Aritmetické hry a zábavy
|
|
- Vítězslav Müller
- před 6 lety
- Počet zobrazení:
Transkript
1 Aritmetické hry a zábavy 5. Čísla Fibonacciova In: Karel Čupr (author): Aritmetické hry a zábavy. (Czech). Praha: Jednota českých matematiků a fysiků, pp Persistent URL: Terms of use: Jednota českých matematiků a fyziků Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library
2 X X log x log x = čímž vznikají tyto zajímavé vztahy: log 1, = 0, , log 10, = 1, log 237,5812 = 2, atd. Tamtéž na str. 118 čteme tuto zajímavou posloupnost sin 0 = j j/2 fa sin 60 = j j/2 + J/I, sin 15 = i \'2 J/3, sin 67 30' = 11/2 + j/2, sin 22 30' = /2-y2, sin 75 = ]/2 + j^ sin 30 = 72 j/i; sin 90 = \ /2 + j/4. sin 45 = i 9. Napišme čísla celá tak, jak za sebou jdou, vedle sebe; která číslice stojí na miliontém místě? 9 lcifer. čísel zaujme 9=10 1 míst, 90 2cifer. čísel zaujme = míst, 900 3cifer. čísel zaujme = míst, cifer. čísel zaujme = míst, cifer. čísel zaujme = míst; tedy tato všechna čísla celkem = míst, dalších míst již zaujímají čísla šesticiferná, nutno jich tedy ještě napsati :6= 93518, zbytek jest 3; 93518té číslo šesticiferné jest = = , další číslo jest , hledaná číslice čísla fibonacciova. Uvažujme o rovnici g 2 q 1 = 0, mající kořeny g 1>2 = = Především jest g t 2 = + 1, g 2 2 = + 1; a též, pro číslo n celé kladné, p l n + 3 = Q» g 1 n+1, 18 g 2 n+a =
3 = Q n g n+1 2, a po odečtení = (3!»+«Q" +í ) + tei n+1 e n+1 2 )- Označme ť? 2 " +1 = A n, pak lze psáti: A n + 2 = = -^n + i "1" A n. Když n= 0, jest A 0 = q x q 2 = /5; když n = 1, jest A x = q 2 2 = ( 8l q 2 ) + q 2 )j= 1/5, takže A 2 = A x + + A 0 = 21/5, 4, = ^ + = 3jŽ5,... Budeme uvažovati o posloupnosti čísel Ap A x A 2 yr yr yr značme ji a 0 > a v a 2' a 3> A.W + 1 0o B+1 = í7=^ (1) /5 I o členech této posloupnosti platí a n + 2 = n+l + a n (2) za počátečních podmínek a 0 = 1, a x = 1. Prvních deset členů této posloupnosti tedy jest 1; 1; 2; 3; 5; 8; 13; 21; 34; 55. Tato čísla, jež mají mnoho pěkných a zajímavých vlastností, slují čísly Fibonacciovými dle přízviska Leonarda Piaanského, italského matematika, žijícího ve XIII. století, o jehož úloze vedoucí k těmto číslům se ještě zmíníme. Jak z předchozího patrno, lze je buď počítati ze vzorce (1), nebo z výtvarného zákona (2); poslední způsob při vyšších indexech jest velmi nepohodlný; upravme si proto vhodně pro veliká n způsob první. 1 1/Š Qi _ Poněvadž jest Q 2 0,618..., jest y^f = - ' 277 -> ff= + ' 171 -' fr=- ' 108 -' ff- 2* 19
4 02* 02 = v,uuy = y = udu. Lze tedy s velmi malou chybou e nahraditi číslo a n číslem p 1»+ 1 a =._, při čemž 1 < e < 0 pro lichá n a 0 < < 1 1/5 pro sudá n. Rostou tedy Fibonacciova čísla pro velká n jako geometrická řada s kvocientem ^ ( /5 +1). Při praktickém počítání nutno užiti logaritmů sedmi a vícemístných. Na př. pro n= 15 jest log -^5 + 1) = 0, a tedy a u = 987,0023 místo správného o ls = Nahraďme původní počáteční podmínky jinými kladouce b 0 = p, 6 0 = q; tak obdržíme posloupnost P> V + V + 2q, 2p +3q,..., takže s ohledem na původní posloupnost jest b n = pa n q a n v 2. Snadno stanovíme součet prvních n členů Fibonacciových. Jest totiž: «7» = 0 + a l + a = = j= (a - & + - É> ft^+i), poněvadž jest 11 ť2 1 > ei 1 1 ft(ei!) =!» *)> ei = r - p 52 = jest S = p: (&"+» e 2 " =»+2 3. V městě se objevila epidemická nemoc, která se objeví u postiženého až druhý den, nazítří tohoto dne pacient umírá nakaziv v každém z obou dní další jednu osobu. 20
5 a) Kolik nemocných jest během n-tého dne? b) Kolik nemocných zemře koncem rc-tého dne? c) Kolik osob zemřelo během těchto n dní? V w-tý den nechť jest nemocno b n pacientů, jsou to ti, kteří byli nakaženi předevčírem v počtu 6 n _2, dále nakažení dne předchozího v počtu 6 _i; jest tedy b n = 6 _ n i- První den jest b 0 = 1 jeden nemocný, druhý den týž a ještě jedna osoba předešlého dne nakažená, tedy b x = 2. Jedná se tedy o posloupnost 1; 2; 3; 5; 8;... Jest totožná s posloupností námi uváženou, platí však o ní b n = a n +i- Koncem w-tého dne zemřou pacienti nakazivší se den před tím, jest tedy c n = a n _1; celkový počet mrtvých jest pak d n = + h + + b n -2 = a n a 2 lidí. Tedy 14. den po vypuknutí choroby jest nemocno a ls = 987, koncem 14. dne zemře a 13 = 377 lidí a celkový počet úmrtí je a 1B 1 = 986 lidí. U Fibonacciho čteme tuto úlohu v tomto znění. Pár králíků vrhne každý měsíc další pár, kolik párů králíků jest koncem roku, nezajde-li žádný z králíků? 4. Z jiných vlastností těchto čísel uveďme, že N n = = 5o 2 + 4( 1) B+1 jest úplný čtverec. Jest totiž In " + 1 n n + M 2 N n = ^ + ( ei»+i + e2 n+1 ) 2 - Avšak čísla B 0 = g x + q 2, B t = g^ + g 2 2, B 2 = gf + g 2 3,... též hoví rovnici B n = -B,, B 2» neboť jest: gi n+1 + (?2 n+1 - gf - es 6i n+l - &2 n+1 = = ei n+1 (ei 2 -&-i) + 02 n+1 (gf - -1) = o avšak pro počáteční hodnoty B 0 = 1, B x = 3, takže řada odmocnin jest: 1; 3; 4; 7; 11; 18; 29; Dále jest a n a n +2 «2 n+i = ( 1)" Jest totiž levá strana rovna 21
6 (gi n+1 č?2 n+1 )(gi n g 2 " +3 ) - (ei" +2 e2 n+2 ) 2 _ 5 = (gig2) n+1 (gi Qj? =, 5 \ l Znázorněme nyní součiny o,,, a n+ z, a 2»+i jako obsahy obdélníka a čtverce o stranách a n, a +2= a n +i> resp. o straně a n+ 1; je-li n dostatečně velké, nepostřehneme, že tyto dvě plochy se různí o jednotku plošné míry. Toho využijeme k vysvětlení této záhady. Rozstřihněme čtverec a složme jej dle přiloženého návodu: A 8 E B Obr. 1. V druhém uspořádání se nám zdá, že jsme získali jednu jednotku plošné míry. Avšak nakreslená úhlopříčka není úsečkou; mezi jednotlivými částmi uvnitř obdélníka vznikl protáhlý kosodélník o ploše zadarmo získané 1. Kdyby body A, F v E v C ležely v jedné přímce, musilo by býti ~AE : ĚE 1 = AB :BČ, odkud ĚE 1 = AĚ. BČ :AB=. Avšak my jsme volili EE l = 3, leží tedy ve skutečnosti bod E 1 o^ pod skutečnou úhlopříčkou; podobně zjistíme, že bod F^ leží nad skutečnou úhlopříčkou. Jaký úhel <p svírají strany tohoto kosoúhelníka ve vrcholu A? Jest AĚ 1 - j/8 2 +"3^ AFL -- ]/o , takže ^73. ^29 sin rp = 1 22
7 a odtud sin o = ===, a = 1 14' 43". V2117 Příklady. 1. Je-li b a =p, Ď i = 9. b t = p + q, b 3 = p + 2q ukažte, že *A+«- 6 Vn = + P3-9 2 ). a že 56 a B + 4 ( 1)«+1 (p» + pq q*) jest úplný Čtverec. Odmocniny tvoří opět čísla Fibonaceiova o počátečních podmínkách 6 0 = p + 2q, b x = 2p + q. 2. Vysvětlete a propočtěte záhadu vzniklou proměnou čtverce 0 straně 13 v obdélník o stranách sin <p =, <p = 28' 14". j/ V a 3. Ukažte, že w 2 + u2 n+i jest rovněž člen téže Fibonacciho posloupnosti. 4. Stanovte obecný člen posloupnosti, v níž A 0 = m 0, A l = m 1, A t = A 0 A l A n = A n A n 2-6. magické Čtverce.*) Snad žádný ze zábavných problémů nemůže se vykázati až na slovní rovnice tak bohatou kulturní historií a literaturou jako magické čtverce. Nazýváme tak čtverce o n krát m polích, do nichž jest vepsáno po jednom z čísel 1, 2, 3,......, w 2, tak uspořádaných, že součty v řádcích i ve sloupcích 1 na hlavní a vedlejší úhlopříčce jsou tytéž. Tento součet jest (1 + n 2 ) : n a sluje konstantou daného čtverce. Magické čtverce jsou nesporně původu orientálního, vznik jejich jest však zahalen neproniknutelnou rouškou prostě vězí v neúnavné lidské hravosti. Připomeňme aspoň jednu z nejstarších forem magického čtverce. Novoplatonik Theon (2. stol. po Kr.) zpozoroval, že ve čtverci *) Novější literatura o magických čtvercích: Fitting, Jahres beder d. Mathematikervereinigung, 40, str. 177, 1931; Schubert Fitting, Mathem. Mussestunden, str. 132; Kowalewski: Ma gische Quadrate und mag. Parketierung, Scientia delectans II 1937; viz téhož autora: Grossen Mathematiker 1939, str. 37/41 23
Aritmetické hry a zábavy
Aritmetické hry a zábavy 6. Magické čtverce In: Karel Čupr (author): Aritmetické hry a zábavy. (Czech). Praha: Jednota českých matematiků a fysiků, 1942. pp. 23 29. Persistent URL: http://dml.cz/dmlcz/403034
Aritmetické hry a zábavy
Aritmetické hry a zábavy 1. Doplnění naznačených výkonů In: Karel Čupr (author): Aritmetické hry a zábavy. (Czech). Praha: Jednota českých matematiků a fysiků, 1942. pp. 5 9. Persistent URL: http://dml.cz/dmlcz/4329
Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24.
Neurčité rovnice 4. Nejjednodušší rovnice neurčité 2. stupně In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24. Persistent URL: http://dml.cz/dmlcz/402869
Aritmetické hry a zábavy
Aritmetické hry a zábavy 3. Soustavy číselné In: Karel Čupr (author): Aritmetické hry a zábavy. (Czech). Praha: Jednota českých matematiků a fysiků, 1942. pp. 12 15. Persistent URL: http://dml.cz/dmlcz/403031
O rovnicích s parametry
O rovnicích s parametry 3. kapitola. Kvadratické rovnice In: Jiří Váňa (author): O rovnicích s parametry. (Czech). Praha: Mladá fronta, 1964. pp. 45 [63]. Persistent URL: http://dml.cz/dmlcz/403496 Terms
Úvod do neeukleidovské geometrie
Úvod do neeukleidovské geometrie Obsah In: Václav Hlavatý (author): Úvod do neeukleidovské geometrie. (Czech). Praha: Jednota československých matematiků a fysiků, 1926. pp. 209 [212]. Persistent URL:
Několik úloh z geometrie jednoduchých těles
Několik úloh z geometrie jednoduchých těles Úlohy ke cvičení In: F. Hradecký (author); Milan Koman (author); Jan Vyšín (author): Několik úloh z geometrie jednoduchých těles. (Czech). Praha: Mladá fronta,
Funkcionální rovnice
Funkcionální rovnice Úlohy k procvičení In: Ljubomir Davidov (author); Zlata Kufnerová (translator); Alois Kufner (translator): Funkcionální rovnice. (Czech). Praha: Mladá fronta, 1984. pp. 88 92. Persistent
Základy teorie grupoidů a grup
Základy teorie grupoidů a grup 27. Cyklické grupy In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962. pp. 198--202. Persistent
O dělitelnosti čísel celých
O dělitelnosti čísel celých 6. kapitola. Nejmenší společný násobek In: František Veselý (author): O dělitelnosti čísel celých. (Czech). Praha: Mladá fronta, 1966. pp. 73 79. Persistent URL: http://dml.cz/dmlcz/403569
Konvexní útvary. Kapitola 4. Opěrné roviny konvexního útvaru v prostoru
Konvexní útvary Kapitola 4. Opěrné roviny konvexního útvaru v prostoru In: Jan Vyšín (author): Konvexní útvary. (Czech). Praha: Mladá fronta, 1964. pp. 49 55. Persistent URL: http://dml.cz/dmlcz/403505
Základy teorie matic
Základy teorie matic 7. Vektory a lineární transformace In: Otakar Borůvka (author): Základy teorie matic. (Czech). Praha: Academia, 1971. pp. 43--47. Persistent URL: http://dml.cz/dmlcz/401335 Terms of
Zlatý řez nejen v matematice
Zlatý řez nejen v matematice Příloha A In: Vlasta Chmelíková (author): Zlatý řez nejen v matematice. (Czech). Praha: Katedra didaktiky matematiky MFF UK, 2009. pp. 157 166. Persistent URL: http://dml.cz/dmlcz/400805
O mnohoúhelnících a mnohostěnech
O mnohoúhelnících a mnohostěnech I. Úhly a mnohoúhelníky v rovině In: Bohuslav Hostinský (author): O mnohoúhelnících a mnohostěnech. (Czech). Praha: Jednota československých matematiků a fysiků, 1947.
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Ferdinand Pietsch Výpočet cívky pro demonstraci magnetoindukce s optimálním využitím mědi v daném prostoru Časopis pro pěstování matematiky a fysiky, Vol. 62 (1933),
Zlatý řez nejen v matematice
Zlatý řez nejen v matematice Zlaté číslo a jeho vlastnosti In: Vlasta Chmelíková author): Zlatý řez nejen v matematice Czech) Praha: Katedra didaktiky matematiky MFF UK, 009 pp 7 Persistent URL: http://dmlcz/dmlcz/40079
Kongruence. 1. kapitola. Opakování základních pojmů o dělitelnosti
Kongruence 1. kapitola. Opakování základních pojmů o dělitelnosti In: Alois Apfelbeck (author): Kongruence. (Czech). Praha: Mladá fronta, 1968. pp. 3 9. Persistent URL: http://dml.cz/dmlcz/403653 Terms
Geometrické hry a zábavy
Geometrické hry a zábavy VII. Hry na šachovnici In: Karel Čupr (author): Geometrické hry a zábavy. (Czech). Praha: Jednota československých matematiků a fysiků, 1949. pp. 69 74. Persistent URL: http://dml.cz/dmlcz/403191
Determinanty a matice v theorii a praxi
Determinanty a matice v theorii a praxi 1. Lineární závislost číselných soustav In: Václav Vodička (author): Determinanty a matice v theorii a praxi. Část druhá. (Czech). Praha: Jednota československých
O dělitelnosti čísel celých
O dělitelnosti čísel celých 9. kapitola. Malá věta Fermatova In: František Veselý (author): O dělitelnosti čísel celých. (Czech). Praha: Mladá fronta, 1966. pp. 98 105. Persistent URL: http://dml.cz/dmlcz/403572
O nerovnostech a nerovnicích
O nerovnostech a nerovnicích Kapitola 3. Množiny In: František Veselý (author); Jan Vyšín (other); Jiří Veselý (other): O nerovnostech a nerovnicích. (Czech). Praha: Mladá fronta, 1982. pp. 19 22. Persistent
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Josef Kounovský O projektivnosti involutorní Časopis pro pěstování mathematiky a fysiky, Vol. 43 (1914), No. 3-4, 433--439 Persistent URL: http://dml.cz/dmlcz/109245
Základy teorie grupoidů a grup
Základy teorie grupoidů a grup 13. Homomorfní zobrazení (deformace) grupoidů In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962.
Determinanty a matice v theorii a praxi
Determinanty a matice v theorii a praxi Rejstřík In: Václav Vodička (author): Determinanty a matice v theorii a praxi. Část druhá. (Czech). Praha: Jednota československých matematiků a fysiků, 1950. pp.
O dynamickém programování
O dynamickém programování 9. kapitola. Cauchy-Lagrangeova nerovnost In: Jaroslav Morávek (author): O dynamickém programování. (Czech). Praha: Mladá fronta, 1973. pp. 65 70. Persistent URL: http://dml.cz/dmlcz/403801
Booleova algebra. 1. kapitola. Množiny a Vennovy diagramy
Booleova algebra 1. kapitola. Množiny a Vennovy diagramy In: Oldřich Odvárko (author): Booleova algebra. (Czech). Praha: Mladá fronta, 1973. pp. 5 14. Persistent URL: http://dml.cz/dmlcz/403767 Terms of
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky František Kaňka Důsledky akusticko-dynamického principu. [V.] Časopis pro pěstování mathematiky a fysiky, Vol. 47 (1918), No. 2-3, 158--163 Persistent URL: http://dml.cz/dmlcz/122325
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Úlohy Časopis pro pěstování mathematiky a fysiky, Vol. 43 (1914), No. 1, 140--144 Persistent URL: http://dml.cz/dmlcz/121666 Terms of use: Union of Czech Mathematicians
Nerovnosti v trojúhelníku
Nerovnosti v trojúhelníku Úvod In: Stanislav Horák (author): Nerovnosti v trojúhelníku. (Czech). Praha: Mladá fronta, 1986. pp. 5 12. Persistent URL: http://dml.cz/dmlcz/404130 Terms of use: Stanislav
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Josef B. Slavík; B. Klimeš Hluk jako methodická pomůcka při zjišťování příčin chvění v technické praxi Pokroky matematiky, fyziky a astronomie, Vol. 2 (957), No.
O dynamickém programování
O dynamickém programování 7. kapitola. O jednom přiřazovacím problému In: Jaroslav Morávek (author): O dynamickém programování. (Czech). Praha: Mladá fronta, 1973. pp. 55 59. Persistent URL: http://dml.cz/dmlcz/403799
Základy teorie matic
Základy teorie matic 23. Klasifikace regulárních párů matic In: Otakar Borůvka (author): Základy teorie matic. (Czech). Praha: Academia, 1971. pp. 162--168. Persistent URL: http://dml.cz/dmlcz/401352 Terms
Co víme o přirozených číslech
Co víme o přirozených číslech 4. Největší společný dělitel a nejmenší společný násobek In: Jiří Sedláček (author): Co víme o přirozených číslech. (Czech). Praha: Mladá fronta, 1961. pp. 24 31. Persistent
Staroegyptská matematika. Hieratické matematické texty
Staroegyptská matematika. Hieratické matematické texty Počítání se zlomky In: Hana Vymazalová (author): Staroegyptská matematika. Hieratické matematické texty. (Czech). Praha: Český egyptologický ústav
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Jaroslav Bílek Pythagorova věta ve třetí třídě středních škol Časopis pro pěstování matematiky a fysiky, Vol. 66 (1937), No. 4, D265--D268 Persistent URL: http://dml.cz/dmlcz/123381
PANM 16. List of participants. http://project.dml.cz. Terms of use:
PANM 16 List of participants In: Jan Chleboun and Karel Segeth and Jakub Šístek and Tomáš Vejchodský (eds.): Programs and Algorithms of Numerical Mathematics, Proceedings of Seminar. Dolní Maxov, June
Plochy stavebně-inženýrské praxe
Plochy stavebně-inženýrské praxe 9. Plochy rourové In: František Kadeřávek (author): Plochy stavebně-inženýrské praxe. (Czech). Praha: Jednota československých matematiků a fysiků, 1950. pp. 95 98. Persistent
Komplexní čísla a funkce
Komplexní čísla a funkce 3. kapitola. Geometrické znázornění množin komplexních čísel In: Jiří Jarník (author): Komplexní čísla a funkce. (Czech). Praha: Mladá fronta, 1967. pp. 35 43. Persistent URL:
Faktoriály a kombinační čísla
Faktoriály a kombinační čísla 5. kapitola. Několik otázek z matematické statistiky In: Jiří Sedláček (author): Faktoriály a kombinační čísla. (Czech). Praha: Mladá fronta, 964. pp. 50 59. Persistent URL:
Staroegyptská matematika. Hieratické matematické texty
Staroegyptská matematika. Hieratické matematické texty Staroegyptská matematika In: Hana Vymazalová (author): Staroegyptská matematika. Hieratické matematické texty. (Czech). Praha: Český egyptologický
Malý výlet do moderní matematiky
Malý výlet do moderní matematiky Úvod [též symboly] In: Milan Koman (author); Jan Vyšín (author): Malý výlet do moderní matematiky. (Czech). Praha: Mladá fronta, 1972. pp. 3 6. Persistent URL: http://dml.cz/dmlcz/403755
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Josef Langr O čtyřúhelníku, jemuž lze vepsati i opsati kružnici Časopis pro pěstování mathematiky a fysiky, Vol. 28 (1899), No. 3, 244--250 Persistent URL: http://dml.cz/dmlcz/122234
Faktoriály a kombinační čísla
Faktoriály a kombinační čísla 7. kapitola. Různé In: Jiří Sedláček (author): Faktoriály a kombinační čísla. (Czech). Praha: Mladá fronta, 1964. pp. 72 81. Persistent URL: http://dml.cz/dmlcz/403522 Terms
Plochy stavebně-inženýrské praxe
Plochy stavebně-inženýrské praxe 10. Plochy šroubové In: František Kadeřávek (author): Plochy stavebně-inženýrské praxe. (Czech). Praha: Jednota československých matematiků a fysiků, 1950. pp. 99 106.
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Jan Novák Aritmetika v primě a sekundě Časopis pro pěstování matematiky a fysiky, Vol. 67 (1938), No. Suppl., D254--D257 Persistent URL: http://dml.cz/dmlcz/120798
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Ladislav Klír Příspěvek ke geometrii trojúhelníku Časopis pro pěstování mathematiky a fysiky, Vol. 44 (1915), No. 1, 89--93 Persistent URL: http://dml.cz/dmlcz/122380
Faktoriály a kombinační čísla
Faktoriály a kombinační čísla 3. kapitola. Kombinace In: Jiří Sedláček (author): Faktoriály a kombinační čísla. (Czech). Praha: Mladá fronta, 1964. pp. 27 35. Persistent URL: http://dml.cz/dmlcz/403518
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Emil Calda; Oldřich Odvárko Speciální třídy na SVVŠ v Praze pro žáky nadané v matematice a fyzice Pokroky matematiky, fyziky a astronomie, Vol. 13 (1968), No. 5,
Základy teorie grupoidů a grup
Základy teorie grupoidů a grup 12. Základní pojmy o grupoidech In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962. pp. 94--100.
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Matyáš Lerch K didaktice veličin komplexních. [I.] Časopis pro pěstování mathematiky a fysiky, Vol. 20 (1891), No. 5, 265--269 Persistent URL: http://dml.cz/dmlcz/108855
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky František Kaňka Důsledky akusticko-dynamického principu. [IV.] Časopis pro pěstování mathematiky a fysiky, Vol. 47 (1918), No. 1, 25--31 Persistent URL: http://dml.cz/dmlcz/124004
Faktoriály a kombinační čísla
Faktoriály a kombinační čísla 8. kapitola. Různé In: Jiří Sedláček (author): Faktoriály a kombinační čísla. (Czech). Praha: Mladá fronta, 1985. pp. 96 107. Persistent URL: http://dml.cz/dmlcz/404120 Terms
Symetrické funkce. In: Alois Kufner (author): Symetrické funkce. (Czech). Praha: Mladá fronta, pp
Symetrické funkce Kapitola III. Symetrické funkce n proměnných In: Alois Kufner (author): Symetrické funkce. (Czech). Praha: Mladá fronta, 1982. pp. 24 33. Persistent URL: http://dml.cz/dmlcz/404069 Terms
Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, pp
Neurčité rovnice 3. Neurčité rovnice 1. stupně o 3 neznámých In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 15 20. Persistent URL: http:dml.czdmlcz402868
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky František Hromádko Ukázky z indické arithmetiky obecné Časopis pro pěstování mathematiky a fysiky, Vol. 5 (1876), No. 4, 182--187 Persistent URL: http://dml.cz/dmlcz/121711
Jubilejní almanach Jednoty čs. matematiků a fyziků 1862 1987
Jubilejní almanach Jednoty čs. matematiků a fyziků 1862 1987 Zdeněk Horský Písemnosti z pozůstalosti prof. dr. A. Seydlera In: Libor Pátý (editor): Jubilejní almanach Jednoty čs. matematiků a fyziků 1862
Staroegyptská matematika. Hieratické matematické texty
Staroegyptská matematika. Hieratické matematické texty Výpočet objemu tělesa In: Hana Vymazalová (author): Staroegyptská matematika. Hieratické matematické texty. (Czech). Praha: Český egyptologický ústav
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Jindřich Procházka Pokusy o interferenci a odrazu zvuku Časopis pro pěstování matematiky a fysiky, Vol. 67 (1938), No. Suppl., D197--D200 Persistent URL: http://dml.cz/dmlcz/120811
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Zdeněk Češpíro Výbojový vakuoměr bez magnetického pole Pokroky matematiky, fyziky a astronomie, Vol. 3 (1958), No. 3, 299--302 Persistent URL: http://dml.cz/dmlcz/137111
Nástin dějin vyučování v matematice (a také školy) v českých zemích do roku 1918
Nástin dějin vyučování v matematice (a také školy) v českých zemích do roku 1918 Jednoroční učební kurs (JUK) In: Jiří Mikulčák (author): Nástin dějin vyučování v matematice (a také školy) v českých zemích
Základy teorie grupoidů a grup
Základy teorie grupoidů a grup 11. Násobení v množinách In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962. pp. 89--93. Persistent
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Gabriel Blažek O differenciálních rovnicích ploch obalujících Časopis pro pěstování mathematiky a fysiky, Vol. 2 (1873), No. 3, 167--172 Persistent URL: http://dml.cz/dmlcz/109126
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Václav Hübner Stanovení pláště rotačního kužele obsaženého mezi dvěma sečnými rovinami Časopis pro pěstování mathematiky a fysiky, Vol. 33 (1904), No. 3, 321--331
Základy teorie grupoidů a grup
Základy teorie grupoidů a grup 26. Deformace a věty izomorfismu grup In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962. pp. 192--197.
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Vavřinec Jelínek O některých úlohách z arithmografie. [II.] Časopis pro pěstování mathematiky a fysiky, Vol. 24 (1895), No. 2, 132--136 Persistent URL: http://dml.cz/dmlcz/120880
Rovinné grafy. In: Bohdan Zelinka (author): Rovinné grafy. (Czech). Praha: Mladá fronta, pp
Rovinné grafy VIII. kapitola. Konvexní mnohostěny In: Bohdan Zelinka (author): Rovinné grafy. (Czech). Praha: Mladá fronta, 1977. pp. 99 112. Persistent URL: http://dml.cz/dmlcz/403912 Terms of use: Bohdan
Jaká je logická výstavba matematiky?
Jaká je logická výstavba matematiky? 2. Výrokové vzorce In: Miroslav Katětov (author): Jaká je logická výstavba matematiky?. (Czech). Praha: Jednota československých mathematiků a fysiků, 1946. pp. 15
Přímky a křivky. Úvod. Úvodní úlohy. Terms of use:
Přímky a křivky Úvod. Úvodní úlohy In: N. B. Vasiljev (author); V. L. Gutenmacher (author); Leo Boček (translator); Alena Šarounová (illustrator): Přímky a křivky. (Czech). Praha: Mladá fronta, 1982. pp.
Základy teorie grupoidů a grup
Základy teorie grupoidů a grup 4. Speciální rozklady In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962. pp. 35--40. Persistent
Základy teorie matic
Základy teorie matic 16. Hodnost a nulita matice In: Otakar Borůvka (author): Základy teorie matic. (Czech). Praha: Academia, 1971. pp. 106--115. Persistent URL: http://dml.cz/dmlcz/401345 Terms of use:
Základy teorie grupoidů a grup
Základy teorie grupoidů a grup 2. Rozklady v množině In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962. pp. 22--27. Persistent
Kombinatorika. In: Antonín Vrba (author): Kombinatorika. (Czech). Praha: Mladá fronta, pp. 3 [6].
Kombinatorika Předmluva In: Antonín Vrba (author): Kombinatorika. (Czech). Praha: Mladá fronta, 1980. pp. 3 [6]. Persistent URL: http://dml.cz/dmlcz/403963 Terms of use: Antonín Vrba, 1080 Institute of
Co víme o přirozených číslech
Co víme o přirozených číslech 2. Dělení se zbytkem a dělení beze zbytku In: Jiří Sedláček (author): Co víme o přirozených číslech. (Czech). Praha: Mladá fronta, 1961. pp. 9 15. Persistent URL: http://dml.cz/dmlcz/403438
Jan Sobotka (1862 1931)
Jan Sobotka (1862 1931) Martina Kašparová Vysokoškolská studia Jana Sobotky In: Martina Kašparová (author); Zbyněk Nádeník (author): Jan Sobotka (1862 1931). (Czech). Praha: Matfyzpress, 2010. pp. 231--234.
Dějepis Jednoty českých mathematiků
Dějepis Jednoty českých mathematiků II. Změna stanov; studentský spolek se rozšiřuje na Jednotu českých mathematiků In: Václav Posejpal (author): Dějepis Jednoty českých mathematiků. K padesátému výročí
Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, pp
Neurčité rovnice 2. Lineární rovnice o dvou neznámých In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 10 14. Persistent URL: http://dml.cz/dmlcz/402867
Geometrické hry a zábavy
Geometrické hry a zábavy I. Psychotechnické testy In: Karel Čupr (author): Geometrické hry a zábavy. (Czech). Praha: Jednota československých matematiků a fysiků, 1949. pp. 5 12. Persistent URL: http://dml.cz/dmlcz/403185
Jak se studují geometrické útvary v prostoru. II. část
Jak se studují geometrické útvary v prostoru. II. část VIII. Dodatek In: Jiří Klapka (author): Jak se studují geometrické útvary v prostoru. II. část. (Czech). Praha: Jednota českých matematiků a fysiků,
Rozhledy matematicko-fyzikální
Rozhledy matematicko-fyzikální Úlohy domácího kola 55. ročníku Matematické olympiády pro žáky základních škol Rozhledy matematicko-fyzikální, Vol. 80 (2005), No. 2, 39 45 Persistent URL: http://dml.cz/dmlcz/146102
Plochy stavebně-inženýrské praxe
Plochy stavebně-inženýrské praxe 8. Plochy součtové In: František Kadeřávek (author): Plochy stavebně-inženýrské praxe. (Czech). Praha: Jednota československých matematiků a fysiků, 1950. pp. 88 94. Persistent
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Otakar Ježek Příspěvek ku zkrácenému počítání. [I.] Časopis pro pěstování mathematiky a fysiky, Vol. 18 (1889), No. 1, 17--21 Persistent URL: http://dml.cz/dmlcz/122424
Jednota českých matematiků a fyziků ve 150. roce aktivního života
Jednota českých matematiků a fyziků ve 150. roce aktivního života Organizace JČMF In: Jiří Dolejší (editor); Jiří Rákosník (editor): Jednota českých matematiků a fyziků ve 150. roce aktivního života. (Czech).
Úvod do filosofie matematiky
Úvod do filosofie matematiky Axiom nekonečna In: Otakar Zich (author): Úvod do filosofie matematiky. (Czech). Praha: Jednota československých matematiků a fysiků, 1947. pp. 114 117. Persistent URL: http://dml.cz/dmlcz/403163
Časopis pro pěstování mathematiky a fysiky
Časopis pro pěstování mathematiky a fysiky Jan Sommer Pokus vysvětliti Machův klam optický Časopis pro pěstování mathematiky a fysiky, Vol. 20 (1891), No. 2, 101--105 Persistent URL: http://dml.cz/dmlcz/109224
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Milan Pišl Logaritmická spirála Pokroky matematiky, fyziky a astronomie, Vol. 5 (1960), No. 4, 416--423 Persistent URL: http://dml.cz/dmlcz/137020 Terms of use:
O náhodě a pravděpodobnosti
O náhodě a pravděpodobnosti 13. kapitola. Metoda maximální věrohodnosti neb o tom, jak odhadnout počet volně žijících divokých zvířat In: Adam Płocki (author); Eva Macháčková (translator); Vlastimil Macháček
Polynomy v moderní algebře
Polynomy v moderní algebře 2. kapitola. Neutrální a inverzní prvek. Grupa In: Karel Hruša (author): Polynomy v moderní algebře. (Czech). Praha: Mladá fronta, 1970. pp. 15 28. Persistent URL: http://dml.cz/dmlcz/403713
Faktoriály a kombinační čísla
Faktoriály a kombinační čísla 2. kapitola. Kombinační číslo In: Jiří Sedláček (author): Faktoriály a kombinační čísla. (Czech). Praha: Mladá fronta, 1985. pp. 26 36. Persistent URL: http://dml.cz/dmlcz/404114
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Vladimír Kořínek Poznámky k postgraduálnímu studiu matematiky učitelů škol 2. cyklu Pokroky matematiky, fyziky a astronomie, Vol. 12 (1967), No. 6, 363--366 Persistent
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Antonín Bohun Elektronová emise, luminiscence a zbarvení iontových krystalů Pokroky matematiky, fyziky a astronomie, Vol. 6 (1961), No. 3, 150--153 Persistent URL:
Aplikace matematiky. Josef Čermák Algoritmy. 27. PSQRT. Řešení soustavy rovnic se symetrickou pozitivně definitní
Aplikace matematiky Josef Čermák Algoritmy. 27. PSQRT. Řešení soustavy rovnic se symetrickou pozitivně definitní (2m + 1) diagonální maticí Aplikace matematiky, Vol. 17 (1972), No. 4, 321--324 Persistent
Kongruence. 5. kapitola. Soustavy kongruencí o jedné neznámé s několika moduly
Kongruence 5. kapitola. Soustavy kongruencí o jedné neznámé s několika moduly In: Alois Apfelbeck (author): Kongruence. (Czech). Praha: Mladá fronta, 1968. pp. 55 66. Persistent URL: http://dml.cz/dmlcz/403657
Aplikace matematiky. Terms of use: Aplikace matematiky, Vol. 3 (1958), No. 5, 372--375. Persistent URL: http://dml.cz/dmlcz/102630
Aplikace matematiky František Šubart Odvození nejvýhodnějších dělících tlaků k-stupňové komprese, při ssacích teplotách lišících se v jednotlivých stupních Aplikace matematiky, Vol. 3 (1958), No. 5, 372--375
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Václav Petržílka Demonstrační pokus měření rychlosti zvuku v plynech Časopis pro pěstování matematiky a fysiky, Vol. 61 (1932), No. 6, 254--258 Persistent URL:
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky M. Jahoda; Ivan Šimon Užití sodíkového světla pro Ramanův zjev Časopis pro pěstování matematiky a fysiky, Vol. 69 (1940), No. 3-4, 187--190 Persistent URL: http://dml.cz/dmlcz/123324
Časopis pro pěstování matematiky a fysiky
Časopis pro pěstování matematiky a fysiky Evžen Říman Vyučování matematice bez tabule Časopis pro pěstování matematiky a fysiky, Vol. 70 (1941), No. Suppl., D289--D292 Persistent URL: http://dml.cz/dmlcz/121810
Shodná zobrazení v konstruktivních úlohách
Shodná zobrazení v konstruktivních úlohách III. část. Středová souměrnost In: Jaroslav Šedivý (author): Shodná zobrazení v konstruktivních úlohách. (Czech). Praha: Mladá fronta, 1962. pp. 25 37. Persistent
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica Cyril Dočkal Automatické elektromagnetické váhy Acta Universitatis Palackianae Olomucensis. Facultas Rerum
O dělitelnosti čísel celých
O dělitelnosti čísel celých 10. kapitola. Některé staré i nové problémy číselné teorie In: František Veselý (author): O dělitelnosti čísel celých. (Czech). Praha: Mladá fronta, 1966. pp. 106 115. Persistent
Geometrické hry a zábavy
Geometrické hry a zábavy X. O řešitelných a neřešitelných úlohách geometrických In: Karel Čupr (author): Geometrické hry a zábavy. (Czech). Praha: Jednota československých matematiků a fysiků, 1949. pp.