Positronová emise Jádra s nadbytkem protonů, nedostatek neutronů 1 1 p n e C B e Positron (antičástice) se rekombinuje během s Velmi malá penetrace Anihilace 1 e + 1 e γ A N 1 Z Posun v periodické tabulce o jeden prvek doleva A Z 1 32 N 2
33 Rubidium-81 Germanium-66 Positronová emise Praseodym-140 A A Neon-18 Z N 1 Z 1 N 2 Kyslík-15 Dusík-13 Posun v periodické tabulce o jeden prvek doleva Měď-59 33
34 Elektronový záchyt Elektron z elektronového obalu atomu může být zachycen jádrem Zachycený e přemění p na n, e z vnější slupky klesne na volnou hladinu, emise rentgenového záření p e n Jádra s Z > 83 nemohou dosáhnout stabilitu beta emisí, pozitronovou emisí nebo elektronovým záchytem A Z N K e Ar Posun v periodické tabulce o jeden prvek doleva A Z 1 N 2 34
35 Rubidium-83 Vanad-48 Gallium-67 Beryllium-7 Elektronový záchyt 1 0 p+ e n Vápník-41 Kobalt-57 Selen-72 A Z N 1 A Z 1 N 2 Posun v periodické tabulce o jeden prvek doleva 35
36 Alfa emise Beta emise Positronová emise, elektronový záchyt 36
37 Rozpadové řady Thoriová 232 Th Pb A = 4n Neptuniová (umělá) 241 Pu Bi A = 4n+1 Uranová 238 U Pb A = 4n+2 Aktinuranová 235 U Pb A = 4n+3 37
38 Samovolné štěpení Těžké jádro se rozpadá na dva nebo tři fragmenty a jeden nebo více neutronů 38
39 Syntéza a štěpení jader Štěpení jader Syntéza jader 39
40 Syntéza a štěpení jader - vazebná energie jádra Syntéza Štěpení 40
41 Big Bang Syntéza jader ve vesmíru 1 n 1 H + e Slunce (teplota = K v nitru, energie z PP nebo CN cyklu) PP cyklus 1 H + 1 H 2 H + e + + ν MeV 1 H + 2 H 3 He + γ MeV 3 He + 3 He 4 He H MeV 3 He + 1 H 4 He + e + e + + e γ MeV 41
42 PP cyklus CN cyklus 42
43 Uhlíkový cyklus 1 H CN cyklus 4 He 4 1 H 4 He 12 C e + 1 H 15 N 13 N 15 O 13 C e + γ 14 N γ 1 H 1 H 43
44 Syntéza jader ve vesmíru Slunce rudý obr bílý trpaslík 3 He + 4 He 7 Be + γ MeV 4 He + 4 He 8 Be 7 Be + p 8 B + γ + 13 MeV 8 B 8 Be + γ + e MeV 8 Be + 4 He 12 C 12 C + 4 He 16 O 44
45 Syntéza jader ve vesmíru Těžké hvězdy 12 C Ne, Mg 16 O Si, S Si 58 Fe Fe jádra nejstabilnější Jak dál? Výbuch supernovy vysoké toky neutronů Fe + n Au Pb U 45
46 Termojaderné reakce 2 H + 2 H 3 He + n MeV 2 H + 2 H 3 H + p MeV 3 H + 2 H 4 He + n MeV A další ITER Cadarache, Francie National Ignition Facility, USA 46
47 Transmutace 1919, Rutherford, první umělá příprava prvku 4 14 He+ N H ekvivalentní zápis jaderné rovnice O 14 N(α, p) 17 O 47
48 4 14 He+ N H Transmutace 17 8 O 48
49 Wilsonova mlžná komora Charles Wilson ( ) NP za fyziku 1923 Plyn (vzduch, He, Ar,...) a páry vody nebo alkoholu v komoře se zářičem, píst pro změnu objemu Expanze, ochlazení, vznik přesycené páry, částice při průletu ionizují okolní atomy, kondenzace na ionizovaných atomech kondenzační stopa 49
50 Cyklotron 1929 urychlovač pozitivních iontů (H +, D +,...) průchod potenciálovým rozdílem, střídavé poz/neg nabíjení D elektrod, kruhový pohyb v magnetickém poli, energie do 100 MeV Ernest O. Lawrence ( ) NP za fyziku 1939 duté elektrody tvaru D 50
51 Large Hadron Collider Protony s energií 7 TeV 27 km LHC tunel Super Proton Synchrotron Lineární urychlovače (protony a ionty) Proton Synchrotron 51
52 Štěpení jader 1932 John D. Cockcroft ( ) a Ernest T. S. Walton ( ) Kaskádový urychlovač, protony 800 kev První štěpení stabilního jádra urychlenou částicí 1 7 H + Li He He 1951 společně NP za fyziku 52
53 1932 Objev neutronu He+ Be C n neutron = částice s nulovým nábojem, spin ½ m = kg James Chadwick ( ) NP za fyziku
54 BNCT = Boron Neutron Capture Therapy 10 B + 1 n th = 7 Li + 4 He + γ MeV Dolet v tkáni asi 12 μm průměrbuňky Akumulace v tumoru (20 μg/g tumoru) 54
55 Transmutace Cyklotron He+ U Pu Bombardování neutrony Co+ n Co 1 0 n 55
56 1933 Umělá radioaktivita 4 27 Frederic and Irene Joliot-Curie ( ) ( ) 30 He+ Al P P Si e 1 0 n 56
57 Štěpení jader Otto Hahn ( ) NP za fyziku U, 0.71% Pomalé neutrony 190 MeV 57
58 Řetězová reakce neřízená 58
59 1942 Chicago Jaderný reaktor První řízená štěpná reakce 235 U Enrico Fermi ( ) NP za fyziku
60 Řízená štěpná reakce 235 U Moderátor = zpomalení neutronů grafit Cd dobře pohlcuje neutrony zachycení n 60
61 Transurany Do 1940 nejtěžší přírodní prvek Z = 92 (U) Prvky Z 93 (Np) transurany pouze umělé 1940 První umělý transuran = Np Sg Glenn T. Seaborg ( ) bombardování neutrony 238 U + n 239 U 239 Np + e Pu Sdílená NP za chemii 1951 Adresa Glenna Seaborga Sg, Lr, Bk, Cf, Am Edwin M. McMillan ( ) 61
62 Syntéza transuranů bombardování kladnými ionty 4 He, 12 C, 15 N, 18 O,... připraveny transurany po Z = Pb Ni Ds + 1 n t ½ = 270 μs Pb Ni Ds + 1 n Bi Cr Bh + 1 n Spojený institut jaderného výzkumu, Dubna, Rusko GSI (Gesellschaft fur Schwerionenforschung), Německo LBL (Lawrence Berkeley Lab), USA 62
63 Syntéza transuranů bombardování kladnými ionty 4 He, 12 C, 15 N, 18 O, Zn připraveny transurany po Z = Bk Ca X+3 1 n Poslední pojmenovaný prvek Pb Zn Cn Cn + 1 n GSI (Gesellschaft fur Schwerionenforschung), Německo 63
64 Kinetika radioaktivního rozpadu dn/dt = k N N dn/n = k dt Integrace t = 0 N = N 0 ln(n/n 0 ) = k t N/N 0 = exp( k t) N = N 0 exp( k t) t 64
65 Poločas rozpadu, t ½ t = t ½ N = N 0 /2 ln(n/n 0 ) = k t ln(1/2) = k t ½ t ½ = ln(2) / k k = ln(2) / t ½ ln(n/n 0 ) = t ln(2) / t ½ 65
66 Poločas rozpadu 66
67 Datování pomocí 14 C 14 Willard Libby C vzniká kontinuálně vysoko v atmosféře 14 7 N + 1 o n(kosmickézáření) 14 6 C + ( ) p+ NP za chemii 1960 Rozpadá se beta rozpadem s poločasem t ½ = 5730 let 14 6 C 14 7 N e V atmosféře a živých rostlinách (CO 2, fotosyntéza) se ustaví rovnovážná koncentrace 14 C. Po smrti organismu koncentrace 14 C klesá. 14 C/ 12 C se určí hmotnostní spektrometrií ln(n/n 0 ) = k t k = ln(2) / t ½ ln(n/n 0 ) = t ln(2) / t ½ 67
68 3 Å 1 Å = m m m 68
69 Elementární částice Zoologická zahrada částic Quarky - Spin - Zlomkový náboj Murray Gell-Mann (1929 -) NP za fyziku
70 Elementární částice Standardní Model Astrofyzika a částicová fyzika Elmagn. Silné inter. Slabé inter. Chemická hmota 70
71 Antičástice 71
72 Chemická hmota Leptony lepton značka el. náboj m [amu] elektron e elektronické neutrino ν e 0 mion μ mionické neutrino ν μ 0 tauon τ tauonické neutrino ν τ 0 72
73 Leptony Existují volné, nevážou se Náboj číslo 0 nebo 1, kvantování el. náboje Levoruké a s opačnou helicitou (neexistují pravoruká neutrina) Antileptony mají opačný náboj Leptonové číslo L L = 1 pro leptony L = 1 pro antileptony L = 0 pro ostatní 73
74 74
75 Quarky Quark značka el. náboj down up d u 1/3 +2/3 Chemická hmota strange s 1/3 charm c +2/3 bottom b 1/3 top t +2/3 75
76 Quarky Quarky nejsou známy volné Existují jen ve vázaných stavech Hadrony (Baryony a Mezony) Nábojové číslo +2/3 a 1/3 Levoruké a s opačnou helicitou Antiquarky opačný náboj Baryon = 3 quarky (např. proton se skládá z uud) Antibaryon = 3 antiquarky Mezon = 1 quark + 1 antiquark Baryonové číslo B = 1 pro baryony B = 1 pro antibaryony B = 0 pro ostatní 76
77 Quarky Vazebné síly mezi quarky: Zprostředkovány gluony Slabé na malou vzdálenost, při oddalování rostou (Proto není možné quarky zachytit volné) 77
78 Hadrony Hadron značka el. náboj složení pozitivní pion Π + +1 ud pozitivní kaon K + +1 us proton p +1 uud neutron n 0 udd lambda Λ 0 uds Chemická hmota 78
79 Bosony Zprostředkovatelé interakcí Boson značka el. náboj interakce foton γ 0 elektromagnetická gluon g 0 silná W-boson W + +1 slabá W 1 Z-boson Z 0 slabá 79
80 Zákon zachování B a L čísla Součet B a L před reakcí a po reakci musí být stejný např. 1 e + 1 e 2 γ L p e n B
Prvek, nuklid, izotop, izobar
Prvek, nuklid, izotop, izobar A = Nukleonové (hmotnostní) číslo A = počet protonů + počet neutronů A = Z + N Z = Protonové číslo, náboj jádra Frederick Soddy (1877-1956) NP za chemii 1921 Prvek = soubor
Prvek, nuklid, izotop, izobar, izoton
Prvek, nuklid, izotop, izobar, izoton A = Nukleonové (hmotnostní) číslo A = počet protonů + počet neutronů A = Z + N Z = Protonové číslo, náboj jádra Prvek = soubor atomů se stejným Z Nuklid = soubor atomů
Prvek, nuklid, izotop, izobar, izoton
Prvek, nuklid, izotop, izobar, izoton A = Nukleonové (hmotnostní) číslo A = počet protonů + počet neutronů A = Z + N Z = Protonové číslo, náboj jádra Prvek = soubor atomů se stejným Z Nuklid = soubor atomů
1. Struktura hmoty. Následující schéma uvádí tento pojem do souvislosti s dalším
1. Struktura hmoty Hmota je tvořena z hlediska vnějšího pohledu různými látkami. Následující schéma uvádí tento pojem do souvislosti s dalším členěním: Atomy jsou tvořeny elementárními částicemi (pojem
JADERNÁ FYZIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník
JADERNÁ FYZIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník Základní pojmy Jaderná síla - drží u sebe nukleony, velmi krátký dosah, nasycení Vazebná energie jádra: E V = ( Z m p + N
RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření
KAP. 3 RADIOAKTIVITA A JADERNÉ REAKCE sklo barvené uranem RADIOAKTIVITA =SCHOPNOST NĚKTERÝCH ATOMOVÝCH JADER VYSÍLAT ZÁŘENÍ přírodní nuklidy STABILNÍ NKLIDY RADIONKLIDY = projevují se PŘIROZENO RADIOAKTIVITO
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. neutronové číslo
JADERNÁ FYZIKA I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í 1. Úvod 4 14 17 1 jádra E. Rutherford, 1914 první jaderná reakce: α+ N O H 2 7 8 + 1 jaderné síly = nový druh velmi silných sil vzdálenost
Rozměr a složení atomových jader
Rozměr a složení atomových jader Poloměr atomového jádra: R=R 0 A1 /3 R0 = 1,2 x 10 15 m Cesta do hlubin hmoty Složení atomových jader: protony + neutrony = nukleony mp = 1,672622.10 27 kg mn = 1,6749272.10
2. Atomové jádro a jeho stabilita
2. Atomové jádro a jeho stabilita Atom je nejmenší hmotnou a chemicky nedělitelnou částicí. Je tvořen jádrem, které obsahuje protony a neutrony, a elektronovým obalem. Elementární částice proton neutron
Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou JÁDRO ATOMU A RADIOAKTIVITA VY_32_INOVACE_03_3_03_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Atomové jádro je vnitřní
Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika
Jaderná fyzika Vlastnosti atomových jader Radioaktivita Jaderné reakce Jaderná energetika Vlastnosti atomových jader tomové jádro rozměry jsou řádově 1-15 m - složeno z protonů a neutronů Platí: X - soustředí
2. ATOM. Dualismus částic: - elektron se chová jako hmotná částice, ale také jako vlnění
Na www.studijni-svet.cz zaslal(a): Kikusska94 2. ATOM HISTORIE NÁZORŮ NA STAVBU ATOMU - Leukippos (490 420 př. n. l.) - Demokritos (460 340 př. n. l.) - látka je tvořená atomy, které se dále nedělí (atomos
Relativistická dynamika
Relativistická dynamika 1. Jaké napětí urychlí elektron na rychlost světla podle klasické fyziky? Jakou rychlost získá při tomto napětí elektron ve skutečnosti? [256 kv, 2,236.10 8 m.s -1 ] 2. Vypočtěte
3. Radioaktivita. Při radioaktivní přeměně se uvolňuje energie. X Y + n částic. Základní hmotnostní podmínka radioaktivity: M(X) > M(Y) + M(ČÁSTIC)
3. Radioaktivita >2000 nuklidů; 266 stabilních radioaktivita samovolná přeměna na jiný nuklid (neplatí pro deexcitaci jádra) pro Z 20 N / Z 1, poté postupně až 1,52 pro 209 Bi, přebytek neutronů zmenšuje
212 a. 5. Vyzáří-li radioaktivní nuklid aktinia částici α, přemění se na atom: a) radia b) thoria c) francia d) protaktinia e) zůstane aktinium
Pracovní list - Jaderné reakce 1. Vydává-li radionuklid záření alfa: a) protonové číslo se zmenšuje o 4 a nukleonové číslo se nemění b) nukleonové číslo se změní o 4 a protonové se nemění c) protonové
8.STAVBA ATOMU ELEKTRONOVÝ OBAL
8.STAVBA ATOMU ELEKTRONOVÝ OBAL 1) Popiš Daltonovu atomovou teorii postuláty. (urči, které platí dodnes) 2) Popiš Rutherfordův planetární model atomu a jeho přínos. 3) Bohrův model atomu vysvětli kvantování
Chemie pro KS Anorganická a analytická část
Chemie pro KS Anorganická a analytická část Ing. Matyáš Orsák, Ph.D. ORSAK@AF.CZU.CZ Program přednášek. přednáška a) atom, jádro, obal, elektron, radioaktivita b) názvosloví anorg. sloučenin včetně koordinačních
Atomové jádro, elektronový obal
Atomové jádro, elektronový obal 1 / 9 Atomové jádro Atomové jádro je tvořeno protony a neutrony Prvek je látka skládající se z atomů se stejným počtem protonů Nuklid je systém tvořený prvky se stejným
Radioaktivita a radionuklidy - pozitivní i negativní účinky a využití. Jméno: Ondřej Lukas Třída: 9. C
Radioaktivita a radionuklidy - pozitivní i negativní účinky a využití Jméno: Ondřej Lukas Třída: 9. C Co to je Radioaktivita/Co je radionuklid Radioaktivita = Samovolná přeměna atomových jader Objev 1896
Radioaktivita,radioaktivní rozpad
Radioaktivita,radioaktivní rozpad = samovolná přeměna jader nestabilních nuklidů na jiná jádra, za současného vyzáření neviditelného radioaktivního záření Výskyt v přírodě v přírodě se vyskytuje 264 stabilních
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno 1 Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Struktura
Úvod do moderní fyziky. lekce 4 jaderná fyzika
Úvod do moderní fyziky lekce 4 jaderná fyzika objevení jádra 1911 - z výsledků Geigerova Marsdenova experimentu Rutheford vyvodil, že atom se skládá z malého jádra, jehož rozměr je 10000 krát menší než
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ATOM, ELEKTRONOVÝ OBAL 1) Sestavte tabulku: a) Do prvního sloupce
Aplikace jaderné fyziky (několik příkladů)
Aplikace jaderné fyziky (několik příkladů) Pavel Cejnar Ústav částicové a jaderné fyziky MFF UK pavel.cejnar@mff.cuni.cz Příklad I Datování Galileiho rukopisů Galileo Galilei (1564 1642) Všechny vázané
Stavba atomu: Atomové jádro
Stavba atomu: tomové jádo Výzkum stuktuy hmoty: Histoie Jen zdánlivě existuje hořké či sladké, chladné či hoké, ve skutečnosti jsou pouze atomy a pázdno. Démokitos, 46 37 př. n.l. Heni Becqueel 85 98 objev
Jaderné reakce a radioaktivita
Střední průmyslová škola Hranice - - Jaderné reakce a radioaktivita Radioaktivita Je vlastností atomových jader, která se samovolně přeměňují na jiná a vyzařují při tom pronikavé neviditelné záření. Jádra
4. JADERNÁ FYZIKA A Z. protonové (atomové) číslo, pořadové číslo v periodické tabulce, Q = Z.e. neutronové číslo. nukleonové (hmotnostní) číslo
FYZIKA MIKROSVĚTA 2 4. JADERNÁ FYZIKA Z > = N > = 0 protonové (atomové) číslo, pořadové číslo v periodické tabulce, Q = Z.e neutronové číslo A > nukleonové (hmotnostní) číslo A Z N A Z X X - chemický prvek
HMOTNOST JÁDRA JE S PŘESNOSTÍ 1% ROVNA A u, KDE u = ATOMOVÁ HMOTNOSTNÍ JEDNOTKA - u = 1, (28) x kg MeV
JÁDRO JÁDRO SE SKLÁDÁ Z A NUKLEONŮ ( A = HMOTNOSTNÍČÍSLO ), Z NICHŽ Z ( NÁBOJOVÉČÍSLO ) JE PROTONŮ A N = A Z ( NEUTRONOVÉČÍSLO ) NEUTRONŮ. HMOTNOST JÁDRA JE S PŘESNOSTÍ 1% ROVNA A u, KDE u = ATOMOVÁ HMOTNOSTNÍ
ATOMOVÁ FYZIKA JADERNÁ FYZIKA
ATOMOVÁ FYZIKA JADERNÁ FYZIKA 12. JADERNÁ FYZIKA, STAVBA A VLASTNOSTI ATOMOVÉHO JÁDRA Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. JADERNÁ FYZIKA zabývá strukturou a přeměnami atomového jádra.
36 RADIOAKTIVITA. Rozpadový zákon Teorie radioaktivního rozpadu Umělá radioaktivita
433 36 RADIOAKTIVITA Rozpadový zákon Teorie radioaktivního rozpadu Umělá radioaktivita Radioaktivita je jev, při kterém se jádra jednoho prvku samovolně mění na jádra jiného prvku emisí částic alfa, neutronů,
Složení látek a chemická vazba Číslo variace: 1
Složení látek a chemická vazba Číslo variace: 1 Zkoušecí kartičku si PODEPIŠ a zapiš na ni ČÍSLO VARIACE TESTU (číslo v pravém horním rohu). Odpovědi zapiš na zkoušecí kartičku, do testu prosím nepiš.
CZ.1.07/1.1.30/01.0038
Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 29 Téma: RADIOAKTIVITA A JADERNÝ PALIVOVÝ CYKLUS Lektor: Ing. Petr Konáš Třída/y: 3ST,
Stavba hmoty. Atomová teorie Korpuskulární model látky - chemické
Stavba hmoty Atomová teorie Korpuskulární model látky - chemické látky jsou složeny z mikroskopických, chemicky dále neděčástic atomů. Později byl model rozšířen na molekuly a ionty (chemický druh - specie).
Jana Nováková Proč jet do CERNu? MFF UK
Jana Nováková MFF UK Proč jet do CERNu? Plán přednášky 4 krát částice kolem nás intermediální bosony mediální hvězdy hon na Higgsův boson - hit současné fyziky urychlovač není projímadlo detektor není
Náboj a hmotnost elektronu
1911 změřil náboj elektronu Pomocí mlžné komory q = 1.602 177 10 19 C Náboj a hmotnost elektronu Elektrický náboj je kvantován, Každý náboj je celistvým násobkem elementárního náboje (elektronu) z hodnoty
Jaderná fyzika. Zápisy do sešitu
Jaderná fyzika Zápisy do sešitu Vývoj modelů atomu 1/3 Antika intuitivně zavedli pojem atomos nedělitelná část hmoty Pudinkový model J.J.Thomson (1897) znal elektron a velikost atomu 10-10 m v celém atomu
FYZIKA ATOMOVÉHO JÁDRA
FYZIKA ATOMOVÉHO JÁDRA Je to nejstarší obor fyziky Stručně jaderná nebo nukleární fyzika Zabývá se strukturou jader, jadernými ději a jejich využití v praxi JÁDRO ATOMU Tvoří centrální část atomu o poloměru
RADIOAKTIVITA A VLIV IONIZUJÍCÍHO ZÁŘENÍ
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 RADIOAKTIVITA A VLIV IONIZUJÍCÍHO
Letní škola RADIOAKTIVNÍ LÁTKY a možnosti detoxikace
Letní škola 2008 RADIOAKTIVNÍ LÁTKY a možnosti detoxikace 1 Periodická tabulka prvků 2 Radioaktivita radioaktivita je schopnost některých atomových jader odštěpovat částice, neboli vysílat záření jádro
4.4.6 Jádro atomu. Předpoklady: Pomůcky:
4.4.6 Jádro atomu Předpoklady: 040404 Pomůcky: Jádro je stotisíckrát menší než vlastní atom (víme z Rutherfordova experimentu), soustřeďuje téměř celou hmotnost atomu). Skládá se z: protonů: kladné částice,
Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD.
Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. KAP FP TU Liberec pavel.pesat@tul.cz tel. 3293 Radioaktivita. Přímo a nepřímo ionizující záření. Interakce záření s látkou. Detekce záření, Dávka
Výukový materiál zpracován v rámci projektu EU peníze školám
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_FYZ_379 Jméno autora: Mgr. Alena Krejčíková Třída/ročník:
VY_32_INOVACE_06_III./7._STAVBA ATOMOVÉHO JÁDRA
VY_32_INOVACE_06_III./7._STAVBA ATOMOVÉHO JÁDRA Fyzika atomového jádra Stavba atomového jádra Protonové číslo Periodická soustava prvků Nukleonové číslo Neutron Jaderné síly Úkoly zápis Stavba atomového
Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK
Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Fyzika atomu - model atomu struktura elektronového obalu atomu z hlediska energie atomu - stavba atomového jádra; základní nukleony
jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony
atom jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony molekula Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti seskupení alespoň dvou atomů
8.1 Elektronový obal atomu
8.1 Elektronový obal atomu 8.1 Celkový náboj elektronů v elektricky neutrálním atomu je 2,08 10 18 C. Který je to prvek? 8.2 Dánský fyzik N. Bohr vypracoval teorii atomu, podle níž se elektron v atomu
29. Atomové jádro a jaderné reakce
9. tomové jádro a jaderné reakce tomové jádro je složeno z nukleonů, což jsou protony (p + ) a neutrony (n o ). Průměry atomových jader jsou řádově -5 m. Poznámka: Poloměr atomového jádra je dán vztahem:
Atomová a jaderná fyzika
Mgr. Jan Ptáčník Atomová a jaderná fyzika Fyzika - kvarta Gymnázium J. V. Jirsíka Atom - historie Starověk - Démokritos 19. století - první důkazy Konec 19. stol. - objev elektronu Vznik modelů atomu Thomsonův
Historie zapsaná v atomech
Historie zapsaná v atomech Pavel Cejnar Ústav částicové a jaderné fyziky MFF UK pavel.cejnar@mff.cuni.cz Symposion 2010, Gymnázium Jana Keplera, Praha Stopy, kroky, znamení Historie zapsaná v atomech Pavel
RADIOAKTIVITA TEORIE. Škola: Masarykovo gymnázium Vsetín Mgr.Milan Staněk MGV_F_SS_3S2_D12_Z_MIKSV_Radioaktivita_PL
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr.Milan Staněk MGV_F_SS_3S2_D12_Z_MIKSV_Radioaktivita_PL Člověk a příroda Fyzika Jaderná fyzika Radioaktivita RADIOAKTIVITA
VY_32_INOVACE_FY.17 JADERNÁ ENERGIE
VY_32_INOVACE_FY.17 JADERNÁ ENERGIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jaderná energie je energie, která existuje
Ullmann V.: Jaderná a radiační fyzika
Radionuklidové metody Jsou založeny na studiu přirozené, respektive uměle vzbuzené radioaktivity hornin. Radiometrické metody využívají přirozenou radioaktivitu hornin při vyhledávacím průzkumu a při geologickém
VYBRANÉ DOSIMETRICKÉ VELIČINY A VZTAHY MEZI NIMI
VYBRANÉ DOSIMETRICKÉ VELIČINY A VZTAHY MEZI NIMI Přehled dosimrických veličin: Daniel KULA (verze 1.0), 1. Aktivita: Definice veličiny: Poč radioaktivních přeměn v radioaktivním materiálu, vztažený na
Biofyzikální chemie radiometrické metody. Zita Purkrtová říjen - prosinec 2015
Biofyzikální chemie radiometrické metody Zita Purkrtová říjen - prosinec 2015 Radioaktivita 1896 Antoine Henri Becquerel první pozorování při studiu fluorescence a fosforescence solí uranu 1903 Nobelova
Atom jeho složení a struktura Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje
Atom jeho složení a struktura Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje 16.3.2009,vyhotovila Mgr. Alena Jirčáková Atom atom (z řeckého átomos nedělitelný)
FYZIKA MIKROSVĚTA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník
FYZIKA MIKROSVĚTA Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník Mikrosvět Svět o rozměrech 10-9 až 10-18 m. Mikrosvět není zmenšeným makrosvětem! Chování v mikrosvětě popisuje kvantová
LEPTONY. Elektrony a pozitrony a elektronová neutrina. Miony a mionová neutrina. Lepton τ a neutrino τ
LEPTONY Elektrony a pozitrony a elektronová neutrina Pozitronium, elektronové neutrino a antineutrino Beta rozpad nezachování parity, měření helicity neutrin Miony a mionová neutrina Lepton τ a neutrino
Kateřina Fišerová - Seminární práce k předmětu Didaktika fyziky
Kateřina Fišerová - Seminární práce k předmětu Didaktika fyziky Problémová situace První jaderný reaktor spustil 2. prosince 942 na univerzitě v Chicagu italský fyzik Enrico Fermi se svými spolupracovníky.
Mlžnákomora. PavelMotal,SOŠaSOUKuřim Martin Veselý, FJFI ČVUT Praha
Mlžnákomora PavelMotal,SOŠaSOUKuřim Martin Veselý, FJFI ČVUT Praha Historie vývoje mlžné komory Jelikož není možné částice hmoty pozorovat pouhým okem, bylo vyvinutozařízení,ježzviditelňujedráhytěchtočásticvytvářenímmlžné
Stavba atomů a molekul
Stavba atomů a molekul Michal Otyepka V prezentaci jsou použity obrázky z řady zdrojů, které nejsou důsledně citovány, tímto se všem dotčeným omlouvám. Vidět znamená věřit Úvod l cíle seznámit studenty
6.3.5 Radioaktivita. Předpoklady: Graf závislosti vazebné energie na počtu částic v jádře pro částice z minulé hodiny
6.3.5 Radioaktivita Předpoklady: 6304 Graf závislosti vazebné energie na počtu částic v jádře pro částice z minulé hodiny Vazebná energie na částici [MeV] 10 9 8 Vazebná energie [MeV] 7 6 5 4 3 1 0 0 50
( ) 2 2 MODUL 5. STAVBA ATOMU SHRNUTÍ
MODUL 5. STAVBA ATOMU SHRNUTÍ Kvantování fyzikálních veličin - vázaným částicím v mikrosvětě náleží diskrétní hodnoty hybnosti, energie i dalších veličin, které nazýváme kvantované fyzikální veličiny -
JADERNÁ CHEMIE včera, dnes a zítra
JADERNÁ CHEMIE včera, dnes a zítra J. John (john@fjfi.cvut.cz) U3V 11.4.2013 1 Obsah Část 1 Pravěk Objev radioaktivity Starověk Objevy radioaktivních prvků v přírodě Výroba radia v Jáchymově Vsuvka: Pojmy
Částicové složení látek atom,molekula, nuklid a izotop
Částicové složení látek atom,molekula, nuklid a izotop ATOM základní stavební částice všech hmotných těles jádro 100 000x menší než atom působí jaderné síly p + n 0 [1] e - stejný počet protonů a elektronů
Náboj a hmotnost elektronu
1911 určení náboje elektronu q pomocí mlžné komory q = 1.602 177 10 19 C Náboj a hmotnost elektronu Elektrický náboj je kvantován Každý náboj je celistvým násobkem elementárního náboje (elektronu) z hodnoty
Standardní model a kvark-gluonové plazma
Standardní model a kvark-gluonové plazma Boris Tomášik Fakulta jaderná a fyzikálně inženýrská, ČVUT International Particle Physics Masterclasses 2012 7.3.2012 Struktura hmoty molekuly atomy jádra a elektrony
Mezony π, mezony K, mezony η, η, bosony 1
Mezony π, mezony K, mezony η, η, bosony 1 Mezony π, (piony) a) Nabité piony hmotnost, rozpady, doba života, spin, parita, nezachování parity v jejich rozpadech b) Neutrální piony hmotnost, rozpady, doba
Nebezpečí ionizujícího záření
Nebezpečí ionizujícího záření Radioaktivita versus Ionizující záření Radioaktivita je schopnost jader prvků samovolně se rozpadnout na jádra menší stabilnější. Rozeznáváme pak radioaktivitu přírodní (viz.
Příklady Kosmické záření
Příklady Kosmické záření Kosmické částice 1. Jakou kinetickou energii získá proton při pádu z nekonečné výšky na Zem? Poloměr Zeměje R Z =637810 3 maklidováenergieprotonuje m p c 2 =938.3MeV. 2. Kosmickékvantum
Jaderná energie Jaderné elektrárny. Vojtěch Motyčka Centrum výzkumu Řež s.r.o.
Jaderná energie Jaderné elektrárny Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Obsah prezentace Energie jaderná Vývoj energetiky Dělení jaderných reaktorů I. Energie jaderná Uvolňuje se při jaderných reakcích
Test z radiační ochrany
Test z radiační ochrany v nukleární medicíně ě 1. Mezi přímo ionizující záření patří a) záření alfa, beta a gama b) záření neutronové c) záření alfa, beta a protonové záření 2. Aktivita je definována a)
Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115
Gymnázium a Střední odborná škola, Rokycany, Mládežníků 5 Číslo projektu: CZ..07/.5.00/34.040 Číslo šablony: 7 Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tématický celek: Atom
Jádro se skládá z kladně nabitých protonů a neutrálních neutronů -> nukleony
Otázka: Atom a molekula Předmět: Chemie Přidal(a): Dituse Atom = základní stavební částice všech látek Skládá se ze 2 částí: o Kladně nabité jádro o Záporně nabitý elektronový obal Jádro se skládá z kladně
DUM č. 15 v sadě. 12. Fy-3 Průvodce učitele fyziky pro 4. ročník
projekt GML Brno Docens DUM č. 15 v sadě 12. Fy-3 Průvodce učitele fyziky pro 4. ročník utor: Miroslav Kubera Datum: 27.05.2014 Ročník: 4B notace DUMu: Prezentace je souhrnem probírané tématiky. Ve stručném
Radioterapie. X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz
Radioterapie X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Radioterapie je klinický obor využívající účinků ionizujícího záření v léčbě jak zhoubných, tak nezhoubných nádorů
Jiří Grygar: Velký třesk za všechno může... 1/ 22
Jiří 1/ 22 C2CR 2005: Od urychlovačů ke kosmickým paprskům 9. 9. 2005 Urychlovače č na nebi a pod zemí, aneb může Jiří Grygar Fyzikální ústav AV ČR, Praha Grafika: Michael Prou Jiří 2/ 22 Cesta do mikrosvěta
3. Spektra atomů Roentgen: elektromagnetické záření s kratšími vlnovými délkami než. Wilhelm Conrad Röntgen ( ) ruka poraněná brokovnicí
3. Spektra atomů 3. 2. Rentgenová spektra 1895 Roentgen: elektromagnetické záření s kratšími vlnovými délkami než ultrafialové: 10 až 0,01 nm Wilhelm Conrad Röntgen (1845-1923) ruka poraněná brokovnicí
Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího
rezonanční neutrony (0,5-1 kev) (pojem rezonanční souvisí s výskytem rezonančních maxim) A Z
7. REAKCE NEUTRONŮ velmi časté reakce s vysokými výtěžky pro neutron neexistuje potenciálová bariéra terčového jádra pravděpodobnost záchytu neutronu je tím větší, čím je neutron pomalejší (déle se zdržuje
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
RADIOAKTIVITA RADIOAKTIVITA
Předmět: Ročník: Vytvořil: Datum: CHEMIE PRVNÍ Mgr. Tomáš MAŇÁK 20. říjen 2012 Název zpracovaného celku: RADIOAKTIVITA Přirozená radioaktivita: RADIOAKTIVITA Atomová jádra některých nuklidů (zejména těžká
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Předmět: LRR/CHPB1/Chemie pro biology 1 Struktura hmoty - atomu Mgr. Karel Doležal Dr. Cíl přednášky: seznámit posluchače se
ATOMOVÉ JÁDRO A JEHO STRUKTURA. Aleš Lacina Přírodovědecká fakulta MU, Brno
ATOMOVÉ JÁDRO A JEHO STRUKTURA Aleš Lacina Přírodovědecká fakulta MU, Brno "Poněvadž a-částice... procházejí atomem, pečlivé studium odchylek "těchto střel" od původního směru může poskytnout představu
Fyzika IV. Atomová a jaderná fyzika. kontakt: Petr Alexa, Institut fyziky A 952, mobil:
Fyzika IV Atomová a jaderná fyzika kontakt: Petr Alexa, Institut fyziky A 952, petr.alexa@vsb.cz mobil: 607 683 702 Zápočet: 40 bodů, zkouška: písemná 20 bodů, ústní 40 bodů Literatura: HALLIDAY, D., RESNICK,
Urychlovače na nebi a pod zemí, aneb Velký třesk za všechno může
Urychlovače na nebi a pod zemí, aneb Velký třesk za všechno může Jiří Grygar Fyzikální ústav AV ČR, Praha Grafika: Michael Prouza Cesta do mikrosvěta 1895 W. Röntgen: paprsky X 1896 H. Becquerel: radioaktivita
2. 1 S T R U K T U R A A V L A S T N O S T I A T O M O V É H O J Á D R A
2. Jaderná fyzika 9 2. 1 S T R U K T U R A A V L A S T N O S T I A T O M O V É H O J Á D R A V této kapitole se dozvíte: o historii vývoje modelů stavby atomového jádra od dob Rutherfordova experimentu;
Radiační patofyziologie. Zdroje záření. Typy ionizujícího záření: Jednotky pro měření radiace:
Radiační patofyziologie Radiační poškození vzniká účinkem ionizujícího záření. Co se týká jeho původu, ionizující záření vzniká: při radioaktivním rozpadu prvků, přichází z kosmického prostoru, je produkováno
DUM označení: VY_32_INOVACE_... Jméno autora výukového materiálu: Ing. Jitka Machková Škola: Základní škola a mateřská škola Josefa Kubálka Všenory
DUM označení: VY_32_INOVACE_... Jméno autora výukového materiálu: Ing. Jitka Machková Škola: Základní škola a mateřská škola Josefa Kubálka Všenory Karla Majera 370, 252 31 Všenory Datum (období) vytvoření:
VY_52_INOVACE_VK64. Datum (období), ve kterém byl VM vytvořen červen 2013 Ročník, pro který je VM určen
VY_52_INOVACE_VK64 Jméno autora výukového materiálu Věra Keselicová Datum (období), ve kterém byl VM vytvořen červen 2013 Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace 8. ročník
Interakce záření s hmotou
Interakce záření s hmotou nabité částice: ionizují atomy neutrální částice: fotony: fotoelektrický jev Comptonův jev tvorba párů e +, e neutrony: pružný a nepružný rozptyl jaderné reakce (radiační záchyt
Pane Wágner ... p 17 n 20 e e = p 18 n 19 e e - ( n 1 ). e = (p 1 e - ). e -..??? p 1 n 2 e -1 = p 2 n 1 (jádro). e -. e -.???
Pane Wágner Prosím : Ještě by mě zajímalo, zda se při interakcích atomů s částicemi účastní obalové elektrony interakce?,-- tedy jak se elektrony z obalu "postaví" do systému interakční rovnováhy? Má-li
Atom, chemická vazba. Histrorie, atomové jádro, radioaktivita, elektronový obal, periodický zákon, chemická vazba
Atom, chemická vazba Histrorie, atomové jádro, radioaktivita, elektronový obal, periodický zákon, chemická vazba 1 Atom Představa atomu jako základního stavebního prvku hmoty pochází již ze starověku.
ÚVOD DO JADERNÉ FYZIKY ATOMOVÉ JÁDRO
ÚVOD DO JADERNÉ FYZIKY EXPERIMENTÁLNÍ ZÁKLAD rozptyl (pružný i nepružný) různých částic na atomových jádrech (neutrony, protony, elektrony, pozitrony, fotony, α-částice, ) radioaktivní rozpady některých
Od kvarků k prvním molekulám
Od kvarků k prvním molekulám Petr Kulhánek České vysoké učení technické v Praze Hvězdárna a planetárium hl. m. Prahy Aldebaran Group for Astrophysics kulhanek@aldebaran.cz www.aldebaran.cz ZÁKLADNÍ SLOŽKY
Registrační číslo projektu: CZ.1.07/1.4.00/21.3075
Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 19. 12. 2012 Pořadové číslo 09 1 RADIOAKTIVITA Předmět: Ročník: Jméno autora:
Atomové jádro Elektronový obal elektron (e) záporně proton (p) kladně neutron (n) elektroneutrální
STAVBA ATOMU Výukový materiál pro základní školy (prezentace). Zpracováno v rámci projektu Snížení rizik ohrožení zdraví člověka a životního prostředí podporou výuky chemie na ZŠ. Číslo projektu: CZ.1.07/1.1.16/02.0018
Identifikace typu záření
Identifikace typu záření U radioaktivního záření rozeznáváme několik druhů, jejichž vlastnosti se diametrálně liší. Jednotlivé druhy rozeznáváme podle druhu emitovaného záření. Tyto druhy radioaktivity
Standardní model částic a jejich interakcí
Standardní model částic a jejich interakcí Jiří Rameš Fyzikální ústav AV ČR, v. v. i., Praha Přednáškové dopoledne Částice, CERN, LHC, Higgs 24. 10. 2012 Hmota se skládá z atomů Každý atom tvoří atomové