INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ
|
|
- Vojtěch Novotný
- před 9 lety
- Počet zobrazení:
Transkript
1 INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/ ENERGETICKÁ ÚVAHA Mgr. LUKÁŠ FEŘT TENTO DOKUMENT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY
2 Zadání: Na základě podkladů zde předložených, internetu a publikací se rozhodni, v jaké míře bys použil(a) konkrétní typ elektráren pro získávání elektřiny. Svůj názor odůvodni (počet jaderných elektráren, počet tepelných elektráren, plocha slunečních elektráren, ). Vše musí vycházet z reálných předpokladů. Informace: Obrázek 1: zdroj: Obrázek 2: zdorj: Stránka 1
3 Jaderná elektrárna Jaderná elektrárna je výrobna elektrické energie resp. technologické zařízení, sloužící k přeměně vazebné energie jader těžkých prvků na elektrickou energii. Skládá se obvykle z jaderného reaktoru, parní turbíny s alternátorem a z mnoha dalších pomocných provozů. V principu se jedná o parní elektrárnu, ve které se energie získaná jaderným reaktorem používá k výrobě páry v parogenerátoru. Tato pára pohání parní turbíny, které pohání alternátory pro výrobu elektrické energie. Někdy používáný pojem atomová elektrárna je chybný, neboť z atomu se energie vyrábí i v elektrárnách na fosilní paliva. Současné jaderné elektrárny využívají jako palivo převážně obohacený uran, což je přírodní uran, v němž byl zvýšen obsah izotopu 235 U z původních zhruba 0,7 % na 2 5 %. Podle odhadů geologů a OECD vydrží známé a předpokládané zásoby uranu nejméně 270 let. Jaderné elektrárny jsou z energetického hlediska vhodné především pro výrobu elektrické energie v režimu základního zatížení (je vhodné, aby vyráběly energii pokud možno nepřetržitě, neboť regulace jejich výkonu je poměrně omezená a velmi nákladná, tudíž velmi neekonomická). Historie Úplně první reaktor byl spuštěn v USA, ten však sloužil prvotně k výrobě plutonia. První elektrárna byla postavena ve Velké Británii, i ta však nedodávala proud do sítě. První elektrárna, která dodávala proud do sítě (výkon 5000 kw), byla spuštěna až v roce 1954 v Obninsku v bývalém SSSR. Za první skutečně komerční jadernou elektrárnu je považována elektrárna Calder Hall v Británii spuštěná v roce Protesty a útlum Část obyvatelstva v některých vyspělých zemích protestuje proti jaderné energetice a tyto protesty nabyly na intenzitě v poslední čtvrtině 20. století, obzvlášť po černobylské havárii. Podstatou protestů jsou zejména poukazy na rizika spojená s provozem jaderných elektráren, s jejich pořizovací cenou a problémy s jaderným odpadem (resp. použitým jaderným palivem) a těžbou paliva. V některých zemích existují díky soustavnému tlaku odpůrců jaderné energie plány na odklon od jaderného programu. Příkladem může být Rakousko, kde referendum v roce ,5 % Stránka 2
4 hlasů rozhodlo o tom, že téměř hotová jaderná elektrárna Zwentendorf nebude uvedena do provozu a stát se od jaderné energie odkloní. Místo jaderné byla postavena klasická elektrárna Dürnrohr, která spaluje polské a české uhlí. Velké protesty, zvláště z rakouské strany, provázely a provázejí i dostavbu a provoz české elektrárny Temelín. Německo má na základě energetické politiky z roku 1998 program útlumu jaderné energetiky, na němž se v roce 2000 dohodla vláda s provozovateli jaderných elektráren. Tento program byl sice v roce 2010 z rozhodnutí vládní koalice částečně zrušen a doba provozu jaderných elektráren prodloužena o 8 až 14 let, po tragédii ve Fukušimě se však Německo vrátilo víceméně k původní dohodě. Jaderné elektrárny budou odstavovány postupně tak, jak budou nahrazovány obnovitelnými zdroji. Stoupenci Proti početným skupinám odpůrců jaderné energie stojí početné skupiny stoupenců, kteří považují jadernou energetiku za jediné možné řešení hrozící energetické krize a globálního oteplování. Vidí jaderné elektrárny jako jedno z mála ekologicky přijatelných a reálných řešení energetických problémů pro 21. století. Často je zmiňována nutnost co nejrychlejšího vývinu fúzního reaktoru a jaderné elektrárny jsou považovány za jediný přijatelný prostředek, kterým se dá překlenout přechodné období vývoje a zavádění tohoto nového zdroje energie. Stav ve světě V roce 2009 bylo v provozu 436 jaderných reaktorů ve 31 zemích světa. Za tento rok vyrobily 2558 TWh elektrické energie, což bylo 13-14% světové poptávky. Dalších 30 reaktorů je ve výstavbě (zvláště v asijských zemích, v Rusku a Finsku) a řada zemí (USA, Bulharsko, Slovensko, Litva) rozhodly o jejich nové výstavbě. Díky provozu jaderných elektráren ročně nemusí být vypuštěno 1,8 mld. t CO 2 Nejvíc energie z jaderných elektráren se vyrábí v Litvě (79,9 % k roku 2003) Francii (77 % k roku 2003), Německu (28,1 % k roku 2003), USA (19,9 % k roku 2003), Japonsku a Rusku. V Rusku však přežívají staré jaderné elektrárny, některé z nich podobného typu jako Černobyl a se zastaralou technologií. K zastavení některých z nich je Rusko tlačeno mezinárodním společenstvím. V Česku jsou v provozu dvě jaderné elektrárny (Temelín a Dukovany) s celkovým výkonem 3760 MW; pokrývají přibližně 31 % celkové spotřeby elektřiny v Česku. Stránka 3
5 Tepelná elektrárna Tepelná elektrárna je výrobna elektrické energie, tj. elektrárna. Jedná se o technologický celek, který vyrábí elektrickou energii přeměnou z chemické energie vázané v palivu (či jiného vhodného zdroje energie) prostřednictvím tepelné energie. Obvykle je termínem tepelná elektrárna označována spalovací elektrárna spalující běžné fosilní palivo (zpravidla uhelná elektrárna, případně plynová elektrárna nebo ropná elektrárna). Na principu tepelné elektrárny pracují i další typy elektráren, které využívají principu změny tepelné energie na elektrickou (kupř. jaderné elektrárny, geotermální elektrárny, tepelné sluneční elektrárny aj.). Účinnost Účinnost přeměny energie je dosud nízká - i v nejmodernějších elektrárnách se pohybuje nejvýš kolem 50 %, jednou z cest k efektivnějšímu využití energie je kogenerace. Princip funkce Chemická energie vázaná v palivu, je běžným procesem spalování přeměňována nejprve na energii tepelnou. Ta se poté dále převádí nejprve na mechanickou energii resp. kinetickou energii, teplonosným médiem zde bývá nejčastěji běžná vodní pára vyráběná v parogenerátoru. Pára je přiváděna do turbíny, což je zařízení mechanicky spojené s elektrickým generátorem respektive s alternátorem. Kinetická energie je z parní turbíny vyváděna do alternátoru společným hřídelem, mechanická kinetická energie z hřídele stroje se tak dále převádí pomocí alternátoru na elektrickou energii, která je ze stroje vyváděna do elektrorozvodné sítě. Možná paliva či jiné zdroje tepelné energie Tepelná energie je obvykle získávána chemický procesem spalování vhodného paliva, kdy hořením (t.j. jeho oxidací) je uvolňována chemická energie vázaná v palivu. Obvykle se jedná o tato fosilní paliva: o uhlí o topné plyny (např. svítiplyn, zemní plyn, kychtový plyn, generátorový plyn, kalový plyn) o ropa nebo její deriváty o biomasa (kupř. dřevo, sláma či jiný vhodný materiál považovaný za biologický odpad) o rašelina tepelnou energii je možné získat i fyzikálně chemickým procesem štěpení atomových jader některých chemických prvků (transurany). Procesem řízeného rozpadu jádra atomu je Stránka 4
6 uvolňována jaderná energie vázaná v jaderném palivu, toto palivo se používá v jaderných elektrárnách, zpravidla se jedná o tyto prvky : o uran o plutonium Tepelná elektrárna však může získávat teplo i převodem tepla z přírodního prostředí v podobě geotermální energie, tepelné elektrárny tohoto typu bývají označovány pojmem geotermální elektrárna Tepelnou energii lze získat též soustředěním slunečního záření do centrálního ohniska, kde je voda z kapalné formy přeměňována na vodní páru, která pak pohání turbínu - přeměna světelné energie na energii elektrickou pak probíhá v solární elektrárně. Vodní elektrárny Vodní elektrárna je výrobna elektrické energie, jedná se o technologický celek, přeměňující potenciální energii vody na elektrickou energii. Jedná se také o vodní dílo ve smyslu platných právních předpisů. Obvyklý typ říční vodní elektrárny se skládá z přehradní hráze nebo jezu, tj. vodního díla, které zadržuje vodu a strojovny, obsahující vodní turbíny a alternátory, turbíny s alternátory tvoří vždy soustrojí umístěné na společném hřídeli, nebo jsou spolu spojeny nějakým typem převodu. Teorie Množství využitelné energie vodního toku závisí na výškovém rozdílu (čili na spádu resp. vzájemném převýšení) dvou různých vodních hladin a na množství protékající vody (průtoku vody). Pro energetické využití jakéhokoliv vodního toku bývá většinou nutné uměle vytvořit výškový rozdíl hladin. Toho dosahujeme tzv. vzdutím vody, což bývá zajištěno zřízením nižších jezů či vyšších přehrad. U přečerpávacích vodních elektráren bývá obvyklé vzdutí navíc doplněno o zvláštní výše položenou nádrž, tzv. (horní nádrž), která může být umístěna někde stranou od původního vodního toku. Jezy Jezy lze dosáhnout spádů jen 10 až 20 m. Vodním elektrárnám konstruovaným pro tyto malé spády říkáme nízkotlaké průtočné. Kaplanovy turbíny je možné použít i pro velmi malé spády okolo 0,6 metrů i na těch nejmenších jezech. Stránka 5
7 Přehrady Přehradou lze vzdout vodu až do výše 100 m. Takovým elektrárnám říkáme středotlaké. Pokud používají spády ještě vyšší, nazýváme je vysokotlaké. V České republice je dnes většina vodních elektráren postavena právě při přehradách, v minulosti však bývaly malé vodní elektrárny v provozu téměř na každém jezu. Hráz přehrady bývá většinou tvořena litým betonem, v praxi se vyskytují i menší hráze sypané. Uvnitř hráze se nachází revizní, větrací a drenážní chodby (pro odvod prosakující vody). Ocelovým potrubím je voda vedena k vodním turbínám. Vstup vody do potrubí je opatřen čisticím zařízením zvaným česle a rychlouzávěrem, který při poruše uzavře přívod vody. Elektrárna se obvykle nachází pod přehradní hrází; někdy je do ní rovnou vestavěna. Výhody a nevýhody vodních elektráren výhody energie vodních toků se počítá k obnovitelným zdrojům - nelze ji vyčerpat. Zároveň její provoz minimálně znečišťuje okolí. Vodní elektrárny vyžadují minimální obsluhu i údržbu a lze je ovládat na dálku. Malé vodní elektrárny prakticky nevytvářejí zaplavenou plochu Mohou startovat během několika sekund a dispečink je tak může používat jako špičkový zdroj k pokrytí okamžitých nároků na výrobu elektrické energie. Přehradní hráz dokáže zabránit i menším povodním, velké katastrofální povodně však ovlivňuje velmi málo Přehradní jezera mohou sloužit i pro jiné další účely, zejména pro rekreační účely nebo jako zdroje pitné či užitkové vody čili pro vodohospodářské účely, často bývají vhodné i pro říční rybolov nevýhody u přehradních nádrží značná cena a čas výstavby a nutnost zatopení velkého území závislost na stabilním průtoku vody přehradní hráze a jezy brání běžnému lodnímu provozu na řece, je nutno vybudovat systém plavebních komor resp. zdymadel přehradní hráze a vyšší jezy brání tahu ryb, je nutno vybudovat systém cest pro ryby riziko havárie Solární elektrárna Sluneční elektrárna je technické zařízení, kterým se přeměňuje energie ze slunečního záření na energii elektrickou. Stránka 6
8 Lze ji získat přímo a nepřímo: 1. fotovoltaická elektrárna (FVE) je tím, co se obvykle označuje jako sluneční elektrárna, solární park atd. Fotovoltaika využívá světlo. Sluneční panely na družicích a kosmických lodích dodávají energii přístrojům na palubě. Solární panely mohou být různých typů, od klasických křemíkových k těm složeným z tenkovrstvých solárních článků. 2. tepelná elektrárna využívá teplo ze slunečních sběračů nebo heliostatů. Jde o soustředění slunečních paprsků z velké plochy do co nejmenší plochy absorbéru ve kterém dojde k ohřevu teplonosné kapaliny. Další část elektrárny již funguje totožně z elektrárnou tepelnou. Někdy se také označuje jako "koncentrační solární elektrárna" nebo "solární termální elektrárna". Domácí sluneční elektrárna Kolik energie solární elektrárna vyrobí se logicky odvíjí od intenzity slunečního záření. Pokud je obloha bez mráčku, výkon slunečního záření je kolem 1kW/m2. Když se však obloha zatáhne, sluneční záření je až 10krát méně intenzivní. V tuzemsku je průměrná intenzita slunečního záření odhadována na kw na m 2 za rok. Nejvhodnější oblastí je jižní Morava. Počet slunečních hodin v České republice je v průměru hodin ročně. Konkrétní údaj vážící se k místu, v němž plánujete stavět solární elektrárnu, poskytuje Český hydrometeorologický ústav. Vždy nicméně záleží na konkrétním místě, které pro stavbu solární elektrárny zvolíte. Intenzitu a dobu slunečního záření ovlivňuje nadmořská výška, oblačnost a další lokální podmínky jako jsou časté ranní mlhy, znečištění ovzduší či úhel dopadu slunečních paprsků. Množství energie z fotovoltaických panelů pro různá místa, čas a sklon je možné spočítat zde. Na místě je samozřejmě také otázka kapacity. Jinými slovy: kolik se na plochu střechy (či na jiné místo zvolené pro instalaci elektrárny) vejde solárních panelů? Obecně platí, že 1 kwp (maximální výkon elektrárny) zabere asi 8 10 m 2. Tato plocha je schopna vyrobit přibližně 1 MWh ročně. Zdroj: Stránka 7
EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663
EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:
Využití vodní energie vodní elektrárny [4]
Využití vodní energie vodní elektrárny [4] Číslo projektu Název školy Předmět CZ.1.07/1.5.00/34.0425 INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV Černoleská 1997, 256 01 Benešov BIOLOGIE A EKOLOGIE Tematický
2 Primární zdroje energie. Ing. Petr Stloukal Ústav ochrany životního prostředí Fakulta technologická Univerzita Tomáše Bati Zlín
2 Primární zdroje energie Ing. Petr Stloukal Ústav ochrany životního prostředí Fakulta technologická Univerzita Tomáše Bati Zlín Obsah přednášky 1. Zdroje energie rozdělení 2. Fosilní paliva 3. Solární
Přírodní zdroje a energie
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Přírodní zdroje a energie Energie - je fyzikální veličina, která bývá charakterizována jako schopnost hmoty
Elektrárny Skupiny ČEZ
Elektrárny Skupiny ČEZ v České republice prof. Úsporný 2 Největší výrobce provozuje nejvíce elektráren patří mezi největší české firmy a řadí se do první desítky největších energetických firem v Evropě.
Víte, jak funguje malá vodní elektrárna?
Víte, jak funguje malá vodní elektrárna? Malými vodními elektrárnami rozumíme vodní elektrárny o výkonu menším než 10 MW. Používají se k výrobě elektřiny pro osobní potřebu, pro průmyslové účely i k dodávkám
Obnovitelné zdroje energie. Masarykova základní škola Zásada Česká republika
Obnovitelné zdroje energie Masarykova základní škola Zásada Česká republika Větrná energie Veronika Čabová Lucie Machová Větrná energie využití v minulosti Původně nebyla převáděna na elektřinu, ale sloužila
Vltavská kaskáda. Lipno I. Lipno II
Vltavská kaskáda Vltavská kaskáda je soustava vodních děl osazených velkými vodními elektrárnami na toku Vltavy. Všechny elektrárny jsou majetkem firmy ČEZ. Jejich provoz je automatický a jsou řízeny prostřednictvím
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ. Katedra hydrotechniky
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ Katedra hydrotechniky VIN - Vodohospodářské inženýrství Vodní dílo Dalešice Seminární práce Vypracoval: Lukáš Slavíček, S-35 23. května 2007 1 Historie
Lukáš Feřt SPŠ dopravní, Plzeň, Karlovarská 99,
Lukáš Feřt SPŠ dopravní, Plzeň, Karlovarská 99, 326 00 V rámci projektu: Inovace odborného vzdělávání na středních školách zaměřené na využívání energetických zdrojů pro 21. století něco jako kuličku První
Využití vodní energie Doc. Ing. Aleš Havlík, CSc.
Využití vodní energie Doc. Ing. Aleš Havlík, CSc. Historie využití vodní energie Starověk čerpání vody do závlahových kanálů pomocí vodního kola. 6. století vodní kola ve Francii 1027 mlýnský náhon vytesaný
Střední škola obchodu, řemesel a služeb Žamberk. Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ
Střední škola obchodu, řemesel a služeb Žamberk Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ Registrační číslo projektu: CZ.1.07/1.5.00/34.0130 Šablona: III/2 Ověřeno ve výuce dne: 19.4.2013
Energetika a klimatické změny
Energetika a klimatické změny Jak může přispět Česká republika? Vladimír Wagner Ústav jaderné fyziky AVČR a FJFI ČVUT 1) Jak čelit klimatickým změnám? 2) Nízkoemisní zdroje 3) Úspěšná cesta k nízkoemisní
JAK SE VYRÁBÍ ELEKTŘINA
JAK SE VYRÁBÍ ELEKTŘINA aneb největší současné zdroje prof. Úsporný 2 3 ELEKTŘINA PŘINÁŠÍ ENERGII TAM, KDE JE TŘEBA Bez elektřiny bychom se mohli velmi dobře obejít. Zvykli jsme si však na to, že potřebujeme
Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan
Číslo projektu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0743 Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan Chemie chemie ve společnosti kvarta Datum tvorby 30.5. 2013 Anotace
http://www.zlinskedumy.cz
Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor Ročník 1. Obor CZ.1.07/1.5.00/34.0514 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Člověk a životní prostředí, vy_32_inovace_ma_08_01
Jaderná energetika. Důvody podporující v současnosti výstavbu jaderných elektráren jsou zejména:
Jaderná energetika První jaderný reaktor 2.12.1942 stadion Chicago USA 1954 první jaderná elektrárna rna (Obninsk( Obninsk,, SSSR)grafitový reaktor, 30MWt, 5MWe 1956 první jaderná elektrárna rna v ČSR
Jaderná energetika Je odvětví energetiky a průmyslu, které se zabývá především výrobou energie v jaderných elektrárnách, v širším smyslu může jít i o
Anotace Učební materiál EU V2 1/F18 je určen k výkladu učiva jaderná energetika fyzika 9. ročník. UM se váže k výstupu: žák vysvětlí princip jaderného reaktoru, zhodnotí výhody a nevýhody využívání různých
Registrační číslo projektu: CZ.1.07/1.4.00/21.3075
Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 5. 12. 2012 Pořadové číslo 03 1 Jaderná elektrárna Předmět: Ročník: Jméno autora:
Neobnovitelné a obnovitelné zdroje pro rozvoj civilizace
Jméno autora Název práce Anotace práce Lucie Dolníčková Neobnovitelné a obnovitelné zdroje pro rozvoj civilizace V práci autorka nejprve stručně hovoří o obnovitelných zdrojích energie (energie vodní,
ENERGETIKA MĚSTA ČAČAK. Valašské Meziříčí, Česká republika, září 2009 Aco Milošević, vedoucí Služby pro investice a dohled města Čačak
ENERGETIKA MĚSTA ČAČAK Valašské Meziříčí, Česká republika, září 2009 Aco Milošević, vedoucí Služby pro investice a dohled města Čačak SYSTÉM VÝHŘEVU MĚSTA HORKOU VODOU Veřejně prospěšná společnost Čačak
Pravidla při práci s elektřinou Jaderné elektrárny Větrné elektrárny Sluneční elektrárny Vodní elektrárny Tepelné elektrárny Otázky z prezentace
Pravidla při práci s elektřinou Jaderné elektrárny Větrné elektrárny Sluneční elektrárny Vodní elektrárny Tepelné elektrárny Otázky z prezentace Nedotýkej se přetržených drátů elektrického vedení, mohou
CZ.1.07/1.1.30/01.0038
Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 29 Téma: RADIOAKTIVITA A JADERNÝ PALIVOVÝ CYKLUS Lektor: Ing. Petr Konáš Třída/y: 3ST,
Technická zařízení budov zdroje energie pro dům
Technická zařízení budov zdroje energie pro dům (Rolf Disch SolarArchitektur) Zdroje energie dělíme na dva základní druhy. Toto dělení není příliš šťastné, ale protože je už zažité, budeme jej používat
Sluneční energie [1]
Sluneční energie [1] Číslo projektu Název školy Předmět CZ.1.07/1.5.00/34.0425 INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV Černoleská 1997, 256 01 Benešov BIOLOGIE A EKOLOGIE Tematický okruh Téma Obnovitelné
tradice Tradice Historie výroby kogeneračních jednotek úvod
kogenerace úvod Tradice tradice Výroba kogeneračních jednotek je jednou z klíčových aktivit společnosti TEDOM. Zákazníci oceňují především vysokou technickou úroveň našich výrobků, jejich spolehlivost
Příležitosti v čisté ekonomice: možnosti obnovitelných zdrojů. Martin Sedlák, 20. 5. 2012 Leading Minds Forum, Praha
Příležitosti v čisté ekonomice: možnosti obnovitelných zdrojů Martin Sedlák, 20. 5. 2012 Leading Minds Forum, Praha Obsah Kolik stojí dnešní energetika Domácí možnosti obnovitelných zdrojů Ekonomická perspektiva
Hydromechanické procesy Lopatkové stroje - turbíny - čerpadla
Hydromechanické procesy Lopatkové stroje - turbíny - čerpadla M. Jahoda Lopatkové stroje - rozdělení 2 a) Dle způsobu práce generátory turbíny potenciální, kinetická energie mechanická energie na hřídeli
Efektivní financování úspor energie www.energy-benefit.cz. budovách. FOR ARCH 2008, 26. září 2008 Ing. Libor Novák
Efektivní financování úspor energie www.energy-benefit.cz Využití sluneční energie v budovách Dotační zdroje pro instalace solárních zařízení FOR ARCH 2008, 26. září 2008 Ing. Libor Novák Efektivní financování
EU peníze středním školám digitální učební materiál
EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky
Vítězslav Stýskala TÉMA 2. Oddíl 3. Elektrické stroje
Stýskala, 2002 L e k c e z e l e k t r o t e c h n i k y Vítězslav Stýskala TÉMA 2 Oddíl 3 Elektrické stroje jsou zařízení, která přeměňují jeden druh energie na jiný, nebo mění její velikost (parametry),
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 FOTOVOLTAIKA ING. JAROSLAV TISOT
Elektrická energie: Kolik ji potřebujeme? Odkud ji vezmeme?
Elektrická energie: Kolik ji potřebujeme? Odkud ji vezmeme? 1 V současné době patří problematika výroby a distribuce elektrické energie k nejdiskutovanějším problémům novodobého světa. Ať se jedná o nedávnou
Ceny energií a vliv POZE na konkurenceschopnost průmyslu
Ceny energií a vliv POZE na průmyslu Očekávaný vývoj energetiky do roku 2040 Ing. 1 Konkurenceschopnost v návrhu Aktualizace Státní energetické koncepce 2 Vrcholové strategické cíle ASEKu Energetická bezpečnost
Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 19
Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ.1.07/1.1.30/01.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň Monitorovací indikátor: 06.43.10
FOTOVOLTAICKÉ SYSTÉMY úvod do problematiky
FOTOVOLTAICKÉ SYSTÉMY úvod do problematiky TOMÁŠ KOSTKA, ÚNOR 2015 STŘEDNÍ ŠKOLA, HAVÍŘOV-ŠUMBARK, SÝKOROVA 1/613, PŘÍSPĚVKOVÁ ORGANIZACE 1 Obsah 1. Úvod 2. Základní zkratky a pojmy 3. Způsoby provozu
č. 475/2005 Sb. VYHLÁŠKA kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů Ve znění: Předpis č.
č. 475/2005 Sb. VYHLÁŠKA ze dne 30. listopadu 2005, kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů Ve znění: Předpis č. K datu Poznámka 364/2007 Sb. (k 1.1.2008)
Vliv zdrojů elektrické energie na životní prostředí
Klimatické změny odpovědnost generací Hotel Dorint Praha Don Giovanni 11.4.2007 Vliv zdrojů elektrické energie na životní prostředí Tomáš Sýkora ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická
Obnovitelné zdroje energie Otázky k samotestům
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Obnovitelné zdroje energie Otázky k samotestům Ing. Michal Kabrhel, Ph.D. Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
J i h l a v a Základy ekologie
S třední škola stavební J i h l a v a Základy ekologie 19. Energie alternativní zdroje Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Tomáš Krásenský
Energetický hydropotenciál v údolí horní Úpy
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA Katedra geografie Eva SOUČKOVÁ Energetický hydropotenciál v údolí horní Úpy Bakalářská práce Vedoucí práce: Mgr. Pavel Klapka, Ph.D. Olomouc 2011
Vítězslav Stýskala TÉMA 2. Oddíl 3. Elektrické stroje
Stýskala, 2002 L e k c e z e l e k t r o t e c h n i k y Vítězslav Stýskala TÉMA 2 Oddíl 3 Elektrické stroje jsou zařízení, která přeměňují jeden druh energie na jiný, nebo mění její velikost (parametry),
Obnovitelné zdroje energie v roce 2006
Obnovitelné zdroje energie Obnovitelné zdroje energie v roce 2006 Výsledky statistického zjišťování srpen 2007 Sekce koncepční Odbor surovinové a energetické politiky Oddělení surovinové a energetické
Kompletní systém vytápění HERZ.
Kompletní systém vytápění HERZ. VÁŠ SPOLEHLIVÝ PARTNER Kompletní řešení pro topné systémy s využitím obnovitelných zdrojů energie Kotle na spalování dřevěných pelet Kotle na spalování dřevní štěpky Zplynovací
Výroba elektřiny z OZE včetně předpokladu pro rok 2005, 2006 a 2010 [ERÚ]
Současný stav využívání OZE v ČR Výroba elektřiny z OZE včetně předpokladu pro rok 2005, 2006 a 2010 [ERÚ] 2001 2004 2005 2006 2010 [MWh] [MWh] [MWh] [MWh] [MWh] MVE (
Vydal: nám. Přemysla Otakara II. 87/25, 370 01 České Budějovice Autor textů: Ing. Josef Šťastný Fotografie poskytli: Ing. Otakar Chlouba, Ing.
Vydal: nám. Přemysla Otakara II. 87/25, 370 01 České Budějovice Autor textů: Ing. Josef Šťastný Fotografie poskytli: Ing. Otakar Chlouba, Ing. Martin Halama a Ing. Edvard Sequens ze Sdružení Calla, OÖ
Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan
Číslo projektu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0743 Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan Chemie chemie ve společnosti kvarta Datum tvorby 30.5. 2013 Anotace
Jaderná energie Jaderné elektrárny. Vojtěch Motyčka Centrum výzkumu Řež s.r.o.
Jaderná energie Jaderné elektrárny Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Obsah prezentace Energie jaderná Vývoj energetiky Dělení jaderných reaktorů I. Energie jaderná Uvolňuje se při jaderných reakcích
Příručka. Obnovitelné zdroje energie
Příručka Obnovitelné zdroje energie str. 1 OBSAH 1 2 1.1 Co jsou to obnovitelné zdroje energie 2 1.2 Všeobecné výhody a nevýhody obnovitelných zdrojů energie 2 1.3 Co může jednotlivce, podnikatelský subjekt
Inovace výuky Člověk a svět práce. Pracovní list
Inovace výuky Člověk a svět práce Pracovní list Čp 07_09 Jaderná elektrárna Vzdělávací oblast: Vzdělávací obor: Tematický okruh: Cílová skupina: Klíčová slova: Očekávaný výstup: Člověk a svět práce Člověk
Energetické zdroje budoucnosti
Energetické zdroje budoucnosti Energie a společnost Jakýkoliv živý organismus potřebuje dodávku energie (potrava) Lidská společnost dále potřebuje značné množství energie k zabezpečení svých aktivit Doprava
Obnovitelné zdroje energie se zaměřením na využití vodní energie
UNIVERZITA PALACKÉHO V OLOMOUCI PEDAGOGICKÁ FAKULTA Katedra technické a informační výchovy Obnovitelné zdroje energie se zaměřením na využití vodní energie Bakalářská práce OLOMOUC 2012 Vedoucí práce:
Jaderná energetika (JE)
Jaderná energetika (JE) Pavel Zácha 2015-02 Program přednášek - úvod do jaderné energetiky - základy jaderné fyziky - skladba atomu, stabilita jader, vazebná energie, radioaktivita, jaderné reakce, štěpná
Energetika se zabývá získáváním, přeměnou a distribucí všech forem energie. Energii nevytváříme, pouze transformujeme z jedné formy na druhou.
VŠB TU Ostrava Energetika se zabývá získáváním, přeměnou a distribucí všech forem energie. Energii nevytváříme, pouze transformujeme z jedné formy na druhou. VŠB TU Ostrava 2 VŠB TU Ostrava 3 Dle zdroje:
PRO VAŠE POUČENÍ. Kdo se bojí radiace? ÚVOD CO JE RADIACE? Stanislav Kočvara *, VF, a.s. Černá Hora
Kdo se bojí radiace? Stanislav Kočvara *, VF, a.s. Černá Hora PRO VAŠE POUČENÍ ÚVOD Od počátků lidského rodu platí, že máme strach především z neznámého. Lidé měli v minulosti strach z ohně, blesku, zatmění
Přílohy. Příloha č. 1: Počet jaderných reaktorů ve světě (439) a rozložení dle toho, kolik let jsou v provozu.
Přílohy Příloha č. 1: Počet jaderných reaktorů ve světě (439) a rozložení dle toho, kolik let jsou v provozu. (Zdroj: Nuclear Power Reactors in the World, IAEA, REFERENCE DATA SERIES No. 2, 2014 Edition,
Znalost pojmů: hospodářství, průmysl, těžba surovin, paliva, energetika Dovednost pracovat ve skupině Dovednost naslouchat druhému
Druhy elektráren Příprava na vyučování Zeměpisu s cíli v oblasti EV Název učební jednotky (téma) Druhy elektráren Stručná anotace učební jednotky Žáci si nejprve prohlédnou fotografie jednotlivých druhů
Výhled pro českou fotovoltaiku. Ing. Veronika Knoblochová Výkonná ředitelka CZEPHO
Výhled pro českou fotovoltaiku Ing. Veronika Knoblochová Výkonná ředitelka CZEPHO PV Grid National Workshop 18.3.2014 Situace v ČR v roce 2013: další destabilizace sektoru Zhoršení ekonomiky solárních
Jaderná fyzika. Zápisy do sešitu
Jaderná fyzika Zápisy do sešitu Vývoj modelů atomu 1/3 Antika intuitivně zavedli pojem atomos nedělitelná část hmoty Pudinkový model J.J.Thomson (1897) znal elektron a velikost atomu 10-10 m v celém atomu
Přehrady Zuzana Šperglová,3. ročník GITU
Přehrady Zuzana Šperglová,3. ročník k GITU Účel přehradp protipovodňov ová ochrana zdroj elektrické energie zásobárna vody zavlažov ování dopravní význam Protipovodňov ová ochrana V období dešťů je v přehradp
Seminář Decentralizovaná energetika 5. listopadu 2015, Poslanecká sněmovna PČR Petr Štulc, ředitel útvaru rozvoj podnikání ČEZ, a.s.
ČEZ A DECENTRALIZOVANÁ ENERGETIKA - HROZBA NEBO PŘÍLEŽITOST Seminář Decentralizovaná energetika 5. listopadu 2015, Poslanecká sněmovna PČR Petr Štulc, ředitel útvaru rozvoj podnikání ČEZ, a.s. Techno-logický
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 ELEKTROENERGETIKA Ing. ALENA SCHANDLOVÁ
Přílivové elektrárny
Přílivové elektrárny Číslo projektu Název školy Předmět CZ.1.07/1.5.00/34.0425 INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV Černoleská 1997, 256 01 Benešov BIOLOGIE A EKOLOGIE Tematický okruh Téma Obnovitelné
Přehrada Mšeno na Mšenském potoce v ř. km 1,500
Přehrada Mšeno na Mšenském potoce v ř. km 1,500 Stručná historie výstavby vodního díla Jizerské hory, bohaté na srážky, jsou pramenní oblastí řady vodních toků. Hustě obydlené podhůří bylo proto často
REKONSTRUKCE VYTÁPĚNÍ ZŠ A TĚLOCVIČNY LOUČOVICE
REKONSTRUKCE VYTÁPĚNÍ ZŠ A TĚLOCVIČNY LOUČOVICE Objekt Základní školy a tělocvičny v obci Loučovice Loučovice 231, 382 76 Loučovice Stupeň dokumentace: Dokumentace pro výběr zhotovitele (DVZ) Zodpovědný
Měsíční zpráva o provozu ES ČR. únor 2015
Měsíční zpráva o provozu ES ČR únor 215 Oddělení statistiky a sledování kvality ERÚ, Praha 215 únor 215 Obsah 1 Zkratky, pojmy a základní vztahy str. 3 2 Úvodní komentář k hodnocenému měsíci str. 4 3.1
J i h l a v a Základy ekologie
S třední škola stavební J i h l a v a Základy ekologie 14. Energie klasické zdroje Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Tomáš Krásenský
Studie. využití obnovitelných zdrojů energie Vsetín
Studie využití obnovitelných zdrojů energie Vsetín Podpořeno v rámci finančních mechanismů EHP/Norska Zpracovatel: Ing. Jaromír Holub, Poradenská a konzultační kancelář pro energeticky úsporná řešení Bratří
ENERGIE PRO BUDOUCNOST IX Doprava elektrické energie v souvislostech Přenosová soustava ČR a její rozvojový plán a Energetika vs.
ENERGIE PRO BUDOUCNOST IX Doprava elektrické energie v souvislostech Přenosová soustava ČR a její rozvojový plán a Energetika vs. legislativa AMPER 2013 Výstaviště Brno Ing. Josef Bubeník Úvodní poznámka
Snižování nákladů na energie FV elektrárny na střechách 2010-2014
Snižování nákladů na energie FV elektrárny na střechách 2010-2014 Ing. Miroslav Vavera SUNLUX s.r.o. Příkop 843/4 CZ 602 00 Brno Phone: +420 606 733 620 info@sunlux.cz, http://www.sunlux.cz Zapsaná v OR
ČÍSLO PROJEKTU: OPVK 1.4
NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: 600 150 585 NÁZEV: VY_32_INOVACE_192_Elektřina-výroba a rozvod AUTOR: Ing. Gavlas Miroslav ROČNÍK, DATUM: 9., 12.11.2011 VZDĚL. OBOR, TÉMA: Fyzika,
Příklad návrhu střešní
Příklad návrhu střešní instalace FVE. Návratnost investice 8, 10 nebo 15 let? Ing. Michal Židek, Ph.D. Ing. František Mezulián www.vsb.cz/vec Současná situace fotovoltaiky u nás Instalovaný výkon: začátkem
Digitální učební materiál
Evidenční číslo materiálu: 503 Digitální učební materiál Autor: Mgr. Pavel Kleibl Datum: 21. 3. 2012 Ročník: 9. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Energie Téma:
Rotační výsledkem je otáčivý pohyb (elektrické nebo spalovací #5, vodní nebo větrné
zapis_energeticke_stroje_vodni08/2012 STR Ga 1 z 5 Energetické stroje Rozdělení energetických strojů: #1 mění pohyb na #2 dynamo, alternátor, čerpadlo, kompresor #3 mění energii na #4 27. Vodní elektrárna
Akumulace tepla do vody. Havlíčkův Brod
Akumulace tepla do vody Havlíčkův Brod Proč a kdy potřebujeme akumulovat energii? Období přebytku /možnosti výroby/ energie Přenos v čase Období nedostatku /potřeby/ energie Akumulace napomáhá srovnat
Zdymadlo Lovosice na Labi v ř. km 787,543
Zdymadlo Lovosice na Labi v ř. km 787,543 Stručná historie výstavby vodního díla Zdymadlo Lovosice bylo vybudováno v rámci výstavby vodní cesty na Vltavě a Labi na začátku 20. století. Provádění stavby,
PROGRAM KOGENERACE Z BIOMASY
PROGRAM KOGENERACE Z BIOMASY Obsah 2 Varianty řešení...2 3 Kritéria pro výběr projektu...2 4 Přínosy...2 4.1. Přínosy energetické...3 4.2. Přínosy environmentální...4 5 Finanční analýza a návrh podpory
POPTÁVKOVÝ FORMULÁŘ. Výstavba fotovoltaické elektrárny na střeše rodinného domu
Kontaktní údaje: Jméno a příjmení: POPTÁVKOVÝ FORMULÁŘ Výstavba fotovoltaické elektrárny na střeše rodinného domu Společnost DTD SOLAR s.r.o. se zavazuje chránit jí svěřené osobní údaje a postupovat v
Informace o kontrolách kotlů
Informace o kontrolách kotlů Informace je určena provozovatelům spalovacích stacionárních zdrojů umístěných v rodinných domech, bytech a stavbách pro individuální rekreaci, a provozovatelům zdrojů umístěných
Energetika v ČR XX. Test
Energetika v ČR XX Test 1. Kde se při výrobě elektrické energie setkáme se stroboskopickým efektem? 1. Kde se při výrobě elektrické energie setkáme se stroboskopickým efektem? Stroboskopický efekt, t.j.
Vysoká škola báňská Technická univerzita Ostrava
Vysoká škola báňská Technická univerzita Ostrava ENERGIE Z OBNOVITELNÝCH ZDROJŮ A JEJÍ VLASTNOSTI Mojmír Vrtek Fakulta strojní Katedra energetiky Historický vývoj spotřeby energie Průměrný příkon na 1
* Solární energie je ekologicky nejčistší způsob k výrobě elektrické energie. Díky Vaší
* Solární energie je ekologicky nejčistší způsob k výrobě elektrické energie. Díky Vaší fotovoltaické elektrárně bude v síti k dispozici více čisté elektrické energie a zároveň ušetříte na stálých nákladech
Příručka pro podporu prodeje výrobků JCB
Emisní normy IIIB/ T 4i Informační příručka o motorech JCB EcoMAX ohledně dodržení emisní normy IIIB/T4i Nejnovější uzákoněná emisní úroveň Týká se nových strojů prodaných do zemí Evropské unie, Severní
Potenciál a budoucnost solární energetiky. Ing. Tomáš Buzrla Předseda Solární asociace
Potenciál a budoucnost solární energetiky Ing. Tomáš Buzrla Předseda Solární asociace Evropské trendy Proměna evropské energetiky 2000-2017 (GW) Evropské trendy Podíl energie z OZE na spotřebě elektřiny
FOSILNÍ PALIVA A JADERNÁ ENERGIE
Inovace a zkvalitnění výuky v oblasti přírodních věd Člověk a příroda 7.ročník červenec 2011 FOSILNÍ PALIVA A JADERNÁ ENERGIE Anotace: Kód: VY_52_INOVACE_ Čap-Z 7.,8.15 Vzdělávací oblast: fosilní paliva,
EVROPSKÝ PARLAMENT. Výbor pro průmysl, výzkum a energetiku. 15. 10. 2007 PE396.473v01-00. Pozměňovací návrh, který předkládá Nicole Fontaine
EVROPSKÝ PARLAMENT 2004 2009 Výbor pro průmysl, výzkum a energetiku 15. 10. 2007 PE396.473v01-00 POZMĚŇOVACÍ NÁVRHY 35 75 Návrh zprávy Claude Turmes Energetická statistika (PE391.951v01-00) Návrh nařízení
Fotovoltaika. Ing. Stanislav Bock 3.května 2011
Fotovoltaika Ing. Stanislav Bock 3.května 2011 Fotovoltaický jev (fotoefekt) Fyzikální jev, při němž jsou elektrony uvolňovány (vyzařovány, emitovány) z látky (nejčastěji z kovu) v důsledku absorpce elektromagnetického
ˇevní s ˇte ˇpku a pelety BioMatic 220-500
Kotel na dřevní štěpku a pelety BioMatic 220-500 Přednosti kotle HERZ BioMatic... Informace o firmě HERZ: Zařízení na spalování biomasy pro dřevní štěpku nebo pelety BioMatic BioControl 220 (Rozsah tepelného
Technická univerzita v Liberci fakulta přírodovědně-humanitní a pedagogická. Doc. RNDr. Petr Anděl, CSc. ZÁKLADY EKOLOGIE.
Technická univerzita v Liberci fakulta přírodovědně-humanitní a pedagogická Doc. RNDr. Petr Anděl, CSc. ZÁKLADY EKOLOGIE Studijní texty 2010 Struktura předmětu 1. ÚVOD 2. EKOSYSTÉM MODELOVÁ JEDNOTKA 3.
Studium produkce neutronů v tříštivých reakcích a jejich využití pro transmutaci jaderného odpadu
Studium produkce neutronů v tříštivých reakcích a jejich využití pro transmutaci jaderného odpadu Pouze budoucnost může rozhodnout, jestli jsme vybrali právě tu jedinou správnou cestu a nalezli to nejlepší
Svět se rychle mění století bude stoletím boje o přírodní zdroje růst populace, urbanizace, požadavky na koncentraci a stabilitu dodávek energií
Přínos české jaderné energetiky k ochraně životního prostředí a její perspektiva Dana Drábová Státní úřad pro jadernou bezpečnost Praha Svět se rychle mění - 21. století bude stoletím boje o přírodní zdroje
Osnova kurzu. Výroba elektrické energie. Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 3
Osnova kurzu 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 1 Základy teorie elektrických obvodů 2 Základy teorie elektrických
Bezpečnostní program
Bezpečnostní program bezpečnostního programu. Obsah: Prezentace EDĚ - vybrané objekty s popisem - blokový transformátor - transformátor vlastní spotřeby - turbogenerátor TG 200 MW - regulační stanice plynu
KRITICKÁ ANALÝZA NÁVRHŮ MPO
KRITICKÁ ANALÝZA NÁVRHŮ MPO na podporu jádra, uhlí, důlního plynu, spalování odpadů a velké fotovoltaiky na úkor ostatních obnovitelných zdrojů energie
Naše specializace. Bytové domy
pro Abertamy Patříme do nové vlny společností, hrající fair play. Vaše zájmy jsou i našimi zájmy. Vyznáváme diskrétnost, taktnost, soudržnost, loajalitu s jasným cílem pro spravedlnost. Jsme proaktivní
ČVUT v Praze. Fakulta stavební Thákurova 7, 166 29 Praha 6 email: kamil.stanek@fsv.cvut.cz http://fotovoltaika.fsv.cvut.cz BUDOVY PŘEHLED TECHNOLOGIE
ČVUT v Praze Fakulta stavební Thákurova 7, 166 29 Praha 6 email: kamil.stanek@fsv.cvut.cz http://fotovoltaika.fsv.cvut.cz FOTOVOLTAIKA PRO BUDOVY PŘEHLED TECHNOLOGIE Palivo: Sluneční záření 150 miliónů
Způsoby měření elektřiny
změněno s účinností od poznámka vyhláškou č. 476/2012 Sb. 1.1.2013 82 VYHLÁŠKA ze dne 17. března 2011 o měření elektřiny a o způsobu stanovení náhrady škody při neoprávněném odběru, neoprávněné dodávce,
Integrace solárních soustav a kotlů na biomasu do soustav pro vytápění budov
SOLÁRNÍ TERMICKÉ SYSTÉMY A ZDROJE TEPLA NA BIOMASU MOŽNOSTI INTEGRACE A OPTIMALIZACE 29. října 2007, ČVUT v Praze, Fakulta strojní Integrace solárních soustav a kotlů na biomasu do soustav pro vytápění
Stres v jádře, jádro ve stresu. Dana Drábová Státní úřad pro jadernou bezpečnost
Stres v jádře, jádro ve stresu. Dana Drábová Státní úřad pro jadernou bezpečnost Otázky k zamyšlení: K čemu člověk potřebuje energii, jak a kde ji pro své potřeby vytváří? Nedostatek energie; kdy, jak