Aritmetické hry a zábavy
|
|
- Jana Aneta Slavíková
- před 6 lety
- Počet zobrazení:
Transkript
1 Aritmetické hry a zábavy 6. Magické čtverce In: Karel Čupr (author): Aritmetické hry a zábavy. (Czech). Praha: Jednota českých matematiků a fysiků, pp Persistent URL: Terms of use: Jednota českých matematiků a fyziků Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library
2 a odtud sin o = ===, a = 1 14' 43". V2117 Příklady. 1. Je-li b a =p, Ď i = 9. b t = p + q, b 3 = p + 2q ukažte, že *A+«- 6 Vn = + P3-9 2 ). a že 56 a B + 4 ( 1)«+1 (p» + pq q*) jest úplný Čtverec. Odmocniny tvoří opět čísla Fibonaceiova o počátečních podmínkách 6 0 = p + 2q, b x = 2p + q. 2. Vysvětlete a propočtěte záhadu vzniklou proměnou čtverce 0 straně 13 v obdélník o stranách sin <p =, <p = 28' 14". j/ V a 3. Ukažte, že w 2 + u2 n+i jest rovněž člen téže Fibonacciho posloupnosti. 4. Stanovte obecný člen posloupnosti, v níž A 0 = m 0, A l = m 1, A t = A 0 A l A n = A n A n 2-6. magické Čtverce.*) Snad žádný ze zábavných problémů nemůže se vykázati až na slovní rovnice tak bohatou kulturní historií a literaturou jako magické čtverce. Nazýváme tak čtverce o n krát m polích, do nichž jest vepsáno po jednom z čísel 1, 2, 3,......, w 2, tak uspořádaných, že součty v řádcích i ve sloupcích 1 na hlavní a vedlejší úhlopříčce jsou tytéž. Tento součet jest (1 + n 2 ) : n a sluje konstantou daného čtverce. Magické čtverce jsou nesporně původu orientálního, vznik jejich jest však zahalen neproniknutelnou rouškou prostě vězí v neúnavné lidské hravosti. Připomeňme aspoň jednu z nejstarších forem magického čtverce. Novoplatonik Theon (2. stol. po Kr.) zpozoroval, že ve čtverci *) Novější literatura o magických čtvercích: Fitting, Jahres beder d. Mathematikervereinigung, 40, str. 177, 1931; Schubert Fitting, Mathem. Mussestunden, str. 132; Kowalewski: Ma gische Quadrate und mag. Parketierung, Scientia delectans II 1937; viz téhož autora: Grossen Mathematiker 1939, str. 37/41 23
3 jest číslo 5 aritmetickým středem čísel nalézajících se v témže řádku nebo v témž sloupci nebo úhlopříčce. Jak již název ukazuje, zmocnily se těchto čtvercových schémat t. zv. tajné vědy" a namnoze i obyčejná pověra: amulety s magickými čtverci chránily děti před nemocemi, jezdcova koně před úrazem; byly vtesávány do zdí, aby chránily budovy; čtverce, jichž konstanta rovnala se některému datu, přinášely štěstí atd. Ještě v r vydává vídeňský lékař F. Liharžik (nar. ve Val. Meziříčí 1813, zemř. 1866) spis: Das Quairat die Grundlage aller Proportionalität in der Natur und das Quadrat der Zahl Sieben die Uridee des menschlichen Körperbaues. I v dějinách magických čtverců opakuje se známý zjev, že zájem o problém rázem utuchá, jakmile jest známo dokonalé řešení. Omezíme se jen na nejdůležitější údaje. A) Nejjednodušší magický čtverec jest pro n = 3, jeho konstanta jest (1 + 9). 3= 15. Jeho konstrukce jest velmi jednoduchá: Do prostředního pole druhého řádku napišme 5, do rohových polí čísla 2, 4, 6, 8 tak, aby v úhlopříčkách byl součet 15, a nyní lichými čísly vyplňme prázdná místa tak, aby součet opět byl patnáct. Na př «i «2 «3 a" <x 4 <*5 «6 a"«2 9 4 a 7 «8 t\*> Snadno zjistíme, že počet různých čtverců jest 8. 24
4 1. Ukažte, že třetí ze sehemat shora uvedených má tu vlastnost, že součiny mocnin v témž řádku, sloupci i úhlopříčce jsou tytéž, je-li čtverec 2. magický. 2. Je-li N nejmenší společný násobek čísel a = 1; 2; 3; 4; 5; 6; 7; 8; 9, jsou ve čtverci, jehož prvky jsou N : a ve všech směrech čísla v harmonickém poměru. 3. Jsou-li o, b čísla ve dvou sousedních rozích magického čtverce, jest hodnota determinantu daného magickým čtvercem 45 (a b) (o + b 10). 4. Sestavte magický obdélník ze štítků domina (2,6), (0,1), (1,5); (1,2), (1,4), (1,6); (1,3), (3,6), (1,1). B) Nejstarší čtverec známý ve střední Evropě jest na A. Důrerově mědirytině z r nesoucí název Melencolia (viz Prameny č. 42,1941, A. Důrer, str. 31). Jest to alegorická postava sedící ženy, obklopené různými předměty symbolisujícími vědy a zaměstnání: koule a mnohostěn značí geometrii, magický čtverec o 16 polích pak aritmetiku, melencolia melancholie neznačí zde jednu z letor, nýbrž jest tak pojmenováno úsilovné přemýšlení a bádám. Diirerův čtve rec jest tento: Konstanta tohoto čtverce jest (1 + 16). 4 = 34, prostřední dvě čísla v poslední řádce udávají rok, kdy obraz vznikl. Jiný magický čtverec o 16 polích vznikne ze schématu v němž ležatá čísla doplníme do 17. C) Konstrukcí magických čtverců o lichém počtu polí jest známo několik, vyložíme si metodu pocházející od 25
5 Bacheta de Méziriac, zvanou též metodou teras. Volme n = 5; napišme toto schéma 5 A 4 10 B j C D 21 Terasu na AB položme na základnu CD, terasu podél strany BD položme na AC atd. Pokuste se základní schéma napsati jinak a odvoditi jiný magický čtverec o 25 polích. D) Sestrojiti magický čtverec o sudém počtu polí jest nesnadnější; nutno rozeznávati dva případy: n jest buď tvaru 2(2m-f- 1), nebo 4m (čísla sudolichá a sudosudá). Konstrukce těchto čtverců opírá se o tyto vlastnosti čtvercového schématu, do jehož polí jsme postupně napsali čísla 1; 2; 3;...; n 2, tak jak za sebou jdou. Součet členů v k-té řádce tvořících řadu aritmetickou (první člen jest n i (k 1) n + 1, rozdíl 1) jest = kri 1 n, podobně i jest součet prvků v řádce stejně vzdálené od druhé vodorovné říi 1) Tt strany čtverce s _fc + i= (n l)w 2 H - ; po- t n(n 2 +1) něvadž konstantou čtverce jest C =, lze psáti 26
6 w 2 («+l 2k) n 2 (n + 1 2k) Sh = C, «n-i+ 1 = M k< 2- Značíme-li Pí, P n součty ve sloupci Mm a n,, v n(n + 1 2k) k + 1, vypočteme podobné Pi= C, n(n + 1 2k) n Pn t+l (/ H, «< ~2 Nedostává se tedy a nadbývá ve sloupcích i řádcích stejně od krajů vzdálených táž veličina; ve vhodné záměně prvků v těchto řádcích a sloupcích spočívá metoda sestrojiti magické čtverce o sudém n, kterou vyložíme na dvou zvláštních případech. a) Budiž n = 6. Napišme do čtverce jako dříve čísla 1, 2, 3 36 a všimněme si, že čísla stojící v obou úhlopříčkách mají součet rovný konstantě čtverce -^-(1+36). 6 = = 111. V dalším tato čísla zůstanou již na úhlopříčkách. a) čísla v obou úhlopříčkách napišme v opačném sledu. /S) Zaměňme nyní čísla (3; 33); (7; 25); (14; 20): součty ve všech řádcích jsou 111, součty ve sloupcích postupně jsou: 106; 108; 110; 112; 114; 116. y) Zaměňme nyní čísla (2; 5); (9; 10); (13; 18); nyní i součty ve všech sloupcích činí 111 a magický čtverec zní:
7 b) Budiž nyní n = 8, tedy číslo sudosudé. Opět vepišme do čtverce čísla 1; 2; 3;...; 64, konstanta čtverce jest 260. Součty v řádcích jsou: ; ; ; ; ; ; ; ; součty v řádcích pak: ; ; ; 260 4; ; ; ; Vyměňme nyní mezi sebou sledy 3; 4; 5; 6 za 62; 61; 60; 59, 11; 12; 13; 14 za 54; 53; 52; 51, 17; 25; 33; 41 za 48; 40; 32; 24, 18; 26; 34; 42 za 47; 39; 31; 23, 59; 60; 61; 62 za 6; 5; 4; 3, čímž docílíme žádaného čtverce: Rozdělte původní čtverec na 4kráte 4 čtverečků po 4 polích pak jest zřejmo, že jsme zaměnili prvky v 2. a 3. čtverečku za prvky ve 14. a 13. čtverečku, dále jsme zaměnili prvky v 5. a 9. čtverečku s prvky ve čtverečku 12. a 8. Zkuste zaměniti prvky v ostatních polích ponechávajíce právě jmenované čtverečky beze změny! E) Byly však rozřešeny i obecnější úlohy, na př. sestrojit magický čtverec, jehož část jest opět magickým čtvercem, 28
8 sestrojiti magické mnohoúhelníky a krychle atd.; viz na př. Schubert-Fitting: Mathem. Mussestunden, 1941, str sestrojování magických čtverců o sudém počtu polí viz Awpic: Magické čtverce, Praha, 1932 (v komisi Jednoty č. matematiků a fysiků). 7. plněni nádob. Mějme jv-litrovou nádobu až po okraj naplněnou vodou a dvě nádoby prázdné o n x a n 2 litrech; kdy jest možno přeléváním vody d ocíliti množství ^A 7? Řešení této úlohy (staré přes 500 let a to pro čísla N = 8, n-^ = 5, n 2 = 3) lze provésti dvojím způsobem: Budiž n 1 > n 2 \ buď naplníme nejprve nádobu o n^ litrech a z ní nádobu o w 2 litrech, načež obsah této nádoby vlijeme opět do nádoby w 2 -litrové a opět naplníme nádobu o litrech atd., nebo počneme plniti nádobu o n 2 litrech a potom obsah vlijeme do nádoby o n^ litrech. Znovu naplníme nádobu w 2 -litrovou a pokračujeme způsobem popsaným. Pohodlnější jest způsob první: N % n 2 N 0 0 N ni % 0 N n n t í n 2 n 2 N n y + n 2 «i n 2 0 N n x + n 2 0 «1 n 2 N 2 n x + n n 2 i Wj n 2 N 2 n x -f- n n 2 n 2 N 2wj + 2 n 2 2n y 2 n 2 0 A nyní by se pořadí opakovalo; je-li N 2w x + 2ra 2 = 2 2w 2, t. j. Wj n 2 = jest původní množství vody roz- 29
Aritmetické hry a zábavy
Aritmetické hry a zábavy 5. Čísla Fibonacciova In: Karel Čupr (author): Aritmetické hry a zábavy. (Czech). Praha: Jednota českých matematiků a fysiků, 1942. pp. 18 23. Persistent URL: http://dml.cz/dmlcz/403033
Aritmetické hry a zábavy
Aritmetické hry a zábavy 3. Soustavy číselné In: Karel Čupr (author): Aritmetické hry a zábavy. (Czech). Praha: Jednota českých matematiků a fysiků, 1942. pp. 12 15. Persistent URL: http://dml.cz/dmlcz/403031
Aritmetické hry a zábavy
Aritmetické hry a zábavy 1. Doplnění naznačených výkonů In: Karel Čupr (author): Aritmetické hry a zábavy. (Czech). Praha: Jednota českých matematiků a fysiků, 1942. pp. 5 9. Persistent URL: http://dml.cz/dmlcz/4329
Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24.
Neurčité rovnice 4. Nejjednodušší rovnice neurčité 2. stupně In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24. Persistent URL: http://dml.cz/dmlcz/402869
Základy teorie matic
Základy teorie matic 7. Vektory a lineární transformace In: Otakar Borůvka (author): Základy teorie matic. (Czech). Praha: Academia, 1971. pp. 43--47. Persistent URL: http://dml.cz/dmlcz/401335 Terms of
O nerovnostech a nerovnicích
O nerovnostech a nerovnicích Kapitola 3. Množiny In: František Veselý (author); Jan Vyšín (other); Jiří Veselý (other): O nerovnostech a nerovnicích. (Czech). Praha: Mladá fronta, 1982. pp. 19 22. Persistent
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Jaroslav Bílek Pythagorova věta ve třetí třídě středních škol Časopis pro pěstování matematiky a fysiky, Vol. 66 (1937), No. 4, D265--D268 Persistent URL: http://dml.cz/dmlcz/123381
Základy teorie grupoidů a grup
Základy teorie grupoidů a grup 27. Cyklické grupy In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962. pp. 198--202. Persistent
Konvexní útvary. Kapitola 4. Opěrné roviny konvexního útvaru v prostoru
Konvexní útvary Kapitola 4. Opěrné roviny konvexního útvaru v prostoru In: Jan Vyšín (author): Konvexní útvary. (Czech). Praha: Mladá fronta, 1964. pp. 49 55. Persistent URL: http://dml.cz/dmlcz/403505
Geometrické hry a zábavy
Geometrické hry a zábavy VII. Hry na šachovnici In: Karel Čupr (author): Geometrické hry a zábavy. (Czech). Praha: Jednota československých matematiků a fysiků, 1949. pp. 69 74. Persistent URL: http://dml.cz/dmlcz/403191
Několik úloh z geometrie jednoduchých těles
Několik úloh z geometrie jednoduchých těles Úlohy ke cvičení In: F. Hradecký (author); Milan Koman (author); Jan Vyšín (author): Několik úloh z geometrie jednoduchých těles. (Czech). Praha: Mladá fronta,
Funkcionální rovnice
Funkcionální rovnice Úlohy k procvičení In: Ljubomir Davidov (author); Zlata Kufnerová (translator); Alois Kufner (translator): Funkcionální rovnice. (Czech). Praha: Mladá fronta, 1984. pp. 88 92. Persistent
O dělitelnosti čísel celých
O dělitelnosti čísel celých 6. kapitola. Nejmenší společný násobek In: František Veselý (author): O dělitelnosti čísel celých. (Czech). Praha: Mladá fronta, 1966. pp. 73 79. Persistent URL: http://dml.cz/dmlcz/403569
Úvod do neeukleidovské geometrie
Úvod do neeukleidovské geometrie Obsah In: Václav Hlavatý (author): Úvod do neeukleidovské geometrie. (Czech). Praha: Jednota československých matematiků a fysiků, 1926. pp. 209 [212]. Persistent URL:
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Matyáš Lerch K didaktice veličin komplexních. [I.] Časopis pro pěstování mathematiky a fysiky, Vol. 20 (1891), No. 5, 265--269 Persistent URL: http://dml.cz/dmlcz/108855
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky František Kaňka Důsledky akusticko-dynamického principu. [V.] Časopis pro pěstování mathematiky a fysiky, Vol. 47 (1918), No. 2-3, 158--163 Persistent URL: http://dml.cz/dmlcz/122325
Základy teorie grupoidů a grup
Základy teorie grupoidů a grup 13. Homomorfní zobrazení (deformace) grupoidů In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962.
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky František Kaňka Důsledky akusticko-dynamického principu. [IV.] Časopis pro pěstování mathematiky a fysiky, Vol. 47 (1918), No. 1, 25--31 Persistent URL: http://dml.cz/dmlcz/124004
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Jan Novák Aritmetika v primě a sekundě Časopis pro pěstování matematiky a fysiky, Vol. 67 (1938), No. Suppl., D254--D257 Persistent URL: http://dml.cz/dmlcz/120798
Zlatý řez nejen v matematice
Zlatý řez nejen v matematice Zlaté číslo a jeho vlastnosti In: Vlasta Chmelíková author): Zlatý řez nejen v matematice Czech) Praha: Katedra didaktiky matematiky MFF UK, 009 pp 7 Persistent URL: http://dmlcz/dmlcz/40079
Determinanty a matice v theorii a praxi
Determinanty a matice v theorii a praxi Rejstřík In: Václav Vodička (author): Determinanty a matice v theorii a praxi. Část druhá. (Czech). Praha: Jednota československých matematiků a fysiků, 1950. pp.
Determinanty a matice v theorii a praxi
Determinanty a matice v theorii a praxi 1. Lineární závislost číselných soustav In: Václav Vodička (author): Determinanty a matice v theorii a praxi. Část druhá. (Czech). Praha: Jednota československých
O mnohoúhelnících a mnohostěnech
O mnohoúhelnících a mnohostěnech I. Úhly a mnohoúhelníky v rovině In: Bohuslav Hostinský (author): O mnohoúhelnících a mnohostěnech. (Czech). Praha: Jednota československých matematiků a fysiků, 1947.
O dělitelnosti čísel celých
O dělitelnosti čísel celých 9. kapitola. Malá věta Fermatova In: František Veselý (author): O dělitelnosti čísel celých. (Czech). Praha: Mladá fronta, 1966. pp. 98 105. Persistent URL: http://dml.cz/dmlcz/403572
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Ferdinand Pietsch Výpočet cívky pro demonstraci magnetoindukce s optimálním využitím mědi v daném prostoru Časopis pro pěstování matematiky a fysiky, Vol. 62 (1933),
PANM 16. List of participants. http://project.dml.cz. Terms of use:
PANM 16 List of participants In: Jan Chleboun and Karel Segeth and Jakub Šístek and Tomáš Vejchodský (eds.): Programs and Algorithms of Numerical Mathematics, Proceedings of Seminar. Dolní Maxov, June
Zlatý řez nejen v matematice
Zlatý řez nejen v matematice Příloha A In: Vlasta Chmelíková (author): Zlatý řez nejen v matematice. (Czech). Praha: Katedra didaktiky matematiky MFF UK, 2009. pp. 157 166. Persistent URL: http://dml.cz/dmlcz/400805
Jubilejní almanach Jednoty čs. matematiků a fyziků 1862 1987
Jubilejní almanach Jednoty čs. matematiků a fyziků 1862 1987 Zdeněk Horský Písemnosti z pozůstalosti prof. dr. A. Seydlera In: Libor Pátý (editor): Jubilejní almanach Jednoty čs. matematiků a fyziků 1862
Nástin dějin vyučování v matematice (a také školy) v českých zemích do roku 1918
Nástin dějin vyučování v matematice (a také školy) v českých zemích do roku 1918 Jednoroční učební kurs (JUK) In: Jiří Mikulčák (author): Nástin dějin vyučování v matematice (a také školy) v českých zemích
O dynamickém programování
O dynamickém programování 9. kapitola. Cauchy-Lagrangeova nerovnost In: Jaroslav Morávek (author): O dynamickém programování. (Czech). Praha: Mladá fronta, 1973. pp. 65 70. Persistent URL: http://dml.cz/dmlcz/403801
Staroegyptská matematika. Hieratické matematické texty
Staroegyptská matematika. Hieratické matematické texty Staroegyptská matematika In: Hana Vymazalová (author): Staroegyptská matematika. Hieratické matematické texty. (Czech). Praha: Český egyptologický
Faktoriály a kombinační čísla
Faktoriály a kombinační čísla 7. kapitola. Různé In: Jiří Sedláček (author): Faktoriály a kombinační čísla. (Czech). Praha: Mladá fronta, 1964. pp. 72 81. Persistent URL: http://dml.cz/dmlcz/403522 Terms
Co víme o přirozených číslech
Co víme o přirozených číslech 2. Dělení se zbytkem a dělení beze zbytku In: Jiří Sedláček (author): Co víme o přirozených číslech. (Czech). Praha: Mladá fronta, 1961. pp. 9 15. Persistent URL: http://dml.cz/dmlcz/403438
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Úlohy Časopis pro pěstování mathematiky a fysiky, Vol. 43 (1914), No. 1, 140--144 Persistent URL: http://dml.cz/dmlcz/121666 Terms of use: Union of Czech Mathematicians
Staroegyptská matematika. Hieratické matematické texty
Staroegyptská matematika. Hieratické matematické texty Počítání se zlomky In: Hana Vymazalová (author): Staroegyptská matematika. Hieratické matematické texty. (Czech). Praha: Český egyptologický ústav
O dynamickém programování
O dynamickém programování 7. kapitola. O jednom přiřazovacím problému In: Jaroslav Morávek (author): O dynamickém programování. (Czech). Praha: Mladá fronta, 1973. pp. 55 59. Persistent URL: http://dml.cz/dmlcz/403799
Plochy stavebně-inženýrské praxe
Plochy stavebně-inženýrské praxe 10. Plochy šroubové In: František Kadeřávek (author): Plochy stavebně-inženýrské praxe. (Czech). Praha: Jednota československých matematiků a fysiků, 1950. pp. 99 106.
Jan Sobotka (1862 1931)
Jan Sobotka (1862 1931) Martina Kašparová Vysokoškolská studia Jana Sobotky In: Martina Kašparová (author); Zbyněk Nádeník (author): Jan Sobotka (1862 1931). (Czech). Praha: Matfyzpress, 2010. pp. 231--234.
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Zdeněk Češpíro Výbojový vakuoměr bez magnetického pole Pokroky matematiky, fyziky a astronomie, Vol. 3 (1958), No. 3, 299--302 Persistent URL: http://dml.cz/dmlcz/137111
Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, pp
Neurčité rovnice 2. Lineární rovnice o dvou neznámých In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 10 14. Persistent URL: http://dml.cz/dmlcz/402867
Booleova algebra. 1. kapitola. Množiny a Vennovy diagramy
Booleova algebra 1. kapitola. Množiny a Vennovy diagramy In: Oldřich Odvárko (author): Booleova algebra. (Czech). Praha: Mladá fronta, 1973. pp. 5 14. Persistent URL: http://dml.cz/dmlcz/403767 Terms of
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Jan Sommer Pokus vysvětliti Machův klam optický Časopis pro pěstování mathematiky a fysiky, Vol. 20 (1891), No. 2, 101--105 Persistent URL: http://dml.cz/dmlcz/109224
Kongruence. 1. kapitola. Opakování základních pojmů o dělitelnosti
Kongruence 1. kapitola. Opakování základních pojmů o dělitelnosti In: Alois Apfelbeck (author): Kongruence. (Czech). Praha: Mladá fronta, 1968. pp. 3 9. Persistent URL: http://dml.cz/dmlcz/403653 Terms
Staroegyptská matematika. Hieratické matematické texty
Staroegyptská matematika. Hieratické matematické texty Výpočet objemu tělesa In: Hana Vymazalová (author): Staroegyptská matematika. Hieratické matematické texty. (Czech). Praha: Český egyptologický ústav
Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, pp
Neurčité rovnice 3. Neurčité rovnice 1. stupně o 3 neznámých In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 15 20. Persistent URL: http:dml.czdmlcz402868
Nerovnosti v trojúhelníku
Nerovnosti v trojúhelníku Úvod In: Stanislav Horák (author): Nerovnosti v trojúhelníku. (Czech). Praha: Mladá fronta, 1986. pp. 5 12. Persistent URL: http://dml.cz/dmlcz/404130 Terms of use: Stanislav
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Jindřich Procházka Pokusy o interferenci a odrazu zvuku Časopis pro pěstování matematiky a fysiky, Vol. 67 (1938), No. Suppl., D197--D200 Persistent URL: http://dml.cz/dmlcz/120811
Plochy stavebně-inženýrské praxe
Plochy stavebně-inženýrské praxe 9. Plochy rourové In: František Kadeřávek (author): Plochy stavebně-inženýrské praxe. (Czech). Praha: Jednota československých matematiků a fysiků, 1950. pp. 95 98. Persistent
Faktoriály a kombinační čísla
Faktoriály a kombinační čísla 8. kapitola. Různé In: Jiří Sedláček (author): Faktoriály a kombinační čísla. (Czech). Praha: Mladá fronta, 1985. pp. 96 107. Persistent URL: http://dml.cz/dmlcz/404120 Terms
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Josef B. Slavík; B. Klimeš Hluk jako methodická pomůcka při zjišťování příčin chvění v technické praxi Pokroky matematiky, fyziky a astronomie, Vol. 2 (957), No.
Základy teorie grupoidů a grup
Základy teorie grupoidů a grup 11. Násobení v množinách In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962. pp. 89--93. Persistent
Co víme o přirozených číslech
Co víme o přirozených číslech 4. Největší společný dělitel a nejmenší společný násobek In: Jiří Sedláček (author): Co víme o přirozených číslech. (Czech). Praha: Mladá fronta, 1961. pp. 24 31. Persistent
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky František Hromádko Ukázky z indické arithmetiky obecné Časopis pro pěstování mathematiky a fysiky, Vol. 5 (1876), No. 4, 182--187 Persistent URL: http://dml.cz/dmlcz/121711
O rovnicích s parametry
O rovnicích s parametry 3. kapitola. Kvadratické rovnice In: Jiří Váňa (author): O rovnicích s parametry. (Czech). Praha: Mladá fronta, 1964. pp. 45 [63]. Persistent URL: http://dml.cz/dmlcz/403496 Terms
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Josef Kounovský O projektivnosti involutorní Časopis pro pěstování mathematiky a fysiky, Vol. 43 (1914), No. 3-4, 433--439 Persistent URL: http://dml.cz/dmlcz/109245
Malý výlet do moderní matematiky
Malý výlet do moderní matematiky Úvod [též symboly] In: Milan Koman (author); Jan Vyšín (author): Malý výlet do moderní matematiky. (Czech). Praha: Mladá fronta, 1972. pp. 3 6. Persistent URL: http://dml.cz/dmlcz/403755
Kombinatorika. In: Antonín Vrba (author): Kombinatorika. (Czech). Praha: Mladá fronta, pp. 3 [6].
Kombinatorika Předmluva In: Antonín Vrba (author): Kombinatorika. (Czech). Praha: Mladá fronta, 1980. pp. 3 [6]. Persistent URL: http://dml.cz/dmlcz/403963 Terms of use: Antonín Vrba, 1080 Institute of
Základy teorie grupoidů a grup
Základy teorie grupoidů a grup 2. Rozklady v množině In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962. pp. 22--27. Persistent
Geometrické hry a zábavy
Geometrické hry a zábavy I. Psychotechnické testy In: Karel Čupr (author): Geometrické hry a zábavy. (Czech). Praha: Jednota československých matematiků a fysiků, 1949. pp. 5 12. Persistent URL: http://dml.cz/dmlcz/403185
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Josef Langr O čtyřúhelníku, jemuž lze vepsati i opsati kružnici Časopis pro pěstování mathematiky a fysiky, Vol. 28 (1899), No. 3, 244--250 Persistent URL: http://dml.cz/dmlcz/122234
Jaká je logická výstavba matematiky?
Jaká je logická výstavba matematiky? 2. Výrokové vzorce In: Miroslav Katětov (author): Jaká je logická výstavba matematiky?. (Czech). Praha: Jednota československých mathematiků a fysiků, 1946. pp. 15
Aplikace matematiky. Terms of use: Aplikace matematiky, Vol. 3 (1958), No. 5, 372--375. Persistent URL: http://dml.cz/dmlcz/102630
Aplikace matematiky František Šubart Odvození nejvýhodnějších dělících tlaků k-stupňové komprese, při ssacích teplotách lišících se v jednotlivých stupních Aplikace matematiky, Vol. 3 (1958), No. 5, 372--375
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky M. Jahoda; Ivan Šimon Užití sodíkového světla pro Ramanův zjev Časopis pro pěstování matematiky a fysiky, Vol. 69 (1940), No. 3-4, 187--190 Persistent URL: http://dml.cz/dmlcz/123324
Základy teorie grupoidů a grup
Základy teorie grupoidů a grup 12. Základní pojmy o grupoidech In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962. pp. 94--100.
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Vladimír Kořínek Poznámky k postgraduálnímu studiu matematiky učitelů škol 2. cyklu Pokroky matematiky, fyziky a astronomie, Vol. 12 (1967), No. 6, 363--366 Persistent
O náhodě a pravděpodobnosti
O náhodě a pravděpodobnosti 2. kapitola. Stromy neboli grafické znázornění průběhů a výsledků náhodného pokusu In: Adam Płocki (author); Eva Macháčková (translator); Vlastimil Macháček (illustrator): O
Jaká je logická výstavba matematiky?
Jaká je logická výstavba matematiky? 9. Logický kalkul In: Miroslav Katětov (author): Jaká je logická výstavba matematiky?. (Czech). Praha: Jednota československých mathematiků a fysiků, 1946. pp. 96 101.
Kongruence. 5. kapitola. Soustavy kongruencí o jedné neznámé s několika moduly
Kongruence 5. kapitola. Soustavy kongruencí o jedné neznámé s několika moduly In: Alois Apfelbeck (author): Kongruence. (Czech). Praha: Mladá fronta, 1968. pp. 55 66. Persistent URL: http://dml.cz/dmlcz/403657
Matematické hlavolamy a základy teorie grup
Matematické hlavolamy a základy teorie grup 2. kapitola. Patnáctka - neřešitelné pozice In: Jiří Tůma (author): Matematické hlavolamy a základy teorie grup. (Czech). Praha: Mladá fronta, 1988. pp. 27 43.
Faktoriály a kombinační čísla
Faktoriály a kombinační čísla 5. kapitola. Několik otázek z matematické statistiky In: Jiří Sedláček (author): Faktoriály a kombinační čísla. (Czech). Praha: Mladá fronta, 964. pp. 50 59. Persistent URL:
PANM 14. List of participants. http://dml.cz. Terms of use:
PANM 14 List of participants In: Jan Chleboun and Petr Přikryl and Karel Segeth and Tomáš Vejchodský (eds.): Programs and Algorithms of Numerical Mathematics, Proceedings of Seminar. Dolní Maxov, June
Základy teorie matic
Základy teorie matic 23. Klasifikace regulárních párů matic In: Otakar Borůvka (author): Základy teorie matic. (Czech). Praha: Academia, 1971. pp. 162--168. Persistent URL: http://dml.cz/dmlcz/401352 Terms
Základy teorie grupoidů a grup
Základy teorie grupoidů a grup 26. Deformace a věty izomorfismu grup In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962. pp. 192--197.
Úvod do filosofie matematiky
Úvod do filosofie matematiky Axiom nekonečna In: Otakar Zich (author): Úvod do filosofie matematiky. (Czech). Praha: Jednota československých matematiků a fysiků, 1947. pp. 114 117. Persistent URL: http://dml.cz/dmlcz/403163
Rovinné grafy. In: Bohdan Zelinka (author): Rovinné grafy. (Czech). Praha: Mladá fronta, pp
Rovinné grafy VIII. kapitola. Konvexní mnohostěny In: Bohdan Zelinka (author): Rovinné grafy. (Czech). Praha: Mladá fronta, 1977. pp. 99 112. Persistent URL: http://dml.cz/dmlcz/403912 Terms of use: Bohdan
Cyklografie. Užití cyklické projekce a Laguerrových transformací
Cyklografie Užití cyklické projekce a Laguerrových transformací In: Ladislav Seifert (author): Cyklografie. (Czech). Praha: Jednota československých matematiků a fysiků v Praze, 1949. pp. 95 101. Persistent
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Antonín Bohun Elektronová emise, luminiscence a zbarvení iontových krystalů Pokroky matematiky, fyziky a astronomie, Vol. 6 (1961), No. 3, 150--153 Persistent URL:
Jednota českých matematiků a fyziků ve 150. roce aktivního života
Jednota českých matematiků a fyziků ve 150. roce aktivního života Organizace JČMF In: Jiří Dolejší (editor); Jiří Rákosník (editor): Jednota českých matematiků a fyziků ve 150. roce aktivního života. (Czech).
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Emil Calda; Oldřich Odvárko Speciální třídy na SVVŠ v Praze pro žáky nadané v matematice a fyzice Pokroky matematiky, fyziky a astronomie, Vol. 13 (1968), No. 5,
Komplexní čísla a funkce
Komplexní čísla a funkce 2. kapitola. Kvadratická rovnice a odmocnina z komplexního čísla In: Jiří Jarník (author): Komplexní čísla a funkce. (Czech). Praha: Mladá fronta, 1967. pp. 20 34. Persistent URL:
Faktoriály a kombinační čísla
Faktoriály a kombinační čísla 2. kapitola. Kombinační číslo In: Jiří Sedláček (author): Faktoriály a kombinační čísla. (Czech). Praha: Mladá fronta, 1985. pp. 26 36. Persistent URL: http://dml.cz/dmlcz/404114
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Evžen Říman Vyučování matematice bez tabule Časopis pro pěstování matematiky a fysiky, Vol. 70 (1941), No. Suppl., D289--D292 Persistent URL: http://dml.cz/dmlcz/121810
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica Cyril Dočkal Automatické elektromagnetické váhy Acta Universitatis Palackianae Olomucensis. Facultas Rerum
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Jaroslav Šafránek Některé fysikální pokusy s katodovou trubicí Časopis pro pěstování matematiky a fysiky, Vol. 66 (1937), No. 4, D285--D289 Persistent URL: http://dml.cz/dmlcz/123398
Dějepis Jednoty českých mathematiků
Dějepis Jednoty českých mathematiků II. Změna stanov; studentský spolek se rozšiřuje na Jednotu českých mathematiků In: Václav Posejpal (author): Dějepis Jednoty českých mathematiků. K padesátému výročí
Aplikace matematiky. Josef Čermák Algoritmy. 27. PSQRT. Řešení soustavy rovnic se symetrickou pozitivně definitní
Aplikace matematiky Josef Čermák Algoritmy. 27. PSQRT. Řešení soustavy rovnic se symetrickou pozitivně definitní (2m + 1) diagonální maticí Aplikace matematiky, Vol. 17 (1972), No. 4, 321--324 Persistent
O dělitelnosti čísel celých
O dělitelnosti čísel celých 10. kapitola. Některé staré i nové problémy číselné teorie In: František Veselý (author): O dělitelnosti čísel celých. (Czech). Praha: Mladá fronta, 1966. pp. 106 115. Persistent
Úlohy o maximech a minimech funkcí
Úlohy o maximech a minimech funkcí 1. kapitola. Základní pojmy a nejjednodušší úlohy In: Jaromír Hroník (author): Úlohy o maximech a minimech funkcí. (Czech). Praha: Mladá fronta, 1967. pp. 5 15. Persistent
Jak se studují geometrické útvary v prostoru. II. část
Jak se studují geometrické útvary v prostoru. II. část VIII. Dodatek In: Jiří Klapka (author): Jak se studují geometrické útvary v prostoru. II. část. (Czech). Praha: Jednota českých matematiků a fysiků,
Shodná zobrazení v konstruktivních úlohách
Shodná zobrazení v konstruktivních úlohách II. část. Shodná zobrazení v rovině In: Jaroslav Šedivý (author): Shodná zobrazení v konstruktivních úlohách. (Czech). Praha: Mladá fronta, 1962. pp. 14 24. Persistent
Polynomy v moderní algebře
Polynomy v moderní algebře 2. kapitola. Neutrální a inverzní prvek. Grupa In: Karel Hruša (author): Polynomy v moderní algebře. (Czech). Praha: Mladá fronta, 1970. pp. 15 28. Persistent URL: http://dml.cz/dmlcz/403713
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky F. Císař Kinematografie při vyučování matematice. [II.] Časopis pro pěstování matematiky a fysiky, Vol. 60 (1931), No. 3, D39--D43 Persistent URL: http://dml.cz/dmlcz/123948
Symetrické funkce. In: Alois Kufner (author): Symetrické funkce. (Czech). Praha: Mladá fronta, pp
Symetrické funkce Kapitola III. Symetrické funkce n proměnných In: Alois Kufner (author): Symetrické funkce. (Czech). Praha: Mladá fronta, 1982. pp. 24 33. Persistent URL: http://dml.cz/dmlcz/404069 Terms
Komplexní čísla a funkce
Komplexní čísla a funkce 3. kapitola. Geometrické znázornění množin komplexních čísel In: Jiří Jarník (author): Komplexní čísla a funkce. (Czech). Praha: Mladá fronta, 1967. pp. 35 43. Persistent URL:
O náhodě a pravděpodobnosti
O náhodě a pravděpodobnosti 13. kapitola. Metoda maximální věrohodnosti neb o tom, jak odhadnout počet volně žijících divokých zvířat In: Adam Płocki (author); Eva Macháčková (translator); Vlastimil Macháček
Rovinné grafy. III. kapitola. Tři domy, tři studně a muří noha aneb věta Kuratowského
Rovinné grafy III. kapitola. Tři domy, tři studně a muří noha aneb věta Kuratowského In: Bohdan Zelinka (author): Rovinné grafy. (Czech). Praha: Mladá fronta, 1977. pp. 43 50. Persistent URL: http://dml.cz/dmlcz/403907
PANM 17. List of participants. http://project.dml.cz. Terms of use:
PANM 17 List of participants In: Jan Chleboun and Petr Přikryl and Karel Segeth and Jakub Šístek and Tomáš Vejchodský (eds.): Programs and Algorithms of Numerical Mathematics, Proceedings of Seminar. Dolní
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Jan Plašil Goniometricko-fysikální obdoba Časopis pro pěstování mathematiky a fysiky, Vol. 5 (1876), No. 1, 3--35 Persistent URL: http://dml.cz/dmlcz/11563 Terms
Základy teorie matic
Základy teorie matic 16. Hodnost a nulita matice In: Otakar Borůvka (author): Základy teorie matic. (Czech). Praha: Academia, 1971. pp. 106--115. Persistent URL: http://dml.cz/dmlcz/401345 Terms of use:
Přímky a křivky. Úvod. Úvodní úlohy. Terms of use:
Přímky a křivky Úvod. Úvodní úlohy In: N. B. Vasiljev (author); V. L. Gutenmacher (author); Leo Boček (translator); Alena Šarounová (illustrator): Přímky a křivky. (Czech). Praha: Mladá fronta, 1982. pp.