3D scanner HandySCAN 700TM
|
|
- Alexandra Čechová
- před 5 lety
- Počet zobrazení:
Transkript
1 3D scanner HandySCAN 700 TM Pro skenování používáme přenosný bezkontaktní skener HandySCAN 700 TM. Skenovací zařízení je dodáváno současně s programem VXelements, který zajišťuje přenos dat mezi skenerem a počítačem. Software zároveň přepočítává nasnímaná data a v reálném čase generuje výsledné tělo objektu. Program disponuje základními nástroji pro úpravu nasnímaných dat jako: decimace polygonové sítě, vyhlazení hranic, záplatování děr, odstranění šumu a další možnosti. Software také umožňuje na naskenovaných datech vytvářet geometrické prvky, které lze následně přenášet do CAD systému. Další výhody programu jsou: kvalitnější povrch zajišťuje algoritmus povrchové optimalizace. Program také zaručuje, že na datech nevznikají místa s překrývajícími se plochami., výstupem ze skenování jsou data, která mohou být exportována ve standardních formátech (STL, OBJ, WRL, atd.), v průběhu nebo po skenování lze změnit nastavení rozlišení nasnímaných dat (za cenu práce s větším objemem dat a pomalejších výpočtů), program vykresluje skenovaný předmět v reálném čase a umožňuje tak obsluze vědět, která místa jsou již naskenována a která ne. K širokému spektru využití skeneru HandySCAN v oblasti reverzního inženýrství (návrh, design a analýza) a dalších patří: 3D skenování do CAD softwaru, úprava návrhu designu, podklady pro CAD úpravy modelů, návrh a design vozidel, konečný a tvářecí design, digitální modely a makety, digitalizace hliněných modelů, rapid prototyping / 3D tisk, analýza metodou konečných prvků, údržba, opravy a repasování dílů, kontrola odlitků, výstupních dílů, prvního kusu výroby, ochrana, obnova a digitální archivace, 3D skenování pro výzkum a publikování, 1
2 virtuální a rozšířená realita, počítačová grafiky, speciální efekty. Tabulka 1- Technické parametry skeneru HandySCAN 700TM HandySCAN 700 TM Váha 0,85 kg Rozměry 122 x 77 x 294 mm Rychlost měření měření. s -1 Oblast skenování 275 x 250 mm Zdroj světla 7 laserových křížů (+1 extra linie) Třída laseru II (bezpečný pro zrak) Rozlišení mm Přesnost až do mm Objemová přesnost mm mm. m -1 Objemová přesnost (s MaxSHOT 3D) mm mm. m -1 Vzdálenost skeneru od objektu 300 mm Hloubka ostrosti 250 mm Velikost skenovaného objektu (doporučená) m Software VXelements Výstupní formáty.dae,.fbx,.ma,.obj,.ply,.stl,.txt,.wrl,.x3d,.x3dz,.zpr Kompatibilní software 3D Systémy (Geomagic Solutions), InnovMetric Software (PolyWorks), Dassault (CATIA V5 a SolidWorks), PTC (Pro/ENGINEER), Siemens (NX a Solid Edge), Autodesk (Inventor, Alias, 3ds Max, Maya, Softimage) Připojení k PC 1 X USB 3.0 Provozní okolní teplota C Provozní okolní vlhkost % (bez kondenzace) 2
3 Kontrola přesnosti plošných tištěných dílů Cílem experimentu bylo zjistit rozměrovou a geometrickou přesnost větších plošných dílů vyrobených 3D tiskem metodou SLS z materiálu PA12. Při tisku dochází k zahřívání materiálu v komoře a po tisku následně ke zchlazování na pokojovou teplotu. Úkolem bylo zjistit, jak materiál snáší tyto teplotní změny, jestli a k jak velkému smrštění materiálu dochází a jak se liší výsledný tvar výtisku od vstupních CAD dat. Předmětem, který sloužil jako podklad ke 3D skenování a porovnání skenu s CAD modelem, byla část přilby Ironmana, vytištěná ze sedmi hlavních celků na 3D tiskárně EOS P396. Přilba slouží jako propagační předmět laboratoře ProtoLab pro veletrhy a výstavy, a k demonstraci možností tisku velkých skořepinových dílů na 3D tiskárně. Po sestavení a slepení předních dílů byla helma nalakována a vypolstrována tak, aby se dala nosit. Přední část přilby je uchycena otočně na kloubech a je možno je otevřít. Zadní část je možno zasunout dovnitř pro snadnější nasazení. Na obrázku 1 jsou vytištěné jednotlivé části přilby rozestavené vedle sebe. Na obrázku 2 je už zkompletovaná a na obrázku 3 nalakovaná přilba. Obrázek 1 - Rozložené části přilby 3
4 Obrázek 2 - Zkompletovaná přilba Obrázek 3 - Složená a nalakovaná přilba 4
5 Skenovanou částí přilby bylo čelo, jehož upravený a zpracovaný sken byl porovnáván s modelem zhotoveným v CAD softwaru. Čelo přilby s nalepenými reflexními značkami ustavené na stolku a připravené na skenování je na obrázku 4. Na model jsou nalepeny referenční terčíky reflexní body, vůči kterým skener vymezuje svoji fyzickou polohu v prostou. Body se umísťují ve vzdálenosti mm od sebe buď přímo na skenovaný předmět, nebo do blízkého okolí kolem objektu na podložku. Během skenování potřebuje mít zařízení neustále 3 4 referenční body v zorném poli. Obrázek 4 - Skenované čelo přilby Před každým skenováním se provádí kalibrace skeneru k zajištění přesného měření. Kalibrace se provádí nad skleněnou kalibrační deskou, která je spárovaná přímo se skenerem a zaručuje správné nastavení snímání bodů skenerem. V rámci kalibrace je uskutečněna i kalibrace snímání. Jedná se o konfiguraci času uzávěrky kamery. Každá plocha má jiné barevné a světelné vlastnosti, jinak odráží světlo a pohlcuje jej. Proto je důležité pro každý povrch správně upravit nastavení parametrů pro získání optimálních obrazů laserových čar. Pokud je laser podexponovaný, je obraz zachytávaný kamerami vidět pouze slabě nebo vůbec a skener nemá dostatečné informace k výpočtu fyzického povrchu a budování sítě bodů. Naopak když je odraz příliš intenzivní, 5
6 zaslepuje kamery a tvorba povrchu je opět obtížná. Tato situace může vést k žádné, obtížné, nebo nesprávné rekonstrukci povrchu nebo neobvyklému šumu v získávaných datech. Kalibrace sytosti paprsků laseru je zachycena na obrázku 5. Obrázek 5 - Kalibrace skeneru a uzávěrky Obrázky 6 a 7 ukazují vlastní průběh skenování součásti. Skenerem je postupně snímán povrch objektu a software VXelements vykresluje nasnímaná data v reálném čase. 6
7 Obrázek 6 - Skenování součásti Obrázek 7 - Prostředí programu VXelements Při práci se skenem je v software možno upravit rozlišení bodů, čímž dojde k vyhlazení hran nasnímaných dat, vetší rozlišení bodů však více zatěžuje hardware počítače a zpomaluje další práci se skenem. Standardně se používá rozlišení 0,2-1mm. Přesnost skenování zůstává stejná při libovolném rozlišení, mění se pouze vizuální vzhled modelu a ostrost hran, přičemž při větším rozlišení se ztrácí jemnost kontur a detaily splývají. 7
8 Součásti je pro získání úplného obrazu celku většinou nutno skenovat ze dvou nebo tří stran. Po získání dostatečného obrazu jedné strany se součást otočí a nasnímá se obraz druhé strany. Obrázek 8 - Skenování součásti z druhé strany Po naskenování ze všech potřebných stran jsou skeny zpracovány. Jsou odstraněny přebytečné ořezové roviny (nasnímaná deska, na níž součást ležela), odstraní se šumy a osamělé body, případně se zacelí trhliny v síti. Takto připravené skeny se pak sloučí v jeden celek, který dá dohromady výsledný obraz součásti. Obrázek 9 - Skeny z obou stran připravené ke sloučení 8
9 Program za pomoci referenčních bodů, které nadefinuje na obou částech obsluha počítače, předběžně zarovná oba skeny do podobné polohy, tak jak je zobrazeno na obrázku 10. Obrázek 10 Předběžné zarovnání Samotné přesné zarovnání pak provede program na základě společných ploch a spojí oba skeny v jeden. Obrázek 11 - Zarovnané a sloučené skeny Obrázek 3.13 Zarovnané a sloučené skeny 9
10 Finálním produktem skenování je nasnímaný STL síťový model, který slouží k porovnání s CAD modelem. Poslední možnou úpravou je zarovnání a orientace modelu v prostoru a definice souřadného systému pro lepší navazující práci. Obrázek 12 - Výsledný obraz 1 Obrázek 13 - Výsledný obraz 2 10
11 Porovnání naskenované součásti s CAD daty Model získaný 3D skenováním a úpravou v prostředí programu VXelements byl exportován do softwaru Geomagic Control X. Současně byl do prostředí programu nahrán i CAD model, který sloužil jako předloha ke 3D tisku a nachází se v pravé části obrázku 14. Obrázek 14 - Sken a CAD model v programu Geomagic control X Tyto dva obrazy jsou pak na sebe zarovnány. Předběžné zarovnání je prováděno manuálně, program poté zarovnání sám dokončí. Po zarovnání skenu a modelu přes sebe je pak možno určit odchylku odpovídajících si bodů skenu (resp. Vytištěného dílu) a nativních CAD dat. Obrázek 15 - Sloučení obrazu a CAD modelu 11
12 V programu byla použita funkce ke zvýraznění místních odchylek prototypu od původního CAD modelu. Software vykreslil barevnou škálu s rozmezím tolerance odchylky rozměrů, podle které bylo určeno, v jakém místě je jak velká odchylka od původního rozměru. Na základě barevného rozlišení bylo zjištěno, že prototyp vytisknutý na 3D tiskárně je v celém svém objemu zploštělý a má odchlíplé krajní oblasti. Zjednodušené schéma deformace výtisku je uvedeno na obrázku 16. Obrázek 16 - Schéma deformace výtisku Na obrázcích 17 a 18 je znázorněno barevné vyznačení odchylek jak ze zadní, tak z přední strany. Zadaná přípustná tolerance byla stanovena na ±0,3mm. Vytištěný model se tedy do stanoveného tolerančního rozmezí nevešel. V nejproblematičtějších oblastech dosahovala odchylka od původního modelu velikosti až 1,2 milimetru. Zploštělá oblast čela měla hodnotu největší odchylky přibližně 0,5 milimetru. 12
13 Obrázek 17- Vyhodnocení odchylky rozměrů od základního CAD modelu (zadní strana) Závěr Obrázek 18 - Vyhodnocení odchylky rozměrů od základního CAD modelu (přední strana) Provedením tohoto měření bylo zjištěno, že při tisku větších plošných dílů dochází k odchylkám výsledných rozměrů výtisků od vstupních CAD dat. Tyto odchylky jsou způsobeny jednak tepelným namáháním vneseným do materiálu při tisku a při ochlazování, a také orientací výtisku v komoře. V různých místech tiskové komory se teplota liší a rovněž 13
14 se liší čas, po který tepelné namáhání v určité oblasti působí. Díly ve spodní části komory jsou exponovány vyšší teplotě mnohem déle, než díly ve vrchních vrstvách stavby. Velmi také záleží na orientaci dílů v komoře, aby nedocházelo k velké lokální koncentraci vneseného tepla a aby bylo umožněno co nejlepší odvádění tepla ze součásti do okolí. Provedením tohoto experimentu bylo možno stanovit, jak tyto faktory ovlivňují výsledný výtisk a jak se vyvarovat velkým změnám rozměrů, nebo je alespoň co nejvíce eliminovat. Díky získaným poznatkům je možno součásti lépe pozicovat v komoře a predikovat jejich chování po vytažení z komory. Výtisky pak při správném rozložení nejsou tak teplotně namáhány a je možno dodržet stanovenou přesnost. 14
3D skenování, kontrola a měření součástí po výrobě 3D tiskem
VŠB Technická univerzita Ostrava Fakulta strojní Katedra obrábění, montáže a strojírenské metrologie 3D skenování, kontrola a měření součástí po výrobě 3D tiskem 3D Scanning, Control and Measurement of
Obr.1 Skener HandyScan 3D EXAscan [1]
DIAGNOSTIKA NA ŽELEZNIČNÍ DOPRAVNÍ CESTĚ 2013, DĚČÍN 20.-21.2.2013 Využití 3D skeneru pro hodnocení opotřebení dílů výhybek Autoři: Ing.Petr Havlíček, DT - Výhybkárna a strojírna a.s. Prostějov Ing.Petr
Nabízíme komplexní řešení pro výrobu náhradních dílů 3D Skenování, 3D modelování, výroba dílů
Nabízíme komplexní řešení pro výrobu náhradních dílů 3D Skenování, 3D modelování, výroba dílů Pro naše zákazníky nabízíme optimální řešení výrobních procesů. U nás máte vše pod jednou střechou nabízíme
NOVINKY VXELEMENTS 7.0 Hlavoň Martin
NOVINKY VXELEMENTS 7.0 Hlavoň Martin Konference 3D skenování Kouty 28.5.2019 Nový vzhled prostředí Nové ikony / loga Systémový panel Pro všechny 3D skenery je nově dostupný systémový panel. Tento panel
VYUŽITÍ SKENERU HANDYSCAN 3D EXAscan PRO SOUČÁSTI ŽELEZNIČNÍ INFRASTRUKTURY
VYUŽITÍ SKENERU HANDYSCAN 3D EXAscan PRO SOUČÁSTI ŽELEZNIČNÍ INFRASTRUKTURY Josef ZBOŘIL A, Miloslav KLEMENT B, Petr HAVLÍČEK C A Oddělení výzkumu a vývoje, DT-Výhybkárna a strojírna a.s., Dolní 100, 79711
Nabízíme komplexní řešení pro výrobu náhradních dílů 3D Skenování, 3D modelování, výroba dílů
Nabízíme komplexní řešení pro výrobu náhradních dílů 3D Skenování, 3D modelování, výroba dílů Pro naše zákazníky nabízíme optimální řešení výrobních procesů. U nás máte vše pod jednou střechou nabízíme
Studentská 1402/ Liberec 1 tel.: cxi.tul.cz. Ostatní přístroje
Ostatní přístroje Oddělení konstrukce strojů, nanovlákenných a netkaných materiálů Simulace a pokročilé analýzy pohybu MD Adams (Multidisciplinární simulační systém pro moderní technické obory ) Možnosti
PRIMA Bilavčík, s. r. o., 9. května 1182, Uherský Brod, tel.: ,
- Měřicí přístroje - Zakázková měření - Centrum počítačové tomografie - Akreditovaná kalibrační laboratoř - Vzdělávací centrum PRIMA AKADEMIE - Servis měřicí techniky PRIMA Bilavčík, s. r. o., 9. května
Studentská 1402/ Liberec 1 tel.: cxi.tul.cz. Ostatní přístroje
Ostatní přístroje Oddělení konstrukce strojů, nanovlákenných a netkaných materiálů Simulace a pokročilé analýzy pohybu MD Adams (Multidisciplinární simulační systém pro moderní technické obory ) Možnosti
Software Form Control
Měření na kliknutí myši. Tak jednoduchá je kontrola obrobku v obráběcím centru pomocí měřícího softwaru FormControl. Nezáleží na tom, zda má obrobek obecné 3D kontury nebo běžný 2.5D charakter. Uživatel
Odůvodnění vymezení technických podmínek podle 156 odst. 1 písm. c) zákona č. 137/2006 Sb., o veřejných zakázkách
Název veřejné zakázky: Laserový 3D skener II Odůvodnění vymezení technických podmínek podle 156 odst. 1 písm. c) zákona č. 137/2006 Sb., o veřejných zakázkách Technická podmínka: Odůvodnění HW specifikace
DVOUDENNÍ ŠKOLENÍ PRO PEDAGOGY
DVOUDENNÍ ŠKOLENÍ PRO PEDAGOGY SOLIDWORKS I Základy modelování + výkresy (2 dny) Cena: 4 400 Kč/osobu 1. Všeobecně o SOLIDWORKS, organizace /díl, sestava, výkres, odkazy, ukládání/ 2. Seznámení se s uživatelským
OBSAH. Metoda 3D laserového skenování Výhody Důvody a cíle použití Pilotní projekt Postup prací Výstupy projektu Možnosti využití Závěry a doporučení
OBSAH Metoda 3D laserového skenování Výhody Důvody a cíle použití Pilotní projekt Postup prací Výstupy projektu Možnosti využití Závěry a doporučení METODA LASEROVÉHO SKENOVÁNÍ Laserové skenovací systémy
3D skenování březen 2009. Vít Novotný, INSET s.r.o.
3D skenování březen 2009 Vít Novotný, INSET s.r.o. 3D skener - popis Dvě kamery po stranách s osmi LED diodami na osvětlení pozičních bodů. Laserový křížový zářič ve tvaru X, bezpečný lidským očím. Třetí
Inspekce tvaru součásti
Inspekce tvaru součásti. Cílem cvičení je inspekce tvaru součásti spočívající načtení referenčního CAD modelu, v ustavení naskenovaného tvaru vzhledem k tomuto referenčnímu modelu, kontrole průměru spodního
Jak dosáhnout toho, aby jednotlivá zařízení (monitor, skener, tiskový stroj) tlumočily barvu co nejvěrněji?
? Jak dosáhnout toho, aby jednotlivá zařízení (monitor, skener, tiskový stroj) tlumočily barvu co nejvěrněji? skener by měl maximálně zachovat barevnost skenovaného originálu monitor by měl zobrazovat
Rozsah průmyslového výzkumu a vývoje Etapa 9 Systém kontroly povrchových vad
Příloha č. 1a Popis předmětu zakázky Rozsah průmyslového výzkumu a vývoje Etapa 9 Systém kontroly povrchových vad Zadání Výzkum kontrolního zařízení pro detekci povrchových vad sochoru, návrh variant systému
Bezkontaktní měření Fotogrammetrie v automotive
Bezkontaktní měření Fotogrammetrie v automotive Ing. Jaroslav Kopřiva Konferencia Združenia slovenských laboratórií a skúšobní, Hotel Stupka, Tále I 3.5 5.5. 2017 Využití fotogrammetrie v automotive zkušebnictví
FAKULTA STROJNÍHO INŽENÝRSTVÍ, VUT BRNO NETME Centre
Quality control Robotic machining Rapid prototyping 3D optical digitalization Additive manufacturing of metal parts Mechanical and industrial design Obsah prezentace Představení pracoviště Laboratoře Vývoj
3D MĚŘÍCÍ STŮL ŘADA MIRACLE
3D MĚŘÍCÍ STŮL ŘADA MIRACLE 1 Miracle (zázrak) CMM - reprezentuje plně automatizované CMM Všechna tři vodící tělesa jsou vyrobena z vysoce kvalitního granitu, zachovávají si své vlastnosti a tvrdost i
MODELOVÁNÍ VÝROBY METODOU 3D LASEROVÉHO SKENOVÁNÍ SVOČ FST 2016
MODELOVÁNÍ VÝROBY METODOU 3D LASEROVÉHO SKENOVÁNÍ SVOČ FST 2016 Bc. Martin Strapek Západočeská univerzita v Plzni Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT Tato práce pojednává o možnostech
TRENDY V POČÍTAČOVÉM PROJEKTOVÁNÍ VÝROBNÍCH SYSTÉMŮ ERGONOMICKÉ SIMULACE PODNIKOVÝCH PROCESŮ
TRENDY V POČÍTAČOVÉM PROJEKTOVÁNÍ VÝROBNÍCH SYSTÉMŮ ERGONOMICKÉ SIMULACE PODNIKOVÝCH PROCESŮ Ing. V. Glombíková, PhD. Systémy pro simulaci výrobních systémů Systémy vyznačující se schopností vyhodnocení
Aplikace třetího rozměru v archeologii. Úvod a 3D prostředí
Aplikace třetího rozměru v archeologii Úvod a 3D prostředí Prezentace 3D Modely a jejich prostředí 3D Scannery Fotogrammetrie Aplikace Závěr 3D Model Virtuální trojrozměrný objekt nesoucí fyzickou i grafickou
DVOUDENNÍ ŠKOLENÍ PRO PEDAGOGY
DVOUDENNÍ ŠKOLENÍ PRO PEDAGOGY SOLIDWORKS I Základy modelování + výkresy (2 dny) Cena: 4 400 Kč/osobu 1. Všeobecně o SOLIDWORKS, organizace /díl, sestava, výkres, odkazy, ukládání/ 2. Seznámení se s uživatelským
Zaměření vybraných typů nerovností vozovek metodou laserového skenování
Zaměření vybraných typů nerovností vozovek metodou laserového skenování 1. Účel experimentů V normě ČSN 73 6175 (736175) Měření a hodnocení nerovnosti povrchů vozovek je uvedena řada metod k určování podélných
Abyste mohli dělat věci jinak, musíte je jinak i vidět Paul Allaire
Abyste mohli dělat věci jinak, musíte je jinak i vidět Paul Allaire Konstrukční inženýrství učíme věci jinak Ústav konstruování Odbor metodiky konstruování Fakulta strojního inženýrství Vysoké učení technické
Měření laserovým 3D skenerem
Měření laserovým 3D skenerem Lukáš, Sláma Vedoucí práce: Ing. BcA., Jan, Podaný Ph.D. Abstrakt Článek řeší problematiku nového způsobu měření na souřadnicových měřicích strojích pomocí laserových skenovacích
Laserové skenování (1)
(1) Prohloubení nabídky dalšího vzdělávání v oblasti zeměměřictví a katastru nemovitostí ve Středočeském kraji CZ.1.07/3.2.11/03.0115 Projekt je finančně podpořen Evropským sociálním fondem astátním rozpočtem
Možnosti 3D dokumentace. Vojtěch Nosek
Možnosti 3D dokumentace Vojtěch Nosek 330862 3D Modely Prezentace 3D Scannery 3D Fotogrammetrie Software Použití v archeologii a příbuzných vědách Závěr možnosti, další vývoj, diskuze 3D Model Virtuální
Porovnání obrazových souborů vzniklých digitalizací periodik a monografií
Příloha č. 4 Porovnání obrazových souborů vzniklých digitalizací periodik a monografií Digitální dokumenty vznikají v digitalizaci NK dvojím způsobem : 1. Naskenování mikrofilmu skenerem Wicks and Wilson
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník MĚŘICKÝ SNÍMEK PRVKY VNITŘNÍ A VNĚJŠÍ ORIENTACE CHYBY SNÍMKU
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník MĚŘICKÝ SNÍMEK PRVKY VNITŘNÍ A VNĚJŠÍ ORIENTACE CHYBY SNÍMKU MĚŘICKÝ SNÍMEK Základem měření je fotografický snímek, který je v ideálním případě
Definice uživatele. Datum: 28. 8. 2013
Definice uživatele Datum: 28. 8. 2013 Registrační číslo: CZ.1.07/1.5.00/34.1013 Číslo DUM: VY_32_INOVACE_643 Škola: Akademie - VOŠ, Gymn. a SOŠUP Světlá nad Sázavou Jméno autora: Ing. Michal Hošek Název
3D kontaktní skener MicroScribe-3D výukový modul. 3D kontaktní skener MicroScribe-3D Výukový modul
3D kontaktní skener MicroScribe-3D Výukový modul Kontaktní skener Microscribe-3D MicroScribe je 3D kontaktní flexibilní a cenově dostupný digitizér pro oblast reverzního inženýrství, pro vytváření modelů
SurfaceMeasure. Bezkontaktní řádková laserová sonda pro souřadnicové měřicí stroje
Souřadnicové měřicí stroje Bezkontaktní řádková laserová sonda pro souřadnicové měřicí stroje SurfaceMeasure PRC 1376 Nová skenovací sonda se automaticky přizpůsobí povrchovým vlastnostem obrobku a poskytuje
Terestrické 3D skenování
Jan Říha, SPŠ zeměměřická www.leica-geosystems.us Laserové skenování Technologie, která zprostředkovává nové možnosti v pořizování geodetických dat a výrazně rozšiřuje jejich využitelnost. Metoda bezkontaktního
Srovnání možností zaměření a vyhodnocení historické fasády
Srovnání možností zaměření a vyhodnocení historické fasády Ing. Bronislav Koska, Ing. Tomáš Křemen, Doc. Ing. Jiří Pospíšil, CSc. Katedra speciální geodézie Fakulta stavební České vysoké učení technické
Konstruktér modelů a forem v keramické výrobě (kód: N)
Konstruktér modelů a forem v keramické výrobě (kód: 28-056-N) Autorizující orgán: Ministerstvo průmyslu a obchodu Skupina oborů: Technická chemie a chemie silikátů (kód: 28) Týká se povolání: Kvalifikační
Resolution, Accuracy, Precision, Trueness
Věra Fišerová 26.11.2013 Resolution, Accuracy, Precision, Trueness Při skenování se používá mnoho pojmů.. Shodnost měření, rozlišení, pravdivost měření, přesnost, opakovatelnost, nejistota měření, chyba
Systém ATOS výukový modul. Systém ATOS výukový modul
Systém ATOS výukový modul Popis ATOS je mobilní bezdotykový optický 3D skener firmy GOM určený pro nejrůznější aplikace. Využití nachází v oblastech CAD, CAM a FEM kde je vyžadováno měření reálných objektů
POPIS TVORBY VYKLÁPĚNÉHO DÍLU
Katedra konstruování strojů Fakulta strojní K 2 POPIS TVORBY VYKLÁPĚNÉHO DÍLU doc. Ing. Martin Hynek, PhD. a kolektiv verze - 1.0 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem
Obsluha měřicích zařízení bezkontaktní metody
T E C H N I C K Á U N I V E R Z I T A V L I B E R C I FAKULTA STROJNÍ KATEDRA VÝROBNÍCH SYSTÉMŮ A AUTOMATIZACE Obsluha měřicích zařízení bezkontaktní metody Ing. Radomír Mendřický, Ph.D. Ing. Petr Keller,
Popis softwaru VISI Flow
Popis softwaru VISI Flow Software VISI Flow představuje samostatný CAE software pro komplexní analýzu celého vstřikovacího procesu (plnohodnotná 3D analýza celého vstřikovacího cyklu včetně chlazení a
PyroUSB. Bezkontaktní snímač teploty nastavitelný přes PC s výstupem od 4 do 20 ma
PyroUSB Bezkontaktní snímač teploty nastavitelný přes PC s výstupem od 4 do 20 ma PyroUSB je teplotní snímač, který se používá při měření špatně dostupných míst a při přemisťování břemen. Nastavitelný
zdroj světla). Z metod transformace obrázku uvedeme warping a morfing, které se
Kapitola 3 Úpravy obrazu V následující kapitole se seznámíme se základními typy úpravy obrazu. První z nich je transformace barev pro výstupní zařízení, dále práce s barvami a expozicí pomocí histogramu
Voestalpine Automotive Components: absolutní přesnost od zapracování nástrojů až po sériovou výrobu
Příklad použití Voestalpine Automotive Components: absolutní přesnost od zapracování nástrojů až po sériovou výrobu Sídlo společnosti: Schwäbisch Gmünd Systém GOM: ATOS Triple Scan Software GOM: ATOS Professional,
Digitalizace starých kartografických děl
Filip Antoš Konference Digitalizace v paměťových institucích 2017 18. - 20. září 2017, Třeboň Jak digitalizovat staré mapy a atlasy? V principu tři kroky: - Skenování pořízení rastrového obrazu a jeho
ÚVOD ZKOUŠENÍ PETROCHEMICKÉHO REAKTORU
Přednosti a využití zobrazení S, B a C při zkoušení tlustostěnných výkovků ultrazvukem. Kováčik Miloslav, Ing., Hyža Rastislav, Ing., Slovcert s.r.o. Bratislava ÚVOD Tlustostěnné výkovky patří k výrobkům,
Tiskárny - tisk z PC
Semestrální práce z předmětu Kartografická polygrafie a reprografie Tiskárny - tisk z PC Autoři: Jan Kohout, David Čížek, Michal Volkmann, Radek Makovec Editoři: Jakub Kozák, Praha, duben 2012 Katedra
ScanStation P20 uživatelská kalibrace (procedura Check & Adjust)
ScanStation P20 uživatelská kalibrace (procedura Check & Adjust) ScanStation P20 and Cyclone 8.0 Introduction Meeting, 02 05 Oct 2012, Heerbrugg Bianca Gordon, překlad do češtiny Daniel Šantora Přehled
ÚCHYLKY TVARU A POLOHY
ÚCHYLKY TVARU A POLOHY Zpracoval: Přemysl Pokorný Pracoviště: KVS Tento materiál vznikl jako součást projektu In-TECH 2, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. In-TECH
USING CAD MODELS AND POLYGONAL SCAN FOR EVALUATION OF ABRASIVE FRICTION PARTS
USING CAD MODELS AND POLYGONAL SCAN FOR EVALUATION OF ABRASIVE FRICTION PARTS Liška J., Filípek J. Department of Engineering and Automobile Transport, Faculty of Agronomy, Mendel University in Brno, Zemědělská
SNÍMAČE PRO MĚŘENÍ TEPLOTY
SNÍMAČE PRO MĚŘENÍ TEPLOTY 10.1. Kontaktní snímače teploty 10.2. Bezkontaktní snímače teploty 10.1. KONTAKTNÍ SNÍMAČE TEPLOTY Experimentální metody přednáška 10 snímač je připevněn na měřený objekt 10.1.1.
Využití 3D ručního skeneru při dokumentaci archeologických památek v Súdánu
Využití 3D ručního skeneru při dokumentaci archeologických památek v Súdánu Lenka Suková Český egyptologický ústav FF UK Praha Vladimír Brůna Laboratoř geoinformatiky FŽP UJEP Most sukova.lenka@gmail.com
Snímkování termovizní kamerou
AB Solartrip,s.r.o. Na Plavisku 1235 755 01 Vsetín www.solarniobchod.cz mobil 777 642 777, e-mail: r.ostarek@volny.cz AKCE: Termovizní diagnostika vnitřní prostory rodinného domu č. p. 197 Ústí u Vsetína
KONSTRUKČNÍ INŽENÝRSTVÍ. Učíme věci jinak
KONSTRUKČNÍ INŽENÝRSTVÍ Učíme věci jinak Abyste mohli dělat věci jinak, musíte je jinak i vidět. Paul Allaire OBOR KONSTRUKČNÍ INŽENÝRSTVÍ Konstrukční inženýrství je obor kombinující teoretické znalosti
Diagnostická vyvažovačka kol B2000P. Siems & Klein. S dotykovou obrazovkou a technologií 3D zobrazení
Diagnostická vyvažovačka kol B2000P S dotykovou obrazovkou a technologií 3D zobrazení MODERNÍ TECHNOLOGIE VOZIDEL Nepřetržitý vývoj automobilů přivedl jejich výkon na hranici možností. Vysoká rychlost,
Metodický pokyn. k zadávání fotogrammetrických činností pro potřeby vymezování záplavových území
Ministerstvo zemědělství ČR Č.j.: 28181/2005-16000 Metodický pokyn k zadávání fotogrammetrických činností pro potřeby vymezování záplavových území Určeno: K využití: státním podnikům Povodí Zemědělské
Informační a komunikační technologie 1.2 Periferie
Informační a komunikační technologie 1.2 Periferie Studijní obor: Sociální činnost Ročník: 1 Periferie Je zařízení které umožňuje ovládání počítače nebo rozšíření jeho možností. Vstupní - k ovládání stroje
DIGITÁLNÍ ORTOFOTO. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník
DIGITÁLNÍ ORTOFOTO SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník DIGITÁLNÍ SNÍMEK Ortofotomapa se skládá ze všech prvků, které byly v době expozice přítomné na povrchu snímkované oblasti.
Pozemní laserové skenování. Doc. Ing. Vlastimil Hanzl, CSc.
Pozemní laserové skenování Doc. Ing. Vlastimil Hanzl, CSc. Laserové skenování Technologie pro bezkontaktní určování prostorových souřadnic s následujícím 3D modelování a vizualizací skenovaných objektů.
Siems & Klein spol. s r. o.
spol. s r. o. AUTOSERVISNÍ TECHNIKA - PRODEJ, SERVIS, LEASING Krajní 1230, 252 42 Jesenice u Prahy, Praha - západ Tel.: 608 98 39 68 (M. Bednář), 27201 6955, fax 27201 6944 JOHN BEAN vyvažovačka kol BHF
1. Úvod do Systémů CAD
1. Úvod do Systémů CAD Studijní cíl Tento blok kurzu je věnován CA technologiím. Po úvodním seznámení se soustředíme především na oblast počítačové podpory konstruování, tedy CAD. Doba nutná k nastudování
Vyhrazené střední tlačítko myši Pokročilý laserový senzor s rozlišením 8200 DPI Klávesy QuickZoom2 Funkční tlačítko
Produktová řada DOKONALÁ KOMBINACE VÝKONNÉHO, ERGONOMICKÉHO HARDWARU A CHYTRÉHO, SNADNO POUŽITELNÉHO SOFTWARU PRO RYCHLOU, POHODLNOU A ÚŽASNOU PRÁCI V CAD. Produktová řada SpaceMouse Profesionální řada
CopyCentre TM C32/C40
Podrobné specifikace CopyCentre C32 Colour. CopyCentre C32 Colour na obrázku s oboustranným automatickým podavačem dokumentů a volitelným dvouzásobníkovým modulem. RYCHLOST KOPÍROVÁNÍ Digitální kopírka
Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 IČO: 47813121 Projekt: OP VK 1.5
Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 IČO: 47813121 Projekt: OP VK 1.5 Název operačního programu: OP Vzdělávání pro konkurenceschopnost
1) Pracoviště pro trénink hydraulických obvodů
Číslo OP : CZ.1.11 Název ROP : ROP NUTS II Jihovýchod Název oblasti podpory : 3.4 Veřejné služby regionálního významu Název zaměření výzvy : Zařízení pro vzdělávání včetně technického vybavení pro výuku
1. Polotóny, tisk šedých úrovní
1. Polotóny, tisk šedých úrovní Studijní cíl Tento blok kurzu je věnován problematice principu tisku polotónů a šedých úrovní v oblasti počítačové grafiky. Doba nutná k nastudování 2 hodiny 1.1 Základní
Kalibrace měřiče KAP v klinické praxi. Martin Homola Jaroslav Ptáček
Kalibrace měřiče KAP v klinické praxi Martin Homola Jaroslav Ptáček KAP kerma - area product kerma - area produkt, je používán v dozimetrii pacienta jednotky (Gy * m 2 ) kerma - area produkt = plošný integrál
Digitalizační centrum včetně plnění databáze rastrových map uživateli
Digitalizační centrum včetně plnění databáze rastrových map uživateli Filip Antoš, Milan Talich Seminář Kartografické zdroje jako kulturní dědictví 11. června 2015, Praha Jak digitalizovat staré mapy a
TECHNICKÁ DOKUMENTACE
TECHNICKÁ DOKUMENTACE Dle ustanovení 44 a násl. zákona č. 137/2006 Sb., o veřejných zakázkách (dále jen zákon ) Název veřejné zakázky: Druh veřejné zakázky: Druh zadávacího řízení Obchodní společnost nebo
Způsob stanovení ceny tisku a lití ve vakuu
Tento materiál vznikl jako součást projektu, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Způsob stanovení ceny tisku a lití ve vakuu Technická univerzita v Liberci 3D digitalizace
LASEROVÝ SKENER HP-L-8.9
INFORMACE O PRODUKTECH LASEROVÝ SKENER HP-L-8.9 Cenově dostupný laserový skener pro měřicí rameno ROMER Absolute Arm 2 LASEROVÝ SKENER HP-L-8.9 HLAVNÍ FAKTA Laserové snímání dostupné všem HP-L-8.9 je dostupné
PŘÍSTROJE PRO MĚŘENÍ PROFILU - CONTRACER
PŘÍSTROJE PRO MĚŘENÍ PROFILU - CONTRACER PR 1163 (4) Zajištění kvality měřením profilu: Profiloměry od firmy Mitutoyo Zajištění kvality nezná žádné KDYŽ a ALE... CONTRA... nýbrž jen VÍTĚZE a PORAŽENÉ PŘÍSTROJE
REGIONÁLNÍ TECHNOLOGICKÝ INSTITUT. Západočeská univerzita v Plzni Fakulta strojní
REGIONÁLNÍ TECHNOLOGICKÝ INSTITUT Západočeská univerzita v Plzni Fakulta strojní Výzkumné centrum RTI Regionální technologický institut - RTI je výzkumné centrum Fakulty strojní Západočeské univerzity
Základy 3D modelování a animace v CGI systémech Cinema 4D C4D
EVROPSKÝ SOCIÁLNÍ FOND Základy 3D modelování a animace v CGI systémech Cinema 4D C4D PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Mgr. David Frýbert 2013 CGI systémy Computer - generated imagery - aplikace
Zobrazování těles. problematika geometrického modelování. základní typy modelů. datové reprezentace modelů základní metody geometrického modelování
problematika geometrického modelování manifold, Eulerova rovnost základní typy modelů hranový model stěnový model objemový model datové reprezentace modelů základní metody geometrického modelování těleso
Virtuální mapová sbírka Chartae-Antiquae.cz. důležitý výsledek projektu Kartografické zdroje jako kulturní dědictví
Virtuální mapová sbírka Chartae-Antiquae.cz důležitý výsledek projektu Kartografické zdroje jako kulturní dědictví Milan Talich, Filip Antoš, Ondřej Böhm, Jan Havrlant, Klára Ambrožová, Lubomír Soukup
Simulace toku materiálu při tváření pomocí software PAM-STAMP
Simulace toku materiálu při tváření pomocí software PAM-STAMP Jan Šanovec František Tatíček Jan Kropaček Fakulta strojní, České vysoké učení technické v Praze, Ústav strojírenské technologie, Technická
3D výroba šperků Vaše dokonalé modely šperků
3D výroba šperků Vaše dokonalé modely šperků 3D prototypovací a výrobní systémy s perfektní kvalitou a maximální rychlostí, dokonalé pro sériovou výrobu i jednorázové procesy. 2 Vítejte v 3D světě šperkařského
STUDENÉ A ŽIVÉ VTOKOVÉ SYSTÉMY
Katedra konstruování stroj Fakulta strojní K 5 PLASTOVÉ STUDENÉ A ŽIVÉ VTOKOVÉ SYSTÉMY doc. Ing. Martin Hynek, Ph.D. a kolektiv verze - 1.0 Tento projekt je spolufinancován Evropským sociálním fondem a
PLOŠNÁ GRAFICKÁ ANALÝZA NEROVNOSTÍ VOZOVEK. Jiří Sláma
PLOŠNÁ GRAFICKÁ ANALÝZA NEROVNOSTÍ VOZOVEK Jiří Sláma ALTERNATIVNÍ PLOŠNÁ ANALÝZA A INTERPRETACE NEROVNOSTÍ VOZOVKY S VYUŽITÍM DMT analýza geometrických parametrů povrchu vozovek alternativní způsob určování
Velkoformátový skener Xerox 7742 Prospekt. Velkoformátový skener. Jednoduché barevné a černobílé skenování
Velkoformátový skener Xerox 774 Prospekt Velkoformátový skener Xerox 774 Jednoduché barevné a černobílé skenování Osvědčená spolehlivost a kvalita při skenování velkoformátových dokumentů Velkoformátový
Barvy a barevné modely. Počítačová grafika
Barvy a barevné modely Počítačová grafika Barvy Barva základní atribut pro definici obrazu u každého bodu, křivky či výplně se definuje barva v rastrové i vektorové grafice všechny barvy, se kterými počítač
Ing. Petr Knap Carl Zeiss spol. s r.o., Praha
METROTOMOGRAFIE JAKO NOVÝ NÁSTROJ ZAJIŠŤOVÁNÍ JAKOSTI VE VÝROBĚ Ing. Petr Knap Carl Zeiss spol. s r.o., Praha ÚVOD Společnost Carl Zeiss Industrielle Messtechnik GmbH již dlouhou dobu sleduje vývoj v poměrně
Techniky detekce a určení velikosti souvislých trhlin
Techniky detekce a určení velikosti souvislých trhlin Přehled Byl-li podle obecných norem nebo regulačních směrnic detekovány souvislé trhliny na vnitřním povrchu, musí být následně přesně stanoven rozměr.
Správa barev. Výstupní zařízení. Správa barev. Vytvořila: Jana Zavadilová Vytvořila dne: 25. ledna 2013. www.isspolygr.cz
Výstupní zařízení www.isspolygr.cz Vytvořila: Jana Zavadilová Vytvořila dne: 25. ledna 2013 Strana: 1/10 Škola Ročník 4. ročník (SOŠ, SOU) Název projektu Interaktivní metody zdokonalující proces edukace
Integrace robotického měřicího systému do MES
Integrace robotického měřicího systému do MES Sledování způsobilosti výrobního procesu Způsobilost výrobního procesu (manufacturing process capability) ukazuje na jeho schopnost poskytovat trvale výrobky
Digitalizace fondů NPÚ
Digitalizace fondů NPÚ Digitalizace fondů NPÚ umožnila postupně on-line zpřístupnit veškeré listinné a fotografické dokumenty ke kulturním památkám veřejnosti i státní správě a zároveň zachránit a uchovat
Úvod. Povrchové vlastnosti jako jsou koroze, oxidace, tření, únava, abraze jsou často vylepšovány různými technologiemi povrchového inženýrství.
Laserové kalení Úvod Povrchové vlastnosti jako jsou koroze, oxidace, tření, únava, abraze jsou často vylepšovány různými technologiemi povrchového inženýrství. poslední době se začínají komerčně prosazovat
VYUŽÍTÍ CA SYSTÉMŮ V KONFEKČNÍ VÝROBĚ (hardware)
VYUŽÍTÍ CA SYSTÉMŮ V KONFEKČNÍ VÝROBĚ (hardware) SYSTÉMOVÉ POŽADAVKY CAD SYSTÉMŮ software operační systém Windows XP, Windows Vista, Windows 7 hardware procesor minimum: 800 MHz nebo ekvivalentní (Intel
Katedra výrobních systémů a automatizace. Ing. Petr Zelený, Ph.D. březen 2015
Katedra výrobních systémů a automatizace Ing. Petr Zelený, Ph.D. březen 2015 Chcete. se naučit pracovat s moderními nástroji konstruktéra (3D skenery, 3D tiskárny)? se naučit pracovat s moderními konstrukčními
PROBLEMATICKÉ ASPEKTY GEOREFERENCOVÁNÍ MAP
Digitální technologie v geoinformatice, kartografii a DPZ PROBLEMATICKÉ ASPEKTY GEOREFERENCOVÁNÍ MAP Katedra geomatiky Fakulta stavební České vysoké učení technické v Praze Jakub Havlíček, 22.10.2013,
2D MANUAL. ložiscích, která umožňuje velmi rychlé a přesné bezkontaktní měření v rozsahu 400 mm 300 mm.
vision systems 2D MANUAL VuMaster je manuální optický 2D měřicí přístroj přinášející VuMaster novou patentovanou technologii odměřování Colourmap. VuMaster nepoužívá tradiční stolek nebo enkodéry, ale
Zakázkové měření.
Akreditovaná kalibrační laboratoř č. 2301, 2273 Zakázkové měření 3D měření 2D/3D optické měření na mikroskopu Micro-Vu 1D měření na lineárním výškoměru 1D měření na délkoměru Precimahr ULM 520S-E Měření
Tvorba modelu přilby z 3D skenování
Tvorba modelu přilby z 3D skenování Micka Michal, Vyčichl Jan Anotace: Příspěvek se zabývá přípravou numerického modelu cyklistické ochranné přilby pro výpočet v programu ANSYS. Přilba byla snímána ručním
Cvičení 6 z předmětu CAD I PARAMETRICKÉ 3D MODELOVÁNÍ VÝKRES
Cvičení 6 z předmětu CAD I PARAMETRICKÉ 3D MODELOVÁNÍ VÝKRES Cílem cvičení je osvojit si na jednoduchém modelu odlitého obrobku základní postupy při tvorbě výkresu.obrobek je vytvořen z předem vytvořeného
Zadejte ručně název první kapitoly. Manuál. Rozhraní pro program ETABS
Zadejte ručně název první kapitoly Manuál Rozhraní pro program ETABS Všechny informace uvedené v tomto dokumentu mohou být změněny bez předchozího upozornění. Žádnou část tohoto dokumentu není dovoleno
Přesné strojírenství. 3D měření a reverzní inženýrství
Přesné strojírenství 3D měření a reverzní inženýrství Přesné strojírenství 3D Měření a reverzní inženýrství/ obsah 5 reverzní inženýrství Optické skenovací systémy 7 9 11 13 rexcan cs2+ rexcan ds3 rexcan
Albrechtova střední škola, Český Těšín, p.o. IV. Příprava tisku a tisk
Číslo projektu: Název projektu: Subjekt: Označení materiálu (přílohy): CZ.1.07/1.1.24/02.0118 Polygrafie v praxi Albrechtova střední škola, Český Těšín, p.o. IV. Příprava tisku a tisk digitální tisk Autor:
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA