Algoritmy a struktury neuropočítačů ASN - P14. Neuropočítače
|
|
- Libuše Hrušková
- před 6 lety
- Počet zobrazení:
Transkript
1 Neuropočítače speciální výpočetní prostředky pro urychlení výpočtů neuronových sítí implementace zjednodušených algoritmů obvykle celočíselná aritmetika v kombinaci s normováním vstupních vektorů Rozdělení neuropočítačů konstrukce neuropočítačů - konvenční procesory doplněné o speciální instrukce a periferie umožňují významně urychlit výpočty neuronových sítí zvýšení výkonů zařízení - techniky paralelního zpracování jiný přístup - neuročipy základní stavební prvek aproximace neuronu digitální implementace čipy s analogovými čipy s hybridními neurony
2 Rozdělení neuropočítačů (podle [HEE95] Využití konvenčních procesorů klasické procesory MPU + speciální periferie pro větší výkonnost moderní procesory pro osobní počítače obsahují instrukční rozšíření pro práci s multimédii - lze jej použít s jistými omezeními také pro trénování Kohonenových map
3 Paralelní (víceprocesorové) systémy pro zvýšení výkonu - několika procesorů současně vhodné např. pro KSOM Samotný algoritmus KSOM SIMD Single Instruction Multiple Data na jednotlivých procesorech se provádí stejný program zpracovávají se různá data porovnání bit po bitu, není třeba sekvenčně hledat minimum
4 MIMD transputer Multiple Instruction Multiple Data každý procesor vlastní program, vlastní data procesory uspořádané do n-dimenzionálních sítí méně vhodné pro KSOM algoritmus nelze rozdělit na nezávislé paralelní procesy Implementace v systolickém poli využití většího množství jednotek uspořádaných maticově data se šíří tímto polem (maticí) jedním směrem (např.dolů) mezivýsledky se šíří ortogonálně (vpravo) výpočet je iterativní Na obrázku je náčrt funkce výpočtu vzdáleností mezi vstupním vektorem x a vektory neuronů m1- m3. Složky vstupního vektoru jsou distribuovány vertikálně, součiny se sčítají horizontálně. Při úpravě vah se složky vektoru a koeficient učení šíří vertikálně a vektory neuronů m jsou adaptovány lokálně.
5 snížené nároky na hardware [IEN93b] Paralelní stroj složený z klasických osobních počítačů cluster varianta MIMD stroje jednotlivé procesory nejsou umístěny v jednom čipu ani na jedné základní desce procesory jsou v jednotlivých osobních počítačích spojených pomocí standardizovaného rozhraní (Ethernet) Nevýhoda: relativně nižší výkonnost Výhoda: příznivější cena
6 Měření výkonnosti neuropočítačů ukazatel pro neuronové sítě : MCPS (Million Connections Per Second) - vyjadřuje výkon neuropočítače ve fázi využívání natrénované sítě MCUPS (Million Connections Update Per Second) - pro výkon ve fázi učení Ukazatele vyjadřují výpočetní sílu počítače, neberou v úvahu vliv konkrétní implementace na konvergenci algoritmu. Nelze porovnávat neuropočítače různých konstrukcí. z porovnání doby potřebné k dosažení určitého stupně uspořádání sítě
7 MANTRA I - neuropočítač vyvíjený v EPFL v Lausanne [COR94c], [VIR93a], [VIR93b] návrh s ohledem na implementaci jednovrstvých i vícevrstvých neuronových sítí, Hopfieldových sítí a Kohonenových map složení - ze zákaznických obvodů GENES IV v maximální konfiguraci obsahuje matici těchto bvodů výkon MCPS a MCUPS (v závislosti na typu NN) Každý obvod - šestnáct výpočetních jednotek uspořádaných do čtvercové matice Každá jednotka - šest základních operací: 1. násobení matice vah W vstupním vektorem x 2. výpočet druhé mocniny Eukleidovské vzdálenosti 3. Hebbovský zákon učení 4. Kohonenovské učení aktualizace vah 5. hledání největšího elementu vektoru 6. hledání nejmenšího elementu vektoru.
8 COKOS - COprocessor for KOhonen's Self-organizing map čip speciálně navržený pro podporu Kohonenových map osm paralelních jednotek nazývaných MAB - Memory Arithmetic Board odčítačka + násobička + sčítačka v každé MAP pro uložení mezivýsledků paměť RAM v každé MAP každá MAB jednotka počítá druhou mocninu vzdálenosti vstupního vektoru x a modelu neuronu mi. výsledky jednotlivých jednotek jsou sečteny sčítačkou vítěz je nalezen pomocí WTA (Winner Takes All) jednotky obsahující i separátní paměť pro uložení vzdáleností jednotlivých vektorů
9 neuropočítač je propojen s osobním počítačem pomocí asynchronního rozhraní součástí systému je software pro práci s neuropočítačem výkon: kolem 16MCUPS váhy neuronů jsou 16-ti bitové NBISOM_25 a NBX vyvinutý speciálně pro zrychlení výpočtů Kohonenových map neuropočítač sestavený z 16-ti zakázkových čipů každý obsahuje matici 5 5 speciálních výpočetních jednotek každá jednotka je vybavena pamětí pro uložení 64 elementů vektoru modelu mi neuronu, jednotkou pro výpočet vzdálenosti (se 14-ti bitovým akumulátorem) a s řídící logikou
10 upraven pro implementaci v programovatelném hradlovém poli (FPGA) Každá jednotka podporuje mimo základní operace pro výpočet Kohonenových map (výpočet vzdálenosti, hledání minima a adaptace vah) operace pro výpočet U-matic používaných k zobrazení Literatura: [BAR06] Bártů, M.: Analýza možností implementace Kohonenových map. Diplomová práce, FEL ČVUT v Praze, 2006 [COR94a] Cornu T., Ienne P.: Performance of Digital Neurocomputers, In Proceedings of the Fourth International Conference on Microelectronics for Neural Networks and Fuzzy Systems, Turin, Italy, pp , September 1994.
11 [HEE95] Heemskerk J.: Overview of Neural Hardware, disertační práce, Unit of Experimental and Theoretical Psychology, Leiden University,The Netherlands, 1995 [IEN93b] Ienne P.: Quantitative Comparison of Architectures for Digital Neuro-Computers, In Proceedings of the International Joint Conference on Neural Networks, Nagoya, Japan, Volume II, pp , October 1993 [IEN94] Ienne P., Viredaz M. A.: Implementation of Kohonen's Self- Organizing Maps on MANTRA I, In Proceedings of the Fourth International Conference on Microelectronics for Neural Networks and Fuzzy Systems, Turin, Italy, pp.l , September 1994 [KOH01] Kohonen T.: Self-Organizing Maps. Springer-Verlag 2001, 3. vydání,isbn [POR02a] Porrman M., Witkowski U., Kalte H., Ruckert U.: Implementation of Artifical Neural Networks on a Reconfigurable Hardware Accelerator, In Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing, Grand Canaria Island, Spain, pp , January 2002
Implementace KSOM. Marek Bártů. LANNA Katedra teorie obvodů FEL ČVUT.
Implementace KSOM Marek Bártů marek.bartu@gmail.com LANNA Katedra teorie obvodů FEL ČVUT SSC Implementace KSOM 2 algoritmus KSOM úprava pro snadnější implementaci kvantizace reprezentace čísel podobnost
Akcelerátor pro KSOM
Akcelerátor pro KSOM Marek Bártů České vysoké učení v Praze, Fakulta elektrotechnická bartum1@fel.cvut.cz Abstrakt: In this work we are describing hardware implementation of Kohonen Self-Organizing Map.
Přehled paralelních architektur. Dělení paralelních architektur Flynnova taxonomie Komunikační modely paralelních architektur
Přehled paralelních architektur Přehled paralelních architektur Dělení paralelních architektur Flynnova taxonomie Komunikační modely paralelních architektur Přehled I. paralelní počítače se konstruují
OPS Paralelní systémy, seznam pojmů, klasifikace
Moorův zákon (polovina 60. let) : Výpočetní výkon a počet tranzistorů na jeden CPU chip integrovaného obvodu mikroprocesoru se každý jeden až dva roky zdvojnásobí; cena se zmenší na polovinu. Paralelismus
Algoritmy a struktury neuropočítačů ASN - P11
Aplikace UNS při rozpoznání obrazů Základní úloha segmentace obrazu rozdělení obrazu do několika významných oblastí klasifikační úloha, clusterová analýza target Metody Kohonenova metoda KSOM Kohonenova
Představení a vývoj architektur vektorových procesorů
Představení a vývoj architektur vektorových procesorů Drong Lukáš Dro098 1 Obsah Úvod 3 Historie, současnost 3 Architektura 4 - pipelining 4 - Operace scatter a gather 4 - vektorové registry 4 - Řetězení
Základy informatiky. 2. Přednáška HW. Lenka Carr Motyčková. February 22, 2011 Základy informatiky 2
Základy informatiky 2. Přednáška HW Lenka Carr Motyčková February 22, 2011 Základy informatiky 1 February 22, 2011 Základy informatiky 2 February 22, 2011 Základy informatiky 3 February 22, 2011 Základy
ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT. Institut biostatistiky a analýz
ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT prof. Ing. Jiří Holčík,, CSc. NEURONOVÉ SÍTĚ otázky a odpovědi 1 AKD_predn4, slide 8: Hodnota výstupu závisí na znaménku funkce net i, tedy na tom, zda bude suma
Přednášky o výpočetní technice. Hardware teoreticky. Adam Dominec 2010
Přednášky o výpočetní technice Hardware teoreticky Adam Dominec 2010 Rozvržení Historie Procesor Paměť Základní deska přednášky o výpočetní technice Počítací stroje Mechanické počítačky se rozvíjely už
Neuropočítače. podnět. vnímání (senzory)
Neuropočítače Princip inteligentního systému vnímání (senzory) podnět akce (efektory) poznání plánování usuzování komunikace Typické vlastnosti inteligentního systému: schopnost vnímat podněty z okolního
REKONFIGURACE FPGA. Božetěchova 1/2, 612 66 Brno. imatousek@fit.vutbr.cz
OPTIMALIZACE VYHLEDÁNÍ NEJDELŠÍHO PREFIXU SÍŤOVÉ ADRESY S VYUŽITÍM ČÁSTEČNÉ DYNAMICKÉ REKONFIGURACE FPGA Jiří Matoušek Výpočetní technika a informatika, 1. ročník, prezenční studium Školitel: Zdeněk Kotásek
ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14
ZÁKLADY PROGRAMOVÁNÍ Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14 Co je vhodné vědět, než si vybereme programovací jazyk a začneme programovat roboty. 1 / 14 0:40 1.3. Vliv hardware počítače na programování Vliv
Umělé neuronové sítě
Umělé neuronové sítě 17. 3. 2018 5-1 Model umělého neuronu y výstup neuronu u vnitřní potenciál neuronu w i váhy neuronu x i vstupy neuronu Θ práh neuronu f neuronová aktivační funkce 5-2 Neuronové aktivační
Jan Nekvapil ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická
Jan Nekvapil jan.nekvapil@tiscali.cz ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Motivace MMX, EMMX, MMX+ 3DNow!, 3DNow!+ SSE SSE2 SSE3 SSSE3 SSE4.2 Závěr 2 Efektivní práce s vektory
Operační systémy. Přednáška 1: Úvod
Operační systémy Přednáška 1: Úvod 1 Organizace předmětu Přednášky každé úterý 18:00-19:30 v K1 Přednášející Jan Trdlička email: trdlicka@fel.cvut.z kancelář: K324 Cvičení pondělí, úterý, středa Informace
4. Úvod do paralelismu, metody paralelizace
4. Úvod do paralelismu, metody paralelizace algoritmů Ing. Michal Bližňák, Ph.D. Ústav informatiky a umělé inteligence Fakulta aplikované informatiky UTB Zĺın Paralelní procesy a programování, Zĺın, 26.
Algoritmy a struktury neuropočítačů ASN P3
Algoritmy a struktury neuropočítačů ASN P3 SOM algoritmus s učitelem i bez učitele U-matice Vektorová kvantizace Samoorganizující se mapy ( Self-Organizing Maps ) PROČ? Základní myšlenka: analogie s činností
Principy počítačů I Netradiční stroje
Principy počítačů I Netradiční stroje snímek 1 Principy počítačů Část X Netradiční stroje VJJ 1 snímek 2 Netradiční procesory architektury a organizace počítačů, které se vymykají struktuře popsané Johnem
Závěrečná zpráva projektu Experimentální výpočetní grid pro numerickou lineární algebru
Závěrečná zpráva projektu Experimentální výpočetní grid pro numerickou lineární algebru Ing. Ivan Šimeček Ph.D., Zdeněk Buk xsimecek@fit.cvut.cz, bukz1fel.cvut.cz Červen, 2012 1 Zadání Paralelní zpracování
Pohled do nitra mikroprocesoru Josef Horálek
Pohled do nitra mikroprocesoru Josef Horálek Z čeho vycházíme = Vycházíme z Von Neumannovy architektury = Celý počítač se tak skládá z pěti koncepčních bloků: = Operační paměť = Programový řadič = Aritmeticko-logická
Neuronové sítě Ladislav Horký Karel Břinda
Neuronové sítě Ladislav Horký Karel Břinda Obsah Úvod, historie Modely neuronu, aktivační funkce Topologie sítí Principy učení Konkrétní typy sítí s ukázkami v prostředí Wolfram Mathematica Praktické aplikace
Úvod do GPGPU J. Sloup, I. Šimeček
Úvod do GPGPU J. Sloup, I. Šimeček xsimecek@fit.cvut.cz Katedra počítačových systémů FIT České vysoké učení technické v Praze Ivan Šimeček, 2011 MI-PRC, LS2010/11, Predn.3 Příprava studijního programu
Algoritmy a struktury neuropočítačů ASN P4. Vícevrstvé sítě dopředné a Elmanovy MLNN s učením zpětného šíření chyby
Algoritmy a struktury neuropočítačů ASN P4 Vícevrstvé sítě dopředné a Elmanovy MLNN s učením zpětného šíření chyby Vrstevnatá struktura - vícevrstvé NN (Multilayer NN, MLNN) vstupní vrstva (input layer)
Paralelní systémy. SIMD jeden tok instrukcí + více toků dat jedním programem je zpracováváno více různých souborů dat
Paralelní systémy Paralelním systémem rozumíme takový systém, který paralelně zpracovává více samostatných úloh nebo zpracování určité úlohy automaticky rozdělí do menších částí a paralelně je zpracovává.
Pro úlohy digitálního zpracování obrazu je příznačný velký objem dat. Doposud ani rychlé počítače s konvenční sériovou architekturou nejsou schopny
Obrazová matice Pro úlohy digitálního zpracování obrazu je příznačný velký objem dat. Doposud ani rychlé počítače s konvenční sériovou architekturou nejsou schopny vykonat instrukce v čase, který odpovídá
FPGA + mikroprocesorové jádro:
Úvod: V tomto dokumentu je stručný popis programovatelných obvodů od firmy ALTERA www.altera.com, které umožňují realizovat číslicové systémy s procesorem v jenom programovatelném integrovaném obvodu (SOPC
Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC
Informační systémy 2 Obsah: Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC ROM RAM Paměti typu CACHE IS2-4 1 Dnešní info: Informační systémy 2 03 Informační systémy
Přednáška 1. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012
Přednáška 1 Úvod do HW a OS. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012 Příprava studijního programu Informatika je podporována projektem financovaným z Evropského
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti MI-SOC: 8 SÍTĚ NAČIPU (NOC) doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii ČVUT v Praze Hana
Algoritmy a struktury neuropočítačů ASN - P1
Algoritmy a struktury neuropočítačů ASN - P1 http://amber.feld.cvut.cz/ssc www.janatuckova.cz Prof.Ing. Jana Tučková,CSc. Katedra teorie obvodů K331 kancelář: 614, B3 tel.: 224 352 098 e-mail: tuckova@fel.cvut.cz
Algoritmy a struktury neuropočítačů ASN - P2. Topologie neuronových sítí, principy učení Samoorganizující se neuronové sítě Kohonenovy mapy
Algoritmy a struktury neuropočítačů ASN - P2 Topologie neuronových sítí, principy učení Samoorganizující se neuronové sítě Kohonenovy mapy Topologie neuronových sítí (struktura, geometrie, architektura)
Katedra informatiky a výpočetní techniky. 10. prosince Ing. Tomáš Zahradnický doc. Ing. Róbert Lórencz, CSc.
Katedra informatiky a výpočetní techniky České vysoké učení technické, fakulta elektrotechnická Ing. Tomáš Zahradnický doc. Ing. Róbert Lórencz, CSc. 10. prosince 2007 Pamět ové banky S výhodou používáme
Hardwarové zpracování obrazu
Hardwarové zpracování obrazu Cíle kapitoly: Zpracování obrazu na vývojové desce TI DaVinci řešící náročné výpočty v reálném čase 1 Teoretický úvod Prakticky můžeme zpracování obrazu rozdělit na zpracování
Paralelní a distribuované výpočty (B4B36PDV)
Paralelní a distribuované výpočty (B4B36PDV) Branislav Bošanský, Michal Jakob bosansky@fel.cvut.cz Artificial Intelligence Center Department of Computer Science Faculty of Electrical Engineering Czech
Státnice odborné č. 20
Státnice odborné č. 20 Shlukování dat Shlukování dat. Metoda k-středů, hierarchické (aglomerativní) shlukování, Kohonenova mapa SOM Shlukování dat Shluková analýza je snaha o seskupení objektů do skupin
PB002 Základy informačních technologií
Počítačové systémy 21. září 2015 Základní informace 1 Přednášky nejsou povinné 2 Poku účast klesne pod pět studentů, přednáška se nekoná 3 Slidy z přednášky budou vystaveny 4 Zkouška bude pouze písemná
Semestrální práce z předmětu Speciální číslicové systémy X31SCS
Semestrální práce z předmětu Speciální číslicové systémy X31SCS Katedra obvodů DSP16411 ZPRACOVAL: Roman Holubec Školní rok: 2006/2007 Úvod DSP16411 patří do rodiny DSP16411 rozšiřuje DSP16410 o vyšší
Náplň přednášky 1. Vestavěný systém Výrobci technických řešení Mikrokontroléry ARM NXP Kinetis KL25Z Rapid prototyping Laboratorní vývojová platforma
4 Přednáška 1 Náplň přednášky 1 Vestavěný systém Výrobci technických řešení Mikrokontroléry ARM NXP Kinetis KL25Z Rapid prototyping Laboratorní vývojová platforma 5 www.vsb.cz Vestavěný řídicí systém Anglicky:
5. Umělé neuronové sítě. neuronové sítě. Umělé Ondřej Valenta, Václav Matoušek. 5-1 Umělá inteligence a rozpoznávání, LS 2015
Umělé neuronové sítě 5. 4. 205 _ 5- Model umělého neuronu y výstup neuronu u vnitřní potenciál neuronu w i váhy neuronu x i vstupy neuronu Θ práh neuronu f neuronová aktivační funkce _ 5-2 Neuronové aktivační
Hardware - komponenty počítačů Von Neumannova koncepce počítače. Von Neumannova koncepce počítače
V roce 1945 vystoupil na přednášce v USA matematik John von Neumann a představil architekturu samočinného univerzálního počítače (von Neumannova koncepce/schéma/architektura). Základy této koncepce se
ARCHITEKTURA SYSTÉMU PRO DYNAMICKY REKONFIGUROVATELNÝ KOMUNIKAČNÍ TERMINÁL
ARCHITEKTURA SYSTÉMU PRO DYNAMICKY REKONFIGUROVATELNÝ KOMUNIKAČNÍ TERMINÁL Jan Kloub Informatika a výpočetní technika, 2 ročník, distanční Školitel: doc. Ing. Hana Kubátová, CSc. Školitel specialista:
SYSTÉMY NAČIPU MI-SOC
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti SYSTÉMY NAČIPU MI-SOC doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii ČVUT v Praze Hana Kubátová
Výkonnostní srovnání DSP Jak optimalizovat výběr procesoru. Analog Devices, Texas Instruments Freescale
A0M38SPP - Singálová procesory v praxi - přednáška 1 2 Digitální signálový procesor (DSP) význam tohoto pojmu Základní architektura procesorů, hlavní rysy Základní rozdělení/třídění DSP Typické aplikace
Rosenblattův perceptron
Perceptron Přenosové funkce Rosenblattův perceptron Rosenblatt r. 1958. Inspirace lidským okem Podle fyziologického vzoru je třívrstvá: Vstupní vrstva rozvětvovací jejím úkolem je mapování dvourozměrného
Architektura Intel Atom
Architektura Intel Atom Štěpán Sojka 5. prosince 2008 1 Úvod Hlavní rysem Atomu je podpora platformy x86, která umožňuje spouštět a běžně používat řadu let vyvíjené aplikace, na které jsou uživatelé zvyklí
2.8 Procesory. Střední průmyslová škola strojnická Vsetín. Ing. Martin Baričák. Název šablony Název DUMu. Předmět Druh učebního materiálu
Název školy Číslo projektu Autor Název šablony Název DUMu Tematická oblast Předmět Druh učebního materiálu Anotace Vybavení, pomůcky Ověřeno ve výuce dne, třída Střední průmyslová škola strojnická Vsetín
Samoučící se neuronová síť - SOM, Kohonenovy mapy
Samoučící se neuronová síť - SOM, Kohonenovy mapy Antonín Vojáček, 14 Květen, 2006-10:33 Měření a regulace Samoorganizující neuronové sítě s učením bez učitele jsou stále více využívány pro rozlišení,
Úvod SISD. Sekvenční výpočty SIMD MIMD
Úvod SISD Single instruction single data stream Sekvenční výpočty MISD 1. Přednáška Historie Multiple instruction single data stream SIMD Single instruction multiple data stream MIMD Multiple instruction
Algoritmy a struktury neuropočítačů ASN P6
Algoritmy a struktury neuropočítačů ASN P6 Syntéza neuronových sítí Optimalizace struktury Klestění neuronové sítě Výběr vstupních dat Syntéza neuronových sítí kanonické N je počet neuronů N=N krit dělení
MSP 430F1611. Jiří Kašpar. Charakteristika
MSP 430F1611 Charakteristika Mikroprocesor MSP430F1611 je 16 bitový, RISC struktura s von-neumannovou architekturou. Na mikroprocesor má neuvěřitelně velkou RAM paměť 10KB, 48KB + 256B FLASH paměť. Takže
CHARAKTERISTIKA MODERNÍCH PENTIÍ. Flynnova klasifikace paralelních systémů
Úvod: CHARAKTERISTIKA MODERNÍCH PENTIÍ Flynnova klasifikace paralelních systémů Paralelní systémy lze třídit z hlediska počtu toků instrukcí a počtu toků dat: SI systém s jedním tokem instrukcí (Single
Popis zobrazení pomocí fuzzy logiky
Popis zobrazení pomocí fuzzy logiky diplomová práce Ján Fröhlich KM, FJFI, ČVUT 23. dubna 2009 Ján Fröhlich ( KM, FJFI, ČVUT ) Popis zobrazení pomocí fuzzy logiky 23. dubna 2009 1 / 25 Obsah 1 Úvod Základy
NG C Implementace plně rekurentní
NG C Implementace plně rekurentní neuronové sítě v systému Mathematica Zdeněk Buk, Miroslav Šnorek {bukz1 snorek}@fel.cvut.cz Neural Computing Group Department of Computer Science and Engineering, Faculty
Asociativní sítě (paměti) Asociace známého vstupního vzoru s daným výstupním vzorem. Typická funkce 1 / 44
Asociativní paměti Asociativní sítě (paměti) Cíl učení Asociace známého vstupního vzoru s daným výstupním vzorem Okoĺı známého vstupního vzoru x by se mělo také zobrazit na výstup y odpovídající x správný
Procesor. Hardware - komponenty počítačů Procesory
Procesor Jedna z nejdůležitějších součástek počítače = mozek počítače, bez něhož není počítač schopen vykonávat žádné operace. Procesor v počítači plní funkci centrální jednotky (CPU - Central Processing
Návrh. číslicových obvodů
Návrh číslicových obvodů SW Aritmetika HW Periférie CPU function AddSub(a,b,s); var c; a b k k a+b mpx c if (s==1) c=a+b; else c=a-b; a-b return c; End; PAMĚŤ s Princip: univerzální stroj Výhoda: univerzalita
Osobní počítač. Zpracoval: ict Aktualizace: 10. 11. 2011
Osobní počítač Zpracoval: ict Aktualizace: 10. 11. 2011 Charakteristika PC Osobní počítač (personal computer - PC) je nástroj člověka pro zpracovávání informací Vyznačuje se schopností samostatně pracovat
ANALYTICKÉ PROGRAMOVÁNÍ
ZVYŠOVÁNÍODBORNÝCH KOMPETENCÍAKADEMICKÝCH PRACOVNÍKŮ OSTRAVSKÉUNIVERZITY V OSTRAVĚ A SLEZSKÉ UNIVERZITY V OPAVĚ ANALYTICKÉ PROGRAMOVÁNÍ Eva Volná Zuzana Komínková Oplatková Roman Šenkeřík OBSAH PRESENTACE
NSWI /2011 ZS. Principy cpypočítačůčů aoperačních systémů ARCHITEKTURA
Principy cpypočítačůčů aoperačních systémů ARCHITEKTURA Literatura W.Stallings: Computer Organization & Architecture J.L.Hennessy, P.A.Patterson: Patterson: Computer Architecture: a Quantitative Approach
13. Paralelní architektury SISD, SIMD, MISD, MIMD.
13. Paralelní architektury SISD, SIMD, MISD, MIMD. Obsah 13. Paralelní architektury SISD, SIMD, MISD, MIMD.... 1 13.1 Základní koncepce paralelismu... 2 13.2 Rozdělení paralelních systému... 2 13.2.1 Flynnova
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů)
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů) Autor: Vladimir Vapnik Vapnik, V. The Nature of Statistical Learning Theory.
Zpráva o průběhu přijímacího řízení na vysokých školách dle Vyhlášky MŠMT č. 343/2002 a její změně 276/2004 Sb.
Zpráva o průběhu přijímacího řízení na vysokých školách dle Vyhlášky MŠMT č. 343/2002 a její změně 276/2004 Sb. 1. Informace o přijímacích zkouškách Studijní program: Informatika navazující magisterský
Paralelní programování
Paralelní programování přednáška 5 Michal Krupka 15. března 2011 Michal Krupka (KI UP) Paralelní programování 15. března 2011 1 / 13 Ještě ke kritickým sekcím Použití v praxi obvykle pomocí zámků (locks)
INFORMAČNÍ A KOMUNIKAČNÍ TECHNOLOGIE
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Ing. Hana Šmídová Název materiálu: VY_32_INOVACE_13_HARDWARE_S1 Číslo projektu: CZ 1.07/1.5.00/34.1077
Grid jako superpočítač
Grid jako superpočítač Jiří Chudoba Fyzikální ústav AV ČR, v. v. i. Potřeba výkonných počítačů Vědecké aplikace Podnikové aplikace Internetové aplikace Microsoft datová centra Google datová centra 600
GPGPU Aplikace GPGPU. Obecné výpočty na grafických procesorech. Jan Vacata
Obecné výpočty na grafických procesorech Motivace Úvod Motivace Technologie 3 GHz Intel Core 2 Extreme QX9650 Výkon: 96 GFLOPS Propustnost paměti: 21 GB/s Orientační cena: 1300 USD NVIDIA GeForce 9800
Profilová část maturitní zkoušky 2015/2016
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2015/2016 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: technika
Workshop. Vývoj embedded aplikací v systému MATLAB a Simulink. Jiří Sehnal sehnal@humusoft.cz. www.humusoft.cz info@humusoft.cz. www.mathworks.
Workshop Vývoj embedded aplikací v systému MATLAB a Simulink Jiří Sehnal sehnal@humusoft.cz www.humusoft.cz info@humusoft.cz www.mathworks.com 1 Obsah workshopu Model Based Design model soustavy a regulátoru
C2115 Praktický úvod do superpočítání
C2115 Praktický úvod do superpočítání IX. lekce Petr Kulhánek, Tomáš Bouchal kulhanek@chemi.muni.cz Národní centrum pro výzkum biomolekul, Přírodovědecká fakulta, Masarykova univerzita, Kotlářská 2, CZ-61137
Zpracování obrazu v FPGA. Leoš Maršálek ATEsystem s.r.o.
Zpracování obrazu v FPGA Leoš Maršálek ATEsystem s.r.o. Základní pojmy PROCESOROVÉ ČIPY Křemíkový čip zpracovávající obecné instrukce Různé architektury, pracují s různými paměti Výkon instrukcí je závislý
Globální matice konstrukce
Globální matice konstrukce Z matic tuhosti a hmotnosti jednotlivých prvků lze sestavit globální matici tuhosti a globální matici hmotnosti konstrukce, které se využijí v řešení základní rovnice MKP: [m]{
Pokročilé architektury počítačů
Pokročilé architektury počítačů Tutoriál 3 CUDA - GPU Martin Milata Výpočetní model CUDA Organizace kódu Sériově organizovaný kód určený pro CPU Paralelní kód prováděný na GPU Označuje se jako kernel GPU
Charakteristika dalších verzí procesorů v PC
Charakteristika dalších verzí procesorů v PC 1 Cíl přednášky Poukázat na principy tvorby architektur nových verzí personálních počítačů. Prezentovat aktuální pojmy. 2 Úvod Zvyšování výkonu cestou paralelizace
INFORMAČNÍ A KOMUNIKAČNÍ TECHNOLOGIE
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Ing. Hana Šmídová Název materiálu: VY_32_INOVACE_15_HARDWARE_S1 Číslo projektu: CZ 1.07/1.5.00/34.1077
Paralelní architektury - úvod
Paralelní architektury - úvod Úvod do paralelních architektur Příklady paralelních architektur Processor arrays Multiprocesory Multiprocesory se sdílenou pamětí Multiprocesory s distribuovanou pamětí Multipočítače
Profilová část maturitní zkoušky 2014/2015
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2014/2015 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: technika
Zprovoznění kitu Xilinx Spartan-6 FPGA Industrial Video Processing Kit
Zprovoznění kitu Xilinx Spartan-6 FPGA Industrial Video Processing Kit Technická zpráva - FI - VG20102015006-2011 03 Ing. Filip Orság, Ph.D. Fakulta informačních technologií, Vysoké učení technické v Brně
O čem byl CHES a FDTC? Jan Krhovják Fakulta informatiky Masarykova univerzita v Brně
O čem byl CHES a FDTC? Jan Krhovják Fakulta informatiky Masarykova univerzita v Brně Hlavní témata workshopů Cryptographic Hardware and Embedded Systems Speciální hardware Efektivní hardware Nedostatek
UMÍ POČÍTAČE POČÍTAT?
UMÍ POČÍTAČE POČÍTAT? O ÚSKALÍCH POČÍTAČOVÉ ARITMETIKY RNDr. Iveta Hnětynková, PhD. Katedra numerické matematiky VÝPOČTY A SIMULACE Aplikace: chemie, fyzika, lekařství, statistika, ekonomie, stojírenství,...
Optika v počítačovém vidění MPOV
Optika v počítačovém vidění MPOV Rozvrh přednášky: 1. A/D převod 2. zpracování obrazu 3. rozhraní kamer 4. další související zařízení 5. motivace - aplikace Princip pořízení a zpracování obrazu Shoda mezi
2015 http://excel.fit.vutbr.cz Kartézské genetické programování s LUT Karolína Hajná* Abstract Tato práce se zabývá problematikou návrhu obvodů pomocí kartézského genetického programování na úrovni třívstupových
architektura mostů severní / jižní most (angl. north / south bridge) 1. Čipové sady s architekturou severního / jižního mostu
Čipová sada Čipová sada (chipset) je hlavní logický integrovaný obvod základní desky. Jeho úkolem je řídit komunikaci mezi procesorem a ostatními zařízeními a obvody. V obvodech čipové sady jsou integrovány
Hlavní využití počítačů
Úvod Hlavní využití počítačů Počítače jsou výkonné nástroje využívané pro zpracování dat. Provádějí: načtení a binární kódování dat provedení požadovaného výpočtu zobrazení výsledku Hlavní využití počítačů
Modernizace a inovace výpočetní kapacity laboratoří ITE pro účely strojového učení. Jiří Málek
Modernizace a inovace výpočetní kapacity laboratoří ITE pro účely strojového učení Jiří Málek Cíl projektu Cíl: Zefektivnění vzdělávání na ITE* v oblasti strojového učení pomocí posílení dostupné výpočetní
Paralelní výpočty ve finančnictví
Paralelní výpočty ve finančnictví Jan Houška HUMUSOFT s.r.o. houska@humusoft.cz Výpočetně náročné úlohy distribuované úlohy mnoho relativně nezávislých úloh snížení zatížení klientské pracovní stanice
Procesor z pohledu programátora
Procesor z pohledu programátora Terminologie Procesor (CPU) = řadič + ALU. Mikroprocesor = procesor vyrobený monolitickou technologií na čipu. Mikropočítač = počítač postavený na bázi mikroprocesoru. Mikrokontrolér
Přednáška. Správa paměti II. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012
Přednáška Správa paměti II. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012 Příprava studijního programu Informatika je podporována projektem financovaným z Evropského
G R A F I C K É K A R T Y
G R A F I C K É K A R T Y Grafická karta nebo také videoadaptér je součást počítače, která se stará o grafický výstup na monitor, TV obrazovku či jinou zobrazovací jednotku. Režimy grafických karet TEXTOVÝ
Intel Itanium. Referát. Vysoká škola báňská Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra informatiky
Vysoká škola báňská Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra informatiky Pokročilé architektury počítačů Intel Itanium Referát Tomáš Vojtas (voj209) 2.12.2009 Úvod Itanium
Struktura a architektura počítačů (BI-SAP) 10
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 10 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii
Aplikovaná numerická matematika
Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních
Architektura - struktura sítě výkonných prvků, jejich vzájemné propojení.
Základní pojmy z oblasti neuronových sítí Zde je uveden přehled některých základních pojmů z oblasti neuronových sítí. Tento přehled usnadní studium a pochopení předmětu. ADALINE - klasická umělá neuronová
Využití paralelních výpočtů v geodézii
České vysoké učení technické v Praze Fakulta stavební Katedra mapování a kartografie Využití paralelních výpočtů v geodézii DOKTORSKÁ DISERTAČNÍ PRÁCE Ing. Martin Jeřábek Praha, září 2001 Doktorský studijní
Postranními kanály k tajemství čipových karet
SIX Research Centre Vysoké učení technické v Brně martinasek@feec.vutbr.cz crypto.utko.feec.vutbr.cz Kryptoanaly za postrannı mi kana ly Proudova analy za Pr edstavenı U vod Crypto Research Group, Vysoke
Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/
Střední odborná škola elektrotechnická, Centrum odborné přípravy Zvolenovská 537, Hluboká nad Vltavou Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/34.0448 CZ.1.07/1.5.00/34.0448 1 Číslo projektu
MX-10 pixelový částicový detektor
MX-10 pixelový částicový detektor Základní charakteristika Autor: Ing. Martin Hönig Základní popis Produkt MX-10 je zařízení využívající hybridní pixelový detektor el. nabitých částic Timepix, vyvinutý
Trénování sítě pomocí učení s učitelem
Trénování sítě pomocí učení s učitelem! předpokládá se, že máme k dispozici trénovací množinu, tj. množinu P dvojic [vstup x p, požadovaný výstup u p ]! chceme nastavit váhy a prahy sítě tak, aby výstup
Základy logického řízení
Základy logického řízení 11/2007 Ing. Jan Vaňuš, doc.ing.václav Vrána,CSc. Úvod Řízení = cílené působení řídicího systému na řízený objekt je členěno na automatické a ruční. Automatickéřízení je děleno
F6180 Úvod do nelineární dynamiky. F6150 Pokročilé numerické metody FX003 Plánování a vyhodnocování experimentu. F7780 Nelineární vlny a solitony
Moderní metody modelování ve fyzice jaro 2015 přednáša: D. Hemzal cvičení: F. Münz F1400 Programování F5330 Záladní numericé metody F7270 Matematicé metody zpracování měření F6180 Úvod do nelineární dynamiy