Atomová absorpční spektrometrie (AAS)
|
|
- Kristýna Bednářová
- před 9 lety
- Počet zobrazení:
Transkript
1 Atomová absorpční spektrometrie (AAS) Kvantitativní analytická metoda Měří se absorpce záření veličina absorbance Záření je absorbováno volnými atomy stanovovaného prvku oblak atomů vytvořených ze vzorku. Měření se provádí se zářením vhodné vybrané vlnové délky (velice úzké rozmezí vlnových délek) na spektrální čáře Absorbance je přímo úměrná koncentraci atomů sledovaného prvku v oblaku úměrná obsahu tohoto prvku ve vzorku Vznik atomového absorpčního spektra Diagram energetických úrovní elektronu v atomu: INAN-3/1
2 Schéma přechodu elektronů mezi energetickými hladinami v atomu daného prvku (elektronovými orbitaly) při absorpci fotonů a při emisi fotonů E 2 E 1 h c Atom může absorbovat jen fotony s energiemi, které se rovnají rozdílům energie některého vzbuzeného stavu a stavu základního, tzn. jen záření určitých vlnových délek. Kirchhoffův zákon: Volné atomy daného prvku absorbují záření těch vlnových délek, které jsou schopny samy vyzařovat. Emitovaných vlnových délek je více, absorbovatelné jsou jen některé z nich (tzv. rezonanční). Měření při AAS v oblasti UV/VIS oblasti (ca nm) INAN-3/2
3 Při AAS jde o energetické přechody vazebných elektronů na vnější hladině. V této oblasti absorbují převážně atomy kovových a polokovových prvků; z nekovů jen P. Atomy nekovů mohou absorbovat fotony ještě vyšších energií než odpovídá vlnové délce 190 nm Rezonanční čáry vlnové délky pro energetické přechody mezi základním stavem a vyšší hladinou se nazývají (ne mezi různými vyššími energetickými stavy) Měření prvku na jeho základní rezonanční čáře, je nejcitlivější a zcela specifické. Bouguerův-Lambertův-Beerův zákon Absorpce záření základní pojmy (platí i pro ostatní absorpční metody): Φ 0 dopadající tok záření Φ procházející (propuštěný) tok záření Φ - tok záření výkon přenášený zářením (ve W, J/s) INAN-3/3
4 I intenzita záření výkon přenášený zářením přes jednotkovou plochu kolmo postavenou k paprsku (W/m 2 ) Propustnost (transmitance): T 0 Absorbance: 0 A log logt Zákon Bouguerův-Lambertův-Beerův: A a lc a λ - absorpční koeficient (někdy též extinkční koeficient, ε λ ) index λ značí, že je to pro měření při určité vlnové délce, že hodnota jsou závislé na vlnové délce l tloušťka absorbující vrstvy c koncentrace absorbující látky v absorbujícím roztoku INAN-3/4
5 Schéma AAS spektrometru: ZDROJ ZÁŘENÍ ABSORBUJÍCÍ PROSTREDÍ OPTICKÝ SYSTÉM DETEKTOR Metoda ke stanovování jednoho vybraného prvku ve vzorku 1. Převedení vzorku, většinou v roztoku, do atomárního stavu (např. v plameni) vytvoření absorbujícího prostředí - volné atomy jsou v základním stavu. 2. Přes oblak atomů je vedeno záření ze zdroje takových vlnových délek, které mohou atomy stanovovaného prvku absorbovat. To je záření atomů stejného prvku jako stanovujeme (pro každý stanovovaný prvek je třeba použít jeho lampu - výbojku). Absorpcí se tok záření zeslabí. INAN-3/5
6 3. Monochromátorem (optický systém s mřížkou) se vydělí absorpční čára - záření určité nejvhodnější vlnové délky - obvykle základní rezonanční, která je nejcitlivější. 4. Na detektoru měříme tok dopadajícího záření před atomizací vzorku a po atomizaci vzorku a určíme zeslabení toku záření absorpcí - absorbanci, která je úměrná koncentraci atomů sledovaného prvku v oblaku volných atomů a také koncentraci prvku v původním roztoku vzorku. INAN-3/6
7 Zdroje záření v AAS Záření je absorbováno ve velmi úzkém intervalu vlnových délek na spektrální čáře příslušející danému přechodu (viz čárový charakter atomových spekter). Tak úzký interval nelze vymezit ze zdroje spojitého záření pomocí reálného optického systému (je to velmi obtížné pokusy byly činěny). Z toho vyplývá požadavek na použití čárového zdroje záření vyzařujícího záření o takové vlnové délce, která může být atomem sledovaného prvku absorbována. Kirchhoffův zákon: Volné atomy daného prvku absorbují záření těch vlnových délek, které jsou schopny samy vyzařovat. výbojky s dutou katodou výbojky s parami kovů bezelektrodové výbojky 1. Výbojka s dutou katodou Obr. Výbojka s dutou katodou INAN-3/7
8 Katoda výbojky je tvořena stejným kovem, který chceme stanovovat. Elektrickým výbojem se atomy odpařují a excitují. Atomy emitují záření jen charakteristických vlnových délek (s čárovým spektrem), které jsou volné atomy stanovovaného prvku v atomizátoru schopny absorbovat Záření určité vlnové délky by bylo možné vydělit i ze záření spojitého (např. záření žárovky), ale čára by nebyla dostatečně úzká a intenzivní. 2. Bezelektrodová výbojka Ve výbojce banička s parami těkavé sloučeniny prvku, který chceme stanovovat, energii na atomizaci a excitaci dodáváme elektromagnetickou indukcí z vysokofrekvenčního elektrického zdroje. Superlampy Laserové diody - s nastavitelnou vlnovou délkou. Absorbující prostředí je vytvářeno atomizací vzorku plamenem elektrotermicky (grafitová kyveta) tepelným rozkladem plynných sloučenin hydrid stanovovaného prvku (hydridová technika) INAN-3/8
9 páry prvků - Hg (studené páry - cold vapor) 1. Plamenová atomizace Kapalný vzorek kontinuálně po celou dobu stanovování nasáván do zmlžovače (nebuliser). Obr. Pneumatický zmlžovač s mlžnou komorou Vzniklý aerosol vysušen, vypařen a atomizován v plameni. Plamen acetylen vzduch dosahuje teploty K, plamen acetylen oxid dusný K. INAN-3/9
10 štěrbina hořáku je dlouhá (dlouhý plamen), čímž je zajištěna dlouhá cesta paprsku absorbujícím prostředím. Měřená absorbance je prakticky konstantní po celou dobu nasávání vzorku. Měříme absorbanci delší dobu - po několik sekund Nevýhody: malá účinnost vzniku volných atomů z roztoku vzorku, atomizace probíhá ve složitém prostředí (produkty spalování) zanikání volných atomů rekombinací (tj. slučováním na radikály či molekuly) ředění spalnými plyny Důsledek - nízká citlivost (vyšší meze detekce)tj. lze měřit jen vyšší koncentrace ve srovnání s dalšími způsobům atomizace. 2. Elektrotermická atomizace Grafitový atomizátor ve tvaru trubičky grafitová kyveta. INAN-3/10
11 Schéma elektrotermického atomizátoru Jednorázové nadávkování několika mikrolitrů roztoku vzorku. Vyhřívání průchodem elektrického proudu grafitem. pomalé vysušení vzorku (teploty kolem 100 C) spálení a těkání některých nestanovovaných látek vzorku - některých složek matrice (teploty několik 100 C) prudké vyhřátí na vysokou teplotu (nad 1000 C; maximálně až téměř 3000 C) - vypaření a atomizace stanovovaného prvku včetně dalších látek ze vzorku - matrice (zastaven průchod inertního plynu kyvetou) vypálení kyvety její vyčištění od zbytků matrice před dalším stanovením. Matrice - základní látky, z nichž se skládá vzorek, INAN-3/11
12 Za přítomosti vzduchu v kyvetě by grafit shořel, takže atomizátor při vyšší teplotě musí pracovat v inertní atmosféře (Ar, případně N 2 ) grafitová kyveta grafitová kyveta s platformou rozžhavená platforma Průběh měřené absorpce v kyvetě při atomizaci nadávkovaného vzorku - graf absorbance na čase Černá linie - průběh absorbance selektivní s časem se mění pík nárůst koncentrace volných atomů Cd při INAN-3/12
13 atomizaci a pak pokles v důsledku vymizení volných atomů z prostoru; jako signál měříme výšku nebo plochu absorpčního píku Modrá linie absorbance pozadí Červená linie - průběh teploty Lze dávkovat nejen roztoky ale i jemné suspenze práškového vzorku). Výhody a nevýhody proti plamenové atomizaci: velká účinnost vzniku volných atomů z odpařeného vzorku nakoncentrování atomů v malém prostoru nižší meze detekce lze měřit nižší koncentrace Řada problémů je obdobná jako při atomizaci v plameni, ale při elektrotermické atomizaci jsou problémy větší větší vlivy matrice na průběh absorpčního píku INAN-3/13
14 Konečný důsledek: ve srovnání s měřením s plamenovou atomizací větší systematické chyby měření - vychýlené výsledky, horší pravdivost měření; větší i náhodné chyby větší rozptyl výsledků, horší precisnost měření. Jiné techniky AAS Hydridová technika: Některé prvky (As, Sb, Bi, Se, Te, Sn, Pb) tvoří těkavé hydridy (reakcí s borohydridem sodným NaBH 4 ). Těkavé hydridy se proudem inertního plynu vedou do křemenné trubice umístěné v plameni tam probíhá štěpení na volné atomy, které absorbují záření. Stanovení Hg technikou studených par: Sloučeniny Hg se redukují na kovovou rtuť (SnCl 2 nebo borohydrid NaBH 4 ), páry Hg (volné atomy Hg) se vedou do skleněné trubice, kde probíhá absorpce záření. Probíhá na prakticky stejném zařízení jako hydridová technika není třeba zvýšenou teplotou rozkládat plynný hydrid kovu. INAN-3/14
15 Stanovení Hg pomocí amalgamy: Vzorek se termicky rozloží v proudu kyslíku, plynné spaliny se vedou přes vrstvu katalyzátoru (oxidy Mn), kde se buď dokonale zoxidují nebo některé absorbují. Rtuť přítomná ve vzorku se převede do formy par (volné atomy) a zachytí se (zakoncentruje) ve formě amalgámy na vrstvě Au nebo Ag o velkém povrchu (pozlacený nebo postříbřený zrnitý materiál). Ostatní plyny projdou celým následným měřicím systémem (oddělení Hg od všech látek ve vzorku). Pak se Hg termicky uvolní z amalgámy a její páry se vedou do měřicích kyvet, kde se měří absorpce záření emitovaného rtuťovou výbojkou absorpce uvolněné Hg se měří technikou AAS. Vysoce citlivá technika. Na tomto principu pracují jednoúčelové analyzátory (TMA 254 Trace Merkury Analyzer, AMA 254 Advanced Mercury Analyzer). Zeslabení toku záření v absorbujícím prostředí: Zeslabení záření není způsobováno jen absorpcí na atomech stanovovaného prvku. Vedle specifická absorpce atomy sledovaného prvku, na níž je založeno stanovení nastává také nespecifická absorpce plynnými molekulami či radikály (molekulární) málo závisí na vlnové délce INAN-3/15
16 rozptyl záření na pevných částicích v dráze paprsku (v plameni, v kyvetě) Při stanovení je třeba rozlišit specifickou absorpci záření vyvolanou atomy stanovovaného kovu od zeslabení toku záření oběma dalšími jevy - tzv. korekce pozadí. Kompenzace (korekce) pozadí: deuteriová využití Zeemanova jevu rozštěpení čar v silném magnetickém poli Prvky stanovitelné metodou AAS Principielně lze stanovit i P, není příliš využíváno, jen vyšší obsahy INAN-3/16
17 Charakteristiky AAS: o možnost stanovení většiny kovových prvků (nikoliv nekovy), o vysoká selektivita o elementární analýza, nemožnost speciace o pouze kvantitativní analýza o single-elementární metoda (pouze jeden prvek při jednom měření) o omezený lineární rozsah, častá nutnost ředění vzorků o meze detekce u plamenové AAS srovnatelné s ICP-OES o AAS s elektrotermickou atomizací (ET-AAS, GF-AAS) generace hydridů dosahuje nižších mezí detekce o velmi nízké meze detekce při stanovení Hg pomocí speciálních atomizátorů INAN-3/17
18 Stanovované koncentrace g / ml (mg / l) F AAS ng/ ml ( g / l) ET AAS and HG AAS citlivější o 2 až 3 řády Srovnání citlivostí s jinými spektrálními metodami F AAS ~ ICP AES ET AAS and VG AAS ~ ICP MS Využití AAS: Stanovení kovů, typicky stanovení alkalií (alkalické kovy a kovy alkalických zemin), těžkých kovů. Široké využití v environmentální analytické chemii, v uvedených oblastech nejpoužívanější spolu s ICP-OES. Bezplamenové techniky doplňují ICP-OES v oblasti velmi nízkých koncentrací. Standardizované, normované postupy. Doporučená literatura: J. Zýka (ed.): Analytická příručka. Kolektiv autorů: Instrumentální analýza. SNTL, Praha (vysokoškolská učebnice) INAN-3/18
GENEROVÁNÍ TĚKAVÝCH SLOUČENIN V AAS
GENEROVÁNÍ TĚKAVÝCH SLOUČENIN V AAS Pro generování těkavých sloučenin se používá: generování těkavých hydridů: As, Se, Bi, Ge, Sn, Te, In, generování málo těkavých hydridů: In, Tl, Cd, Zn, metoda studených
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY 1 Fyzikální základy spektrálních metod Monochromatický zářivý tok 0 (W, rozměr m 2.kg.s -3 ): Absorbován ABS Propuštěn Odražen zpět r Rozptýlen s Bilance toků 0 = +
ATOMOVÁ SPEKTROMETRIE (v UV a Vis oblasti spektra)
ATOMOVÁ SPEKTROMETRIE (v UV a Vis oblasti spektra) Atomová spektrometrie 1. OES (AES) 2. AAS 3. AFS Atomová spektra Na s elektronovou konfigurací [Ne] 3s 1 (1 val. e - ) Absorpce fotonu je spojena s excitací
nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL
Inovace a rozvoj studia nanomateriálů na TUL nano.tul.cz Tyto materiály byly vytvořeny v rámci projektu ESF OP VK: Inovace a rozvoj studia nanomateriálů na Technické univerzitě v Liberci Experimentální
Molekulová spektroskopie 1. Chemická vazba, UV/VIS
Molekulová spektroskopie 1 Chemická vazba, UV/VIS 1 Chemická vazba Silová interakce mezi dvěma atomy. Chemické vazby jsou soudržné síly působící mezi jednotlivými atomy nebo ionty v molekulách. Chemická
4. Spektrální metody pro prvkovou analýzu léčiv optická atomová spektroskopie
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 4. Spektrální metody pro prvkovou analýzu léčiv optická atomová spektroskopie Pavel Matějka pavel.matejka@vscht.cz pavel.matejka@gmail.com
Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm
Rtg. záření: Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Vznik rtg. záření: 1. Rtg. záření se spojitým spektrem vzniká při prudkém zabrzdění urychlených elektronů.
Atomová absorpční spektroskopie (AAS) spektroskopie (AAS) spektroskopie (AAS) r. 1802 Wolaston pozoroval absorpční čáry ve slunečním spektru
tomová absorpční r. 1802 Wolaston pozoroval absorpční čáry ve slunečním spektru r. 1953 Walsh sestrojil první analytický atomový absorpční spektrometr díky vysoké selektivitě se tato metoda stala v praxi
ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ
ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ (c) -2008, ACH/IM BLOKOVÉ SCHÉMA: (a) emisní metody (b) absorpční metody (c) luminiscenční metody U (b) monochromátor často umístěn před kyvetou se vzorkem. Části
Aplikace AAS ACH/APAS. David MILDE, Úvod
Aplikace AAS ACH/APAS David MILDE, 2017 Úvod AAS: v podstatě 4atomizační techniky: plamenová atomizace (FA), elektrotermická atomizace (ETA), generování těkavých hydridů (HG), určené pro stanovení As,
Atomová absorpční spektrofotometrie
Atomová absorpční spektrofotometrie Doc. MUDr. Petr Schneiderka, CSc. Tvorba a ověření e-learningového prostředí pro integraci výuky preklinických a klinických předmětů na LF UP a FZV UP Reg. č.: CZ.1.07/2.2.00/15.0313
SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ; (c) David MILDE,
SEKTRÁLNÍ METODY Ing. David MILDE, h.d. Katedra analytické chemie Tel.: 585634443; E-mail: david.milde@upol.cz (c) -2008 oužitá a doporučená literatura Němcová I., Čermáková L., Rychlovský.: Spektrometrické
INSTRUMENTÁLNÍ METODY
INSTRUMENTÁLNÍ METODY ACH/IM David MILDE, 2014 Dělení instrumentálních metod Spektrální metody (MILDE) Separační metody (JIROVSKÝ) Elektroanalytické metody (JIROVSKÝ) Ostatní: imunochemické, radioanalytické,
SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE)
SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE) Elektromagnetické vlnění SVĚTLO Charakterizace záření Vlnová délka - (λ) : jednotky: m (obvykle nm) λ Souvisí s povahou fotonu Charakterizace záření
Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec
Fotoelektronová spektroskopie Instrumentace RNDr. Věra V Vodičkov ková,, PhD. Katedra materiálů TU Liberec Obecné schéma metody Dopad rtg záření emitovaného ze zdroje na vzorek průnik fotonů několik µm
ATOMOVÁ SPEKTROMETRIE VALENČNÍCH ELEKTRONŮ (UV a Vis oblast spektra)
ATOMOVÁ SPEKTROMETRIE VALENČNÍCH ELEKTRONŮ (UV a Vis oblast spektra) (c) -2014 Atomová spektrometrie 1. OES (AES) 2. AAS 3. AFS 1 Atomová spektra Na s elektronovou konfigurací [Ne] 3s 1 (1 val. e - ) Absorpce
Hmotnostní spektrometrie
Hmotnostní spektrometrie Princip: 1. Ze vzorku jsou tvořeny ionty na úrovni molekul, nebo jejich zlomků (fragmentů), nebo až volných atomů dodáváním energie, např. uvolnění atomů ze vzorku nebo přímo rozštěpení
METODY - spektrometrické
Analýza Analýza - prvková METODY - spektrometrické atomová emisní/absorpční spektrometrie rentgenová fluorescenční analýza emise elektronů - povrchová analýza ESCA (elektronová spektroskopie pro chemickou
13. Spektroskopie základní pojmy
základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Fluorescence (luminiscence)
Fluorescence (luminiscence) Patří mezi luminiscenční metody fotoluminiscence. Luminiscence efekt, kdy excitované molekuly či atomy vyzařují světlo při přechodu z excitovaného do základního stavu. Podle
Atomová spektrometrie
Atomová spektrometrie Obsah kapitoly Atomová absorpční spektrometrie F AAS ET AAS HG AAS Atomová emisní spektrometrie plamenová fotometrie ICP-AES Atomová absorpční spektrometrie Princip metody absorpce
VIBRAČNÍ SPEKTROMETRIE
VIBRAČNÍ SPEKTROMETRIE (c) -2012 RAMANOVA SPEKTROMETRIE 1 PRINCIP METODY Měří se rozptýlené záření, které vzniká interakcí monochromatického záření z viditelné oblasti s molekulami vzorku za současné změny
Příklady biochemických metod turbidimetrie, nefelometrie. Miroslav Průcha
Příklady biochemických metod turbidimetrie, nefelometrie Miroslav Průcha Příklady optických technik Atomová absorpční spektrofotometrie Absorpční spektrofotometrie Absorpční spektrofotometrie kinetická
Emise vyvolaná působením fotonů nebo částic
Emise vyvolaná působením fotonů nebo částic PES (fotoelektronová spektroskopie) XPS (rentgenová fotoelektronová spektroskopie), ESCA (elektronová spektroskopie pro chemickou analýzu) UPS (ultrafialová
Optické metody emisní spektrofotometrie. Mgr. Jana Gottwaldová
Optické metody emisní spektrofotometrie Mgr. Jana Gottwaldová Spektrofotometrie-rozdělení Podle typu interakce elektromagnetického záření: absorpční spektrofotometrii emisní spektrofotometrii Turbidimetrii,
DETEKTORY pro kapalinovou chromatografii. Izolační a separační metody, 2018
DETEKTORY pro kapalinovou chromatografii Izolační a separační metody, 2018 Detektory v kapalinové chromatografii Typ detektoru Zkratka Měřená veličina Refraktometrický detektor RID index lomu Spektrofotometrický
Spektroskopie v UV-VIS oblasti. UV-VIS spektroskopie. Roztok KMnO 4. pracuje nejčastěji v oblasti 200-800 nm
Spektroskopie v UV-VIS oblasti UV-VIS spektroskopie pracuje nejčastěji v oblasti 2-8 nm lze měřit i < 2 nm či > 8 nm UV VIS IR Ultra Violet VISible Infra Red Roztok KMnO 4 roztok KMnO 4 je červenofialový
Úvod do spektrálních metod pro analýzu léčiv
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz
Spektroskopické metody. převážně ve viditelné, ultrafialové a blízké infračervené oblasti
Spektroskopické metody převážně ve viditelné, ultrafialové a blízké infračervené oblasti Elektromagnetické záření Elektromagnetické záření je postupné vlnění elektromagnetického pole složeného z kombinace
Porovnání metod atomové spektrometrie
Porovnání metod atomové spektrometrie ACH/APAS David MILDE, 2017 Úvod Metody našeho zájmu: plamenová atomizace v AAS (FA-AAS) elektrotermická atomizace v AAS (ETA-AAS, GF-AAS) ICP-OES ICP-MS Výhody a nevýhody
MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis
MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis Ivana Krestýnová, Josef Zicha Abstrakt: Absolutní vlhkost je hmotnost
Viková, M. : ZÁŘENÍ II. Martina Viková. LCAM DTM FT TU Liberec, (hranol, mřížka) štěrbina. Přednášky z : Textilní fyzika
Záření II Martina Viková LCAM DTM FT TU Liberec, martina.vikova@vslib.cz kolimátor dalekohled štěrbina (hranol, mřížka) SPEKTRA LÁTEK L I Zářící zdroje vysílají záření závislé na jejich chemickém složení
FLUORIMETRICKÉ STANOVENÍ FLUORESCEINU
FLUORIMETRICKÉ STANOVENÍ FLUORESCEINU návod vznikl jako součást bakalářské práce Martiny Vidrmanové Fluorimetrie s využitím spektrofotometru SpectroVis Plus firmy Vernier (http://is.muni.cz/th/268973/prif_b/bakalarska_prace.pdf)
VYUŽITÍ TEPELNÉHO ZMLŽOVAČE V AAS
1 VYUŽITÍ TEPELNÉHO ZMLŽOVAČE V AAS JAN KNÁPEK Katedra analytické chemie, Přírodovědecká fakulta MU, Kotlářská 2, Brno 611 37 Obsah 1. Úvod 2. Tepelný zmlžovač 2.1 Princip 2.2 Konstrukce 2.3 Optimalizace
SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK
SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE) Ivona Trejbalová, Petr Šmejkal Elektromagnetické vlnění SVĚTLO Charakterizace záření Vlnová délka - (λ) : jednotky: m (obvykle nm) λ Souvisí s povahou
- Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl. - fluorescence - fosforescence
ROZPTYLOVÉ a EMISNÍ metody - Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl - fluorescence - fosforescence Ramanova spektroskopie Každá čára Ramanova spektra je svými vlastnostmi závislá
Plamenová fotometrie
Plamenová fotometrie Doc. MUDr. Petr Schneiderka CSc. Tvorba a ověření e-learningového prostředí pro integraci výuky preklinických a klinických předmětů na LF UP a FZV UP Reg. č.: CZ.1.07/2.2.00/15.0313
ATOMOVÁ ABSORPČNÍ SPEKTROMETRIE
ATOMOVÁ ABSORPČNÍ SPEKTROMETRIE Atomic Absorption Spectrometry (AAS) (c) -2010 Měří se úbytek intenzity elektromagnetického záření (absorbance) způsobený absorpcí volnými atomy v plynném stavu. Atomy se
Stručný úvod do spektroskopie
Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,
Spektrometrické metody. Reflexní a fotoakustická spektroskopie
Spektrometrické metody Reflexní a fotoakustická spektroskopie odraz elektromagnetického záření - souvislost absorpce a reflexe Kubelka-Munk funkce fotoakustická spektroskopie Měření odrazivosti elmg záření
Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU SELENU METODOU ICP-OES
Strana 1 STANOVENÍ OBSAHU SELENU METODOU ICP-OES 1 Rozsah a účel Postup specifikuje podmínky pro stanovení celkového obsahu selenu v minerálních krmivech a premixech metodou optické emisní spektrometrie
ZÁKLADY OBECNÉ A KLINICKÉ BIOCHEMIE
ZÁKLADY OBECNÉ A KLINICKÉ BIOCHEMIE 2004 Technologie kvantitativních metod Petr Štern kapitola ve skriptech - 4.2.2 Optické zdroje U V V I S I R Spektrální distribuční křivky W žárovky b.t. W ~ 3600 C
Vybrané spektroskopické metody
Vybrané spektroskopické metody a jejich porovnání s Ramanovou spektroskopií Předmět: Kapitoly o nanostrukturách (2012/2013) Autor: Bc. Michal Martinek Školitel: Ing. Ivan Gregora, CSc. Obsah přednášky
Metody spektrální. Základní pojmy a metody prvkové analýzy. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Metody spektrální Základní pojmy a metody prvkové analýzy Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Spektrální analýza elektromagnetické záření vlnový model x částicový model elektrická
FOTOAKUSTIKA. Vítězslav Otruba
FOTOAKUSTIKA Vítězslav Otruba 2010 prof. Otruba 2 The spectrophone 1881 A.G. Bell návrh a Spektrofonu (spectrophone) pro účely posouzení absorpčního spektra subjektů v těch částech, které jsou neviditelné.
ELEKTROTERMICKÁ ATOMIZACE. Electrothermal atomization AAS (ETA-AAS)
ELEKTROTERMICKÁ ATOMIZACE Electrothermal atomization AAS (ETA-AAS) FA nedosahuje detekčních mezí potřebných pro chemickou praxi (FA mg/l, ETA g/l). ETA: atomizátor obvykle ve tvaru trubičky (Massmannova
Úloha č. 1: CD spektroskopie
Přírodovědecké fakulta Masarykovy univerzity v Brně Předmět: Jméno: Praktikum z astronomie Andrea Dobešová Obor: Astrofyzika ročník: II. semestr: IV. Název úlohy Úloha č. 1: CD spektroskopie Úvod: Koho
STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace
Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková
ATOMOVÁ SPEKTROMETRIE
ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.
ATOMOVÁ SPEKTROMETRIE
ATOMOVÁ SPEKTROMETRIE doc. Ing. David MILDE, Ph.D. tel.: 585634443 E-mail: david.milde@upol.cz (c) -017 Doporučená literatura Černohorský T., Jandera P.: Atomová spektrometrie. Univerzita Pardubice 1997.
Aplikace ICP-OES (MS)
(MS) ACH/APAS David MILDE, 2017 Úvod ICP-OES je citlivá a dostatečně selektivní analytická metoda pro stanovení většiny prvků. Jedná se především o roztokovou metodu, i když existují modifikace pro přímou
Optogalvanick{ spektrometrie Vítězslav Otruba
Optogalvanick{ spektrometrie Vítězslav Otruba Princip metody Optogalvanický efekt využívá kombinace excitace atomů resonančním zářením a srážkové ionizace částicemi plazmatu (plamene) k selektivní ionizaci
OPTICKÉ METODY. NESPEKTRÁLNÍ při interakci nedochází k výměně energie
OPTICKÉ METODY OM OPTICKÉ METODY Identifikace a kvantifikace sloučenin (organických i anorganických) na základě interakce elektromagnetického záření a hmoty Základní rozdělení optických metod: NESPEKTRÁLNÍ
Využití UV/VIS a IR spektrometrie v analýze potravin
Využití UV/VIS a IR spektrometrie v analýze potravin Chemické laboratorní metody v analýze potravin MVDr. Zuzana Procházková, Ph.D. MVDr. Michaela Králová, Ph.D. Spektrometrie: základy Interakce záření
Měření šířky zakázaného pásu polovodičů
Měření šířky zakázaného pásu polovodičů Úkol : 1. Určete šířku zakázaného pásu ze spektrální citlivosti fotorezistoru pro šterbinu 1,5 mm. Na monochromátoru nastavujte vlnovou délku od 200 nm po 50 nm
Optimalizace podmínek měření a práce s AAS
S (KT & Geochemie) Optimalizace podmínek měření a práce s S Teoretický základ úlohy: 1: OPTIMLIZCE PRCOVNÍCH PODMÍNEK Jedním z prvních úkolů při práci s atomovým absorpčním spektrometrem (S) je vždy nalezení
Metody charakterizace nanomaterálů I
Vybrané metody spektráln lní analýzy Metody charakterizace nanomaterálů I RNDr. Věra Vodičková, PhD. Molekulová spektroskopie atomy a molekuly mohou měnit svůj energetický stav přijetím nebo vyzářením
ÚSTAV ORGANICKÉ TECHNOLOGIE
LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) F Imobilizace na alumosilikátové materiály Vedoucí práce: Ing. Eliška Leitmannová, Ph.D. Umístění práce: laboratoř F07, F08 1 Úvod Imobilizace aktivních
SPEKTROMETRIE. aneb co jsem se dozvěděla. autor: Zdeňka Baxová
SPEKTROMETRIE aneb co jsem se dozvěděla autor: Zdeňka Baxová FTIR spektrometrie analytická metoda identifikace látek (organických i anorganických) všech skupenství měříme pohlcení IČ záření (o různé vlnové
Infračervená spektroskopie
Infračervená spektroskopie 1 Teoretické základy Podstatou infračervené spektroskopie je interakce infračerveného záření se studovanou hmotou, kdy v případě pohlcení fotonu studovanou hmotou mluvíme o absorpční
OPTICK SPEKTROMETRIE
OPTICK TICKÁ EMISNÍ SPEKTROMETRIE Optical Emission Spectrometry (OES) ATOMOVÁ EMISNÍ SPEKTROMETRIE (AES) (c) -2010 OES je založena na registrování fotonů vzniklých přechody valenčních e - z vyšších energetických
OPTICKÁ EMISNÍ SPEKTROMETRIE
OPTICKÁ EMISNÍ SPEKTROMETRIE Optical Emission Spectrometry (OES) ATOMOVÁ EMISNÍ SPEKTROMETRIE (AES) (c) -2017 OES je založena na registrování fotonů vzniklých přechody valenčních e - z vyšších energetických
ÚLOHA č.4. ATOMOVÁ ABSORPČNÍ SPEKTROMETRIE Stanovení mědi ve víně metodou AAS
1 ÚLOHA č.4 ATOMOVÁ ABSORPČNÍ SPEKTROMETRIE Stanovení mědi ve víně metodou AAS ÚKOLY: 4.1. Seznámení s metodou 4.. Stanovení mědi ve víně 4..1. Metoda kalibrační křivky 4... Metoda standardních přídavků
HMOTNOSTNÍ SPEKTROMETRIE - kvalitativní i kvantitativní detekce v GC a LC - pyrolýzní hmotnostní spektrometrie - analýza polutantů v životním
HMOTNOSTNÍ SPEKTROMETRIE - kvalitativní i kvantitativní detekce v GC a LC - pyrolýzní hmotnostní spektrometrie - analýza polutantů v životním prostředí - farmakokinetické studie - kvantifikace proteinů
INFRAČERVENÁ SPEKTROMETRIE A BIOSLOŽKY PALIV
VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE Fakulta technologie ochrany prostředí Ústav technologie ropy a alternativních paliv INFRAČERVENÁ SPEKTROMETRIE A BIOSLOŽKY PALIV Laboratorní cvičení ÚVOD V několika
Absorpční fotometrie
Absorpční fotometrie - v ultrafialové (UV) a viditelné (VIS) oblasti přechody mezi elektronovými stavy +... - v infračervené (IČ) oblasti přechody mezi vibračními stavy +... - v mikrovlnné oblasti přechody
ATOMOVÁ ABSORPČNÍ SPEKTROMETRIE S KONTINUÁLNÍM ZDROJEM ZÁŘENÍ
ATOMOVÁ ABSORPČNÍ SPEKTROMETRIE S KONTINUÁLNÍM ZDROJEM ZÁŘENÍ Bohumil Dočekal V atomové absorpční spektrometrii je principiálně možné k měření absorpce atomy analytu využívat i vysokovýkonné kontinuální
ÚSTAV ANALYTICKÉ CHEMIE
ÚSTAV ANALYTICKÉ CHEMIE Atomová absorpční spektrometrie s elektrotermickou atomizací pracovní text pro Podzemní výukové středisko JOSEF Oto Mestek 2010 1 Obecné základy Atomová absorpční spektrometrie
16. Franck Hertzův experiment
16. Franck Hertzův experiment Zatímco zahřáté těleso vysílá spojité spektrum elektromagnetického záření, mají např. zahřáté páry kovů nebo plyny, v nichž probíhá elektrický výboj, spektrum čárové. V uvedených
Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU KADMIA A OLOVA METODOU FAAS
Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU KADMIA A OLOVA METODOU FAAS 1 Rozsah a účel Metoda specifikuje podmínky pro stanovení Cd a Pb v krmivech a minerálních premixech. Stanovení je určeno
HPLC - Detektory A.Braithwaite and F.J.Smith; Chromatographic Methods, Fifth edition, Blackie Academic & Professional 1996 Colin F. Poole and Salwa K.
Vysokoúčinná kapalinová chromatografie - Detektory - I Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 HPLC - Detektory A.Braithwaite and F.J.Smith; Chromatographic Methods, Fifth
Zdroje optického záření
Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon
Atomová absorpční spektrometrie s kontinuálním zdrojem --- Continuum Source AAS
Inovace vzdělávání v chemii na PřFMU Projekt CZ.1.07/2.2.00/07.0436 v rámci OP Vzdělávání pro konkurenceschopnost předmět Trendy v analytické chemii Russel - Soundersovy termy 2S+1 L J Atomová absorpční
Základy spektroskopických metod
Základy spektroskopických metod Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Spektroskopické metody Optické metody pro stanovení chemického složení materiálů Založeny na vzájemném působení
Spektroskopické é techniky a mikroskopie. Spektroskopie. Typy spektroskopických metod. Cirkulární dichroismus. Fluorescence UV-VIS
Spektroskopické é techniky a mikroskopie Spektroskopie metody zahrnující interakce mezi světlem (fotony) a hmotou (elektrony a protony v atomech a molekulách Typy spektroskopických metod IR NMR Elektron-spinová
OPTICKÁ EMISNÍ SPEKTROMETRIE
OPTICKÁ EMISNÍ SPEKTROMETRIE Optical Emission Spectrometry (OES) ATOMOVÁ EMISNÍ SPEKTROMETRIE (AES) (c) -2010 OES je založena na registrování fotonů vzniklých přechody valenčních e - z vyšších energetických
Optický emisní spektrometr Agilent 725 ICP-OES
Optický emisní spektrometr Agilent 725 ICP-OES Popis systému: Přístroj, včetně řídicího softwaru a počítače, určený pro plně simultánní stanovení prvků v širokém koncentračním rozmezí (ppm až %), v nejrůznějších
ATOMOVÁ ABSORPČNÍ SPEKTROMETRIE
ATOMOVÁ ABSORPČNÍ SPEKTROMETRIE Atomic Absorption Spectrometry (AAS) (c) -2010 Měří se úbytek intenzity elektromagnetického záření (absorbance) způsobený absorpcí volnými atomy v plynném stavu. Atomy se
Atomová spektrometrie
Atomová spektrometrie Obsah kapitoly Atomová absorpční spektrometrie F AAS ET AAS HG AAS Atomová emisní spektrometrie plamenová fotometrie ICP-AES Hmotnostní spektrometrie pro prvkovou analýzu ICP-MS Atomová
Luminiscence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence. chemicky (chemiluminiscence)
Luminiscence Luminiscence emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence chemicky (chemiluminiscence) teplem (termoluminiscence) zvukem (sonoluminiscence)
Rentgenová difrakce a spektrometrie
Rentgenová difrakce a spektrometrie RNDr.Jaroslav Maixner, CSc. VŠCHT v Praze Laboratoř rentgenové difraktometrie a spektrometrie Technická 5, 166 28 Praha 6 224354201, 24355023 Jaroslav.Maixner@vscht.cz
ATOMOVÁ ABSORPČNÍ SPEKTROMETRIE
ATOMOVÁ ABSORPČNÍ SPEKTROMETRIE Atomic Absorption Spectrometry (AAS) (c) -2010 Měří se úbytek intenzity elektromagnetického záření (absorbance) způsobený absorpcí volnými atomy v plynném stavu. Atomy se
Optoelektronika. elektro-optické převodníky - LED, laserové diody, LCD. Elektronické součástky pro FAV (KET/ESCA)
Optoelektronika elektro-optické převodníky - LED, laserové diody, LCD Elektro-optické převodníky žárovka - nejzákladnější EO převodník nevhodné pro optiku široké spektrum vlnových délek vhodnost pro EO
ANALYTICKÉ METODY STOPOVÉ ANALÝZY
ANALYTICKÉ METODY STOPOVÉ ANALÝZY Požadavky na analytické metody: - robustnost (spolehlivost) - citlivost - selektivita stanovení - možnost automatizace Klasická chemická roztoková analýza většinou nevyhovuje
10. Tandemová hmotnostní spektrometrie. Princip tandemové hmotnostní spektrometrie
10. Tandemová hmotnostní spektrometrie Princip tandemové hmotnostní spektrometrie Informace získávané při tandemové hmotnostní spektrometrii Možné způsoby uspořádání tandemové HS a/ scan fragmentů vzniklých
Luminiscence. Luminiscence. Fluorescence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) chemicky (chemiluminiscence)
Luminiscence Luminiscence emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence chemicky (chemiluminiscence) teplem (termoluminiscence) zvukem (sonoluminiscence)
Přístrojové vybavení pro detekci absorpce a fluorescence
Přístrojové vybavení pro detekci absorpce a fluorescence Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr 4.10.2007 1 Opakování barevných principů fluorescence http://probes.invitrogen.com/resources/educ
Modulace a šum signálu
Modulace a šum signálu PATRIK KANIA a ŠTĚPÁN URBAN Nejlepší laboratoř molekulové spektroskopie vysokého rozlišení Ústav analytické chemie, VŠCHT Praha kaniap@vscht.cz a urbans@vscht.cz http://www.vscht.cz/anl/lmsvr
Principy chemických snímačů
Principy chemických snímačů Název školy: SPŠ Ústí nad Labem, středisko Resslova Autor: Ing. Pavel Votrubec Název: VY_32_INOVACE_05_AUT_99_principy_chemickych_snimacu.pptx Téma: Principy chemických snímačů
Úloha 15: Studium polovodičového GaAs/GaAlAs laseru
Petra Suková, 2.ročník, F-14 1 Úloha 15: Studium polovodičového GaAs/GaAlAs laseru 1 Zadání 1. Změřte současně světelnou i voltampérovou charakteristiku polovodičového laseru. Naměřenézávislostizpracujtegraficky.Stanovteprahovýproud
Základy NIR spektrometrie a její praktické využití
Nicolet CZ s.r.o. The world leader in serving science Základy NIR spektrometrie a její praktické využití NIR praktická metoda molekulové spektroskopie, nahrazující pracnější, časově náročnější a dražší
Zeemanův jev. Michael Jirásek; Jan Vejmola Gymnázium Český Brod, Vítězná 616 SPŠE V Úžlabině 320, Praha 10
Zeemanův jev Michael Jirásek; Jan Vejmola Gymnázium Český rod, Vítězná 616 SPŠE V Úžlabině 320, Praha 10 m.jirasek@seznam.cz; vejmola.jan@seznam.cz Abstrakt: Zeemanův jev je významný yzikální jev, který
2. Fluorimetrie princip, konstrukce fluorimetru, hlavní součásti a jejich funkce (zdroj záření, primární a sekundární záření, detektor)
O T Á Z K Y Instrumentální technika ZL_Bc (2010) I. okruh 1. Spektrofotometrie princip, konstrukce spektrofotometru, hlavní součásti a jejich funkce (zdroj záření, monochromátor, absorpční prostředí, detektor)
METODY BEZ VÝMĚNY ENERGIE MEZI ZÁŘENÍM A VZORKEM
METODY BEZ VÝMĚNY ENERGIE MEZI ZÁŘENÍM A VZORKEM REFRAKTOMETRIE POLARIMETRIE SPEKTROMETRIE VYUŽÍVAJÍCÍ ROZPTYL MĚŘENÍ VELIKOSTI ČÁSTIC (c) -2012 REFRAKTOMETRIE Metoda založená na měření indexu lomu látek
Základy fotometrie, využití v klinické biochemii
Základy fotometrie, využití v klinické biochemii Základní vztahy ve fotometrii transmitance (propustnost): T = I / I 0 absorbance: A = log (I 0 / I) = log (1 / T) = log T Lambertův-Beerův zákon A l = e
Netradiční světelné zdroje
Ing. Jiří Kubín, Ph.D. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247, který je spolufinancován
Balmerova série. F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3
Balmerova série F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3 Grepl.F@seznam.cz Abstrakt: Metodou dělených svazků jsme určili lámavý