Úvod. Historické mezníky
|
|
- Radim Slavík
- před 9 lety
- Počet zobrazení:
Transkript
1 Úvod Historické mezníky * 600 let př.n.l. - Chaldejci použili čerpací kolo na dopravu vody do závlahových kanálů * 230 let př.n.l. - V Egyptě bylo použito hnací lžícové kolo na pohon věder k čerpání vody * 150 let př.n.l. - V římské říši bylo použito vodní kolo na spodní vodu, v téže době používají v Řecku vodní mlýny s vodním kolem s vertikální osou (obdoba systému Savonius) * 50 let př.n.l. - se o vodních mlýnech zmiňuje řecký zeměpisec Strabo * r byly zbudovány první vodní mlýny v Německu na řece Mosel * r v Římě byl zřízen první plovoucí lodní mlýn na řece Tibeře * r tesař Halak postavil první vodní mlýn ve střední Evropě mlynáři Svachovi v Žatci na řece Ohři * r byl postaven první vodní mlýn ve středním Německu u Wurzenu * od 12.stol. je vodní kolo již známo po celé Evropě * r byl uveden do provozu první plovoucí vodní mlýn na Labi * r Francouz Besson vyvinul sudové kolo pro mlýn v Toulouse * r Jozef Karol Hell postavil vodní vahadlový stroj na potenciální energii vody * r Jozef Karol Hell na Slovensku sestrojil vysokotlaký vodosloupcový stroj * r sestrojil lékař Johann Andreas Segner reakční vodní kolo * r Segnerovo kolo zdokonalil Leonard Euler * r bylo v Německu postaveno první celoželezné vodní kolo * r vyvíjel Francouz prof. Claude Burdin první přetlakovou turbínu * r byla první Burdinova turbína uvedena do provozu * r Burdinův žák, Benoit Fourneryon pracuje na novém typu odstředivé přetlakové turbíny * r Fourneryon staví svou turbínu pro francouzské železárny * r Fourneyronova turbína byla německým technikem Henschlem doplněna o savku * r byla vynalezena Henschel-Jonvalova turbína * r vynalezl Redtenbacher stupňovitou turbínu * r sestrojil inženýr Zuppinger ve Švýcarsku první rovnotlakou turbínu s vnějším vstřikem * r vyvinul hornický technik Schwamkrug v Rudohoří rovnotlakou turbínu s vnitřním vstřikem * r americký inženýr anglického původu James Bicheno Francis zdokonalil Howdovu turbínu a vyvinul tak univerzálně použitelnou (vertikální i horizontální) přetlakovou turbínu * od r původní přenos hnací síly řešený po celé provozovně dřevěnými hřídeli a výlučně ozubenými koly je nahrazován celoželeznými transmisemi a plochými řemeny z hovězí kůže, ozubená kola zůstávají pouze jako první převod u vodních kol. * r byla vynalezena rovnotlaká Girardova turbína * r přes původní odpor zaznamenává Francisova turbína výrazné rozšíření po evropském kontinentě * r Američan Lester Allen Pelton uvažuje nad přímotlakou turbínu s lžícovitými lopatkami * r německý profesor R. Fink doplňuje Francisovu turbínu natáčivými rozváděcími lopatkami * r sestrojuje Pfarr spirálovou Francisovu turbínu s pevným rozváděčem pro velké spády * r A.G. Michael teoreticky vynalezl bubnovou turbínu, která se později stane předlohou pro maďarského profesora Bánkiho * r vyvíjí v Brně Prof.Ing.Dr.h.c. Viktor Kaplan vrtulovou turbínu * r vyvíjí Prof.Ing.Dr.h.c. Viktor Kaplan turbínu s natáčivými oběžnými lopatkami a
2 systém patentuje * r byla matematicky vyřešena Bánkiho turbína * r je vyrobena první Kaplanova turbína (brněnskou slévárnou Ignace Storka) * r je (26.3.) první Kaplanova turbín uvedena do provozu v Ulmu (jižně od Vídně) * r profesor Banki uvádí v Budapešti do provozu rovnotlakou turbínu * r E. Crewdson staví rovnotlakou turbínu pro velké spády nazvanou "Turgo" * r se rozbíhá první Kaplanova turbína v Československu v Poděbradech * r Kaplanova turbína byla použita na spád 38 metrů * r úpravou Kaplanovy turbíny vzniká diagonální Deriázova turbína * r začala hromadná likvidace malých vodních mlýnů a přidružených provozů * r Kaplanova turbína byla použita na spád 56 metrů * r Kaplanova turbína byla použita na spád 71 metrů Energie moří a oceánů Celá hmota světových moří a oceánů je v neustálém pohybu, a to nejen na povrchu, ale i ve značných hloubkách. Nejdůležitějším pohybem vodních částic na povrchu oceánů a moří je vlnění způsobené větrem, slapovým působením Měsíce a Slunce, vtokem velkých řek, posunem zemských desek v důsledku podmořských zemětřesení apod. Odhaduje se, že energie, kterou vyvinou vlny ve všech světových oceánech, dosahuje hodnoty 342 miliard MJ. V této souvislosti bylo vypočteno, že každá vlna vzdutého moře při pobřeží Velké Británie má nepřetržitě po celý rok na jeden metr své délky výkon 50 až 80 kwh. Zatím se energie oceánů využívá velice málo. První kroky k praktickému využití však už byly učiněny. Síla příboje při větších bouřkách je až neuvěřitelná. Například ve Francii přehazovaly příbojové vlny přes kamenný vlnolam vysoký 7 m balvany o hmotnosti až 3,5 t a betonový blok o hmotnosti 65 t posunuly na vzdálenost 20 m. Přesto je síla příboje zatím velmi málo používána. Cirkulace vodních mas ve světových oceánech a mořích je nejen periodická, ale uchovává svůj směr a rychlost. Stabilní proudy jsou součástí celooceánské cirkulace. Energetické využití těchto mořských proudů zůstává zatím ve stavu úvah a studií. Jako příklad lze uvést návrh na energetické využití části Golfského proudu mezi mysem Heterras a Floridou v USA. Průměrná rychlost proudu je v těchto místech 3,2 km/h ve spodních vodních vrstvách a 8,8 km/h při povrchu. Každou sekundu tudy proteče 70 miliónů m3 vody. Na úrovni mysu Heterras téměř 100 km široký proud vody se obrací k východu a směřuje k Evropě. Podle propočtů by se zde dalo získat z 1 m3 vody 0,8 kw elektrického výkonu. Celkový energetický výkon Golfského proudu v těchto místech se odhaduje na 25 tisíc MW. V projektu se uvažuje o využití velkých turbín o průměru asi m, se 2-3 lopatkami oběžného kola, otáčejícími se rychlostí 1 otáčka za minutu. Turbíny mají být upevněny ocelovými lany k těžkým kotvám v hloubce 30 m až 130 m pod hladinou. Jejich vzájemná vzdálenost by byla 100 m i s propustěmi pro velké lodi. Všechny projekty využívání mořských proudů s sebou však nesou velké riziko. Mohlo by dojít ke zpomalení Golfského proudu a možné katastrofické důsledky se dají stěží odhadnout. Příliv a odliv je důsledkem působení slapových sil Měsíce a Slunce. Na výšku přílivu a odlivu má zásadní vliv tvar pobřeží (nejvyšší známý příliv je u Nového Skotska v USA - o plných 20 m).
3 Chod slapových sil, a tím přílivů a odlivů, není pravidelný. Při stavbě přílivových elektráren je třeba přihlížet ke všem vlastnostem toho či onoho místa a ke všem nepravidelnostem, které s sebou nese. K nevýhodám přílivových elektráren patří skutečnost, že jejich pracovní doba mnohdy nesouhlasí s energetickou špičkou elektrizačních soustav a že místa vhodná pro výstavbu těchto elektráren jsou často značně vzdálena od míst spotřeby produkované energie. Přesto energie přílivů a odlivů je nadějným energetickým zdrojem pro využití v budoucnosti. Ročně by se tak mohlo získat 7,2 až 11,8 biliónů MJ elektrické energie. Potnámka k výpočtům:vzhledem k tomu, že projekt je více či méně futuristické dílo, uvádím zde spíš teoretickou část nežli výpočtovou. Nicméně zde platí vztah, pro výpočet výkonu turbíny, která může být umístěna vjedné zvěží, která slouží jako zásobárna energie vpodobě načerpané vody a to vdobě, kdy by byla energie vpřebytku. A dále uvádím zjednodušený výpočet energie větru. Zjednodušený výpočet výkonu turbíny pro spád (Jedna z věží) Q := 20 H := 300 k := 7 P := Q H k kde jep výkon [kw]q průtočné množství vody [m3/s]h spád využitelný turbínouk je bezrozměrná konstanta uváděná v rozsahu od 6,5 do 8,5 (ovlivňuje účinnost soustrojí - technická úroveň použité technologie) P = kw Zjednodušený výpočet - vítr jako forma kinetické energie Vítr vzniká tlakovými rozdíly mezi různě zahřátými oblastmi vzduchu v zemské atmosféře. Rychlost větru, která je nejdůležitějším údajem při využívání jeho energie, je úměrná velikosti tlakového rozdílu. Poblíž zemského povrchu je toto proudění ovlivňováno členitostí povrchu, ale s rostoucí výškou se rychlost větru logaritmicky zvyšuje. Vlivem Coriolisovy síly způsobené rotací Země se jeho proudění ustaluje do směru zemských rovnoběžek. Měření rychlosti větru se provádí nejčastěji miskovými anemometry.pro orientační výpočet výkonu větrné elektrárny slouží vzorec D := 20 k := 0.3 v := 100 P := k D 2 v 3 kde D je délka lopatky oběžného kola [m], v je rychlost větru [m/s] a koeficient k závisí především na typu krajiny a účinnosti větrné turbíny (jeho velikost kolísá mezi 0,2 až 0,5). Výkon roste s třetí mocninou rychlosti větru, proto i malá chyba jejího stanovení má na odhad výkonu výrazný vliv.
4 odhad výkonu výrazný vliv. P = kw Pro praktické využití energie větru jsou zajímavé výšky 40 až 100 metrů nad zemským povrchem. V tomto rozmezí závisí rychlost větru zejména na tvaru okolního terénu. Čím hladší je jeho povrch, tím vyšší je rychlost větru, nerovnosti se projevují tvorbou turbulencí. Pro rovný terén, kde je závislost mezi rychlostí a výškou ovlivňována pouze drsností povrchu lze použít vztah. Tyto dvě podstatné podmínky jsou splněny. Protože na mořské hladině se nevyskytuje terén, díky kterému by vznikal problém turbulencí. A výška by mohla být navržena vzávislosti na podmínkách pro dané umístění věží. Závěr: Vzhledem k tomu, že tento projekt jsem bral spíše jako futuristické dílo, neuvádím zde technické aspekty, které by řešili nějaký konkrétní technický problém. Snažil jsem se spíše zaměřit na vlastní nápad, který by mohl vést k využití zatím málo využíváné alternativní energie a to energie moří. Již dnes známe pokusy, které se snaží tento fenomén řešit. Mohu zde uvést: Ve Francii a Itálii jsou známy stavby přílivových mlýnů již ze 13. století. Přílivová vlna se vlévala přímo do nádrží a při odlivu se vypouštěla na mlýnská kola. Nepravidelnosti přílivů a odlivů však přinášely značné obtíže, a to nejen starobylým mlýnům. Potíže vznikaly i v později budovaných přílivových elektrárnách. Za nejstarší přílivovou elektrárnu z roku 1913 je považována anglická Dee Hydro Station v Cheshire o výkonu 635 kw. První moderní přílivová elektrárna zahájila provoz až v roce Jde o francouzskou přílivovou elektrárnu v Bretani, v ústí řeky La Rance. V těchto místech je průměrná výška přílivu 8,4 m. Přílivová voda pro turbíny je navíc posilována i přítokem řeky. Výkon elektrárny je 240 MW. Elektrárna je vybavena 24 reverzními turbínami, takže využívá jak přílivu, tak odlivu. Pracuje ročně hodin a produkuje 540 milionů kwh elektrické energie. V roce 1984 byl v Kanadě v bazénu Annapolis s výškou přílivu až 15,8 m také spuštěn první stroj přílivové elektrárny. Rotor přímoproudé turbíny se čtyřmi lopatkami má průměr 7,6 m a výkon 17,8 MW... -Jedním z nových řešení je návrh trojdílných pontonů plovoucích na hladině a zakotvených na dně. Pohyb vln by se přenášel na vodní motor. Další návrh pod názvem Ploeg se týká instalace řadu plováků, které působením vln kmitají kolem osy. Pohyb je soustavou hydraulických nebo mechanických zařízení převáděn na generátor. Jiný způsob využití energie vln byl navržen v Japonsku. Elektrárna Kalimai je podobná cisternové lodi dlouhé 80 m a široké 12 m. Mořské vlny stlačují v komorách stanice vzduch a pohánějí 3 turbíny s generátory o výkonu 200 kw. Takto upravená elektrárna je víceúčelová, protože plní funkci vlnolamu před přístavem a před rybími farmami. U havajského pobřeží byly prováděny pokusy i s minielektrárnami umístěnými v mořských bójích. -Na novou myšlenku přišli pracovníci firmy Lockheed. Navrhli konstrukci elektrárny Dam-Atol. Jde o umělý ostrov, na kterém by byla umístěna přehrada. Vlnová elektrárna má být kruhová o průměru 76 m. Lopatky zvláštního tvaru by přiváděly vodu z moře do středu elektrárny, kde by se vytvářel mohutný vír, který by otáčel lopatkami turbíny. Přivaděč vody by měl průměr 20 m a hydrogenerátor by dosahoval výkonu až 2 MW. -Vodní turbína s vertikálním hřídelem využívající oba směry průtoků vody byla zkonstruována v Japonsku. Lze ji použít i pro využití příboje. Její lopatky se samy
5 zkonstruována v Japonsku. Lze ji použít i pro využití příboje. Její lopatky se samy otevírají asi na polovině obvodu ve směru proti vodnímu průtoku. Výsledná nerovnováha tvoří točivý moment. Čtyřlopatkové turbíny mají průměr až 700 mm a výšku 150 mm. -Francouz Morion navrhuje zapustit do mořského dna obrovské disky, které by se otáčely spolu s mořským proudem. Turbína by měla průměr víc než 100 m. Tyto elektrárny navrhuje umístit k pobřeží Francie, Japonska a Iberských ostrovů. Zkušební projekt byl zrealizován u jižního pobřeží Sicílie. Výhodou je,že neohrožuje stabilitu proudů a nepodstupuje ekologická rizika. Zhodnocení: Dále bych pokračoval nejprve vhodným ukotvením věží, které by muselo být navrženo v závislosti na místních podmínkách, navržením vhodného dopravního prostředku pod hladinou a i nad ní a v neposlední řadě - ekonomické zhodnocení. Vše by muselo být nejprve podloženo výpočty. Nicméně, tento nápad by bylo třeba ještě velmi promyslet a řešit mnoho problémů, které nejsou na první podlet zřejmé. Jako je: ovlivnění mořských proudů, zásah do životního prostředí v moři... Samotná účinnost a odolnost stavby v případě špatných podmínek a mnoho dalších problémů a úskalí, které spočívají v tomto řešení.
6 používají i Svachovi v Žatci na na o savku
7
NAUČÍME VÁS, JAK BÝT EFEKTIVNĚJŠÍ. Revolvingový fond Ministerstva životního prostředí. Výukové materiály projektu VODNÍ ENERGIE
Výukové materiály projektu NAUČÍME VÁS, JAK BÝT EFEKTIVNĚJŠÍ VODNÍ ENERGIE Výukové materiály vznikly za finanční pomoci Revolvingového fondu Ministerstva životního prostředí. Za jejich obsah zodpovídá
Vývoj využití vodní energie v MVE v Čechách
Vývoj využití vodní energie v MVE v Čechách Ing. Petr Vít Povodí Ohře Chomutov, předseda odborné skupiny Vodní toky a nádrže ČVTVHS Nevím, zda jsem nejpovolanější k napsání tohoto článku, nicméně jsem
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ. Katedra hydrotechniky
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ Katedra hydrotechniky VIN - Vodohospodářské inženýrství Vodní dílo Dalešice Seminární práce Vypracoval: Lukáš Slavíček, S-35 23. května 2007 1 Historie
Víte, jak funguje malá vodní elektrárna?
Víte, jak funguje malá vodní elektrárna? Malými vodními elektrárnami rozumíme vodní elektrárny o výkonu menším než 10 MW. Používají se k výrobě elektřiny pro osobní potřebu, pro průmyslové účely i k dodávkám
Přílivové elektrárny
Přílivové elektrárny Číslo projektu Název školy Předmět CZ.1.07/1.5.00/34.0425 INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV Černoleská 1997, 256 01 Benešov BIOLOGIE A EKOLOGIE Tematický okruh Téma Obnovitelné
Energie vody. Osnova předmětu
Osnova předmětu 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) Úvod Energetika Technologie přeměny Tepelná elektrárna a její hlavní výrobní zařízení Jaderná elektrárna Ostatní tepelné elektrárny Kombinovaná výroba
Využití vodní energie Doc. Ing. Aleš Havlík, CSc.
Využití vodní energie Doc. Ing. Aleš Havlík, CSc. Historie využití vodní energie Starověk čerpání vody do závlahových kanálů pomocí vodního kola. 6. století vodní kola ve Francii 1027 mlýnský náhon vytesaný
Hydromechanické procesy Lopatkové stroje - turbíny - čerpadla
Hydromechanické procesy Lopatkové stroje - turbíny - čerpadla M. Jahoda Lopatkové stroje - rozdělení 2 a) Dle způsobu práce generátory turbíny potenciální, kinetická energie mechanická energie na hřídeli
Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů
Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 17 Téma: HYDROENERGETIKA Lektor: Ing. Petr Konáš Třída/y: 3ME, 1MSA Datum konání: 5.
Přírodní zdroje a energie
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Přírodní zdroje a energie Energie - je fyzikální veličina, která bývá charakterizována jako schopnost hmoty
ČVUT v Praze, FSV VN SOBĚNOV Tomáš Vaněček, sk. V3/52 VODNÍ NÁDRŽ SOBĚNOV. Tomáš Vaněček Obor V, 3. ročník, 2007-2008. albey@seznam.
VODNÍ NÁDRŽ SOBĚNOV Tomáš Vaněček Obor V, 3. ročník, 2007-2008 albey@seznam.cz 1 Obsah: ÚVOD...3 HISTORIE VÝSTAVBY...3 TECHNICKÉ PARAMETRY...4 NÁDRŽ...4 HRÁZ...4 ELEKTRÁRNA...4 ČÁSTI VODNÍHO DÍLA...5 PŘEHRADA...6
ENCYKLOPEDIE ENERGETIKY ENERGIE Z OBNOVITELNÝCH ZDROJŮ
ENCYKLOPEDIE ENERGETIKY ENERGIE Z OBNOVITELNÝCH ZDROJŮ ENCYKLOPEDIE ENERGETIKY ENERGIE Z OBNOVITELNÝCH ZDROJŮ OBSAH 3 OBSAH Na počátku bylo kolo František Honzák 7 Energie řek a moří Bořek Otava 17 S
Střední škola obchodu, řemesel a služeb Žamberk. Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ
Střední škola obchodu, řemesel a služeb Žamberk Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ Registrační číslo projektu: CZ.1.07/1.5.00/34.0130 Šablona: III/2 Ověřeno ve výuce dne: 19.4.2013
obr. 1 Vznik skočných vrstev v teplém období
Stojatá voda rybníky jezera lomy umělá jezera slepá ramena řek štěrkoviště, pískovny Stručný výtah HYDROLOGIE PRO ZACHRÁNCE Charakteristika stojaté vody Je podstatně bezpečnější než vody proudící, přesto
Rotační výsledkem je otáčivý pohyb (elektrické nebo spalovací #5, vodní nebo větrné
zapis_energeticke_stroje_vodni08/2012 STR Ga 1 z 5 Energetické stroje Rozdělení energetických strojů: #1 mění pohyb na #2 dynamo, alternátor, čerpadlo, kompresor #3 mění energii na #4 27. Vodní elektrárna
Vltavská kaskáda. Lipno I. Lipno II
Vltavská kaskáda Vltavská kaskáda je soustava vodních děl osazených velkými vodními elektrárnami na toku Vltavy. Všechny elektrárny jsou majetkem firmy ČEZ. Jejich provoz je automatický a jsou řízeny prostřednictvím
Elektroenergetika 1. Vodní elektrárny
Vodní elektrárny Využití vodního toku Využití potenciální (polohové a tlakové) a čátečně i kinetické energie vodního toku Využití hydroenergetického potenciálu vodních toků má výhody oproti jiným zdrojům
Elektrárny Skupiny ČEZ
Elektrárny Skupiny ČEZ v České republice prof. Úsporný 2 Největší výrobce provozuje nejvíce elektráren patří mezi největší české firmy a řadí se do první desítky největších energetických firem v Evropě.
Elektroměry. Podle principu měřicí soustavy dělíme elektroměry na: indukční elektroměry, elektronické impulzní elektroměry.
Elektroměry Elektroměry měří elektrickou energii, tj. práci elektrického proudu. Práci stejnosměrného proudu ve starých stejnosměrných sítích měřily elektroměry obsahující stejnosměrný motorek a počitadlo.
Téma 3: Voda jako biotop mořské biotopy
KBE 343 Hydrobiologie pro terrestrické biology JEN SCHEMATA, BEZ FOTO! Téma 3: Voda jako biotop mořské biotopy Proč moře? Děje v moři a nad mořem rozhodují o klimatu pevnin Produkční procesy v moři ovlivňují
JAK SE VYRÁBÍ ELEKTŘINA
JAK SE VYRÁBÍ ELEKTŘINA aneb největší současné zdroje prof. Úsporný 2 3 ELEKTŘINA PŘINÁŠÍ ENERGII TAM, KDE JE TŘEBA Bez elektřiny bychom se mohli velmi dobře obejít. Zvykli jsme si však na to, že potřebujeme
Od pramene Labe až k ústí Vltavy
Od pramene až k ústí Vltavy Hamburg Wittenberge Havel Berlin Magdeburg Wittenberg Dessau Schwarze Elster Mulde Saale Dresden Ohře Mělník Praha Hradec Králové Vltava Teplice Vltava Děčín Děčín Pramen Elbquelle
Vítězslav Stýskala TÉMA 2. Oddíl 3. Elektrické stroje
Stýskala, 2002 L e k c e z e l e k t r o t e c h n i k y Vítězslav Stýskala TÉMA 2 Oddíl 3 Elektrické stroje jsou zařízení, která přeměňují jeden druh energie na jiný, nebo mění její velikost (parametry),
TISKOVÁ ZPRÁVA Českomoravské elektrotechnické asociace
TISKOVÁ ZPRÁVA Českomoravské elektrotechnické asociace Českomoravská elektrotechnická asociace letos poprvé vyhlásila soutěž o Výroční ceny asociace za inovační produkt. Partnerem soutěže se stala Komerční
Energie mořských vln ALTERNATIVNÍ ENERGIE 6/2001 Ing. Dalibor Skácel
Energie mořských vln ALTERNATIVNÍ ENERGIE 6/2001 Ing. Dalibor Skácel Dvě třetiny naší planety je pokryto oceány, vodní plochou, která je diky vlivu Měsíce, Slunce a díky rotaci Země kolem vlastni osy v
21.6.2011. Projekt realizovaný na SPŠ Nové Město nad Metují
Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 03 - TP ing. Jan Šritr ing. Jan Šritr 2 1 Vodní
EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663
EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:
Inovace a zkvalitnění výuky prostřednictvím ICT Lopatkové stroje VODNÍ TURBÍNY - ROZDĚLENÍ Ing. Petr Plšek Číslo: VY_32_INOVACE_ Anotace:
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Lopatkové stroje VODNÍ TURBÍNY - ROZDĚLENÍ Ing. Petr
Bakalářská práce. Environmentální aspekty vodních elektráren. v České republice
UNIVERZITA PALACKÉHO V OLOMOUCI PEDAGOGICKÁ FAKULTA Katedra biologie Bakalářská práce Petr Sláčala Environmentální aspekty vodních elektráren v České republice OLOMOUC 2015 Vedoucí práce: Mgr. Monika Morris,
Vítězslav Stýskala TÉMA 2. Oddíl 3. Elektrické stroje
Stýskala, 2002 L e k c e z e l e k t r o t e c h n i k y Vítězslav Stýskala TÉMA 2 Oddíl 3 Elektrické stroje jsou zařízení, která přeměňují jeden druh energie na jiný, nebo mění její velikost (parametry),
2 Primární zdroje energie. Ing. Petr Stloukal Ústav ochrany životního prostředí Fakulta technologická Univerzita Tomáše Bati Zlín
2 Primární zdroje energie Ing. Petr Stloukal Ústav ochrany životního prostředí Fakulta technologická Univerzita Tomáše Bati Zlín Obsah přednášky 1. Zdroje energie rozdělení 2. Fosilní paliva 3. Solární
VĚTRNÉ ELEKTRÁRNY. Obsah
Středoškolská technika 2009 Setkání a prezentace prací středoškolských studentů na ČVUT VĚTRNÉ ELEKTRÁRNY Lucie Šindelářová, Petra Pěkná Střední zdravotnická škola Benešov Máchova 400, Benešov Obsah Obsah...
MALÉ VODNÍ ELEKTRÁRNY NA ŘECE MŽI
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 MALÉ VODNÍ ELEKTRÁRNY NA ŘECE
Bezpečnostní program
Bezpečnostní program bezpečnostního programu. Obsah: Prezentace EDĚ - vybrané objekty s popisem - blokový transformátor - transformátor vlastní spotřeby - turbogenerátor TG 200 MW - regulační stanice plynu
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 ELEKTROENERGETIKA Ing. ALENA SCHANDLOVÁ
Projekt modelu malé vodní elektrárny
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROENERGETIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
Malé vodní elektrárny
Malé vodní elektrárny Malé vodní elektrárny slouží k ekologicky šetrné výrobě elektrické energie. Mohou využívat potenciálu i těch vodních toků, které mají kolísavý průtok vody a jsou silně závislé na
Vodní dílo Kružberk je v provozu již 60 let
Vodní dílo Kružberk je v provozu již 60 let Pracovnice finančního odboru Nejstarší přehrada na severní Moravě a ve Slezsku je v provozu 60 let. Kdy a kde se vzala myšlenka na její výstavbu? Čemu měla původně
Určeno pro studenty kombinované formy FS, předmětu Elektrotechnika II. Vítězslav Stýskala, Jan Dudek únor 2007. Sylabus tématu
Stýskala, 2006 L e k c e z e l e k t r o t e c h n i k y Určeno pro studenty kombinované formy FS, předmětu Elektrotechnika II Vítězslav Stýskala, Jan Dudek únor 2007 Sylabus tématu 1. Elektromagnetické
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 ENERGETICKÁ ÚVAHA Mgr. LUKÁŠ FEŘT
Motor s kroužkovou kotvou. Motor s kroužkovou kotvou indukční motor. Princip jeho činnosti je stejný jako u motoru s kotvou nakrátko.
Motor s kroužkovou kotvou Motor s kroužkovou kotvou indukční motor. Princip jeho činnosti je stejný jako u motoru s kotvou nakrátko. Konstrukce: a) stator má stejnou konstrukci jako u motoru s kotvou nakrátko
VYUŽITÍ ENERGIE VODNÍHO SPÁDU
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 VYUŽITÍ ENERGIE VODNÍHO SPÁDU
Obnovitelné zdroje energie se zaměřením na využití vodní energie
UNIVERZITA PALACKÉHO V OLOMOUCI PEDAGOGICKÁ FAKULTA Katedra technické a informační výchovy Obnovitelné zdroje energie se zaměřením na využití vodní energie Bakalářská práce OLOMOUC 2012 Vedoucí práce:
Využití energie výfukových plynů k pohonu klikového hřídele. Jakub Vrba Petr Schmid Pavel Němeček
Využití energie výfukových plynů k pohonu klikového hřídele Jakub Vrba Petr Schmid Pavel Němeček Technické inovace motorových vozidel - Přednáška 07 1 Důvod inovace Jedná se o využití energie výfukových
Vydal: nám. Přemysla Otakara II. 87/25, 370 01 České Budějovice Autor textů: Ing. Josef Šťastný Fotografie poskytli: Ing. Otakar Chlouba, Ing.
Vydal: nám. Přemysla Otakara II. 87/25, 370 01 České Budějovice Autor textů: Ing. Josef Šťastný Fotografie poskytli: Ing. Otakar Chlouba, Ing. Martin Halama a Ing. Edvard Sequens ze Sdružení Calla, OÖ
Hydroenergetika (malé vodní elektrárny)
Hydroenergetika (malé vodní elektrárny) Hydroenergetický potenciál ve světě evaporizace vody (¼ solární energie) maximální potenciál: roční srážky 10 17 kg prum výška kontinetálního povrchu nad mořem =
Popis výukového materiálu
Popis výukového materiálu Číslo šablony III/2 Číslo materiálu VY_32_INOVACE_ SZ_20.7. Autor: Ing. Luboš Veselý Datum vytvoření: 13. 02. 2013 Předmět, ročník Tematický celek Téma Druh učebního materiálu
KLIMATICKÉ POMĚRY ČR. Faktory. Typické povětrnostní situace
KLIMATICKÉ POMĚRY ČR Faktory o rázu makroklimatu rozhodují faktory: INVARIANTY (neměnné, stálé) geografická šířka poloha vzhledem k oceánu ráz aktivního povrchu georeliéf (anemoorografický efekt) nadmořská
SHRNUTÍ STÁVAJÍCÍCH KONSTRUKCÍ ŠROTOVNÍKŮ
SHRNUTÍ STÁVAJÍCÍCH KONSTRUKCÍ ŠROTOVNÍKŮ Šrotování (drcení krmiv) je prakticky využíváno relativně krátkou historickou dobu. Největšího rozmachu a technického zdokonalování toto odvětví zažilo až v průběhu
Použitím elektrické energie pro pohon kol vozidel vzniká druh dopravy nazvaný elektrická vozba.
Elektrická trakce Použitím elektrické energie pro pohon kol vozidel vzniká druh dopravy nazvaný elektrická vozba. Způsob pohonu hnacích kol elektromotorem má odborný název elektrická trakce a elektromotor
ABSTRAKT: KLÍČOVÁ SLOVA: energie, alternativní, generátor, vítr, Savonius, rotor, převod, brzda ABSTRACT:
ABSTRAKT: Práce je zaměřena na návrh alternativního zdroje energie a jeho využívání v chatové oblasti do 1 kw. Popisuje výhody a nevýhody jednotlivých možných alternativ zdrojů elektrické energie. Závěrečná
Úlohy 1. kola 54. ročníku Fyzikální olympiády Databáze pro kategorie E a F
Úlohy 1. kola 54. ročníku Fyzikální olympiády Databáze pro kategorie E a F 1. Sjezdové lyžování Závodní dráha pro sjezdové lyžování má délku 1 800 m a výškový rozdíl mezi startem a cílem je 600 m. Nahradíme
Jezy a vodní turistika. Jezy vývoj, účel, umístění, rozdělení, objekty na jezech
Účel jezů Vodní stavby napříč vodním tokem vybudované za účelem vzdutí vody Zmenšení sklonu toku, stabilizace (snížení rychlostí, vymílání) Zajištění hloubek v místě odběrů Soustředění spádu pro energetické
S R N Í PRODLUŽOVÁNÍ ŽIVOTNOSTI KOMPONENT ENERGETICKÝCH ZAŘÍZENÍ
SMALL, spol. s r. o, Korunovační 905/9, Praha 7 Geodetické středisko energetiky S R N Í PRODLUŽOVÁNÍ ŽIVOTNOSTI KOMPONENT ENERGETICKÝCH ZAŘÍZENÍ Prodlužování životnosti komponent energetických zařízení
Jaké jsou charakteristické projevy slézání na svahu?
4.7.2. Svahová modelace Tíže zemská (nebo-li gravitační energie) je jedním z nejdůležitějších geomorfologických činitelů, který ovlivňuje vnější geomorfologické pochody. Působí na souši, ale i na dně moří.
Úlohy pro 52. ročník fyzikální olympiády, kategorie EF
FO52EF1: Dva cyklisté Dva cyklisté se pohybují po uzavřené závodní trase o délce 1 200 m tak, že Lenka ujede jedno kolo za dobu 120 s, Petr za 100 s. Při tréninku mohou vyjet buď stejným směrem, nebo směry
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2006 2007
TEST Z FYZIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-F-2006-01 1. Převeďte 37 mm 3 na m 3. a) 37 10-9 m 3 b) 37 10-6 m 3 c) 37 10 9 m 3 d) 37 10 3 m 3 e) 37 10-3 m 3 2. Voda v řece proudí rychlostí 4 m/s. Kolmo
PROBLEMATIKA ZÁSOBOVÁNÍ PITNOU VODOU V J IŽNÍ AMERICE (GUAYAQUIL, EKVÁDOR)
PROBLEMATIKA ZÁSOBOVÁNÍ PITNOU VODOU V J IŽNÍ AMERICE (GUAYAQUIL, EKVÁDOR) Ing. Jiří Kašparec 1), Juan Carlos Bernal 2) 1) VAE CONTROLS, s.r.o., Ostrava, obchodně technický manažer 2) Interagua Guayaquil,
A B C D E F 1 Vzdělávací oblast: Doplňující vzdělávací obory 2 Vzdělávací obor: Fyzikální praktika 3 Ročník: 9. 4 Klíčové kompetence
A B C D E F 1 Vzdělávací oblast: Doplňující vzdělávací obory 2 Vzdělávací obor: Fyzikální praktika 3 Ročník: 9. 4 Klíčové kompetence Výstupy Učivo Průřezová témata Evaluace žáka Poznámky (Dílčí kompetence)
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROENERGETIKY A EKOLOGIE BAKALÁŘSKÁ PRÁCE
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROENERGETIKY A EKOLOGIE BAKALÁŘSKÁ PRÁCE Originál (kopie) zadání BP Abstrakt Předkládaná bakalářská práce se zabývá zhodnocením provozu
pevné, přivádí-li vodu do oběžného kola na celém obvodě, nazývá se rozváděcí kolo,
1 VODNÍ TURBÍNY Zařízení měnící energii vody v energii pohybovou a následně v mechanickou práci. Hlavními částmi turbín jsou : rozváděcí ústrojí oběžné kolo. pevné, přivádí-li vodu do oběžného kola na
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROENERGETIKY A EKOLOGIE DIPLOMOVÁ PRÁCE
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROENERGETIKY A EKOLOGIE DIPLOMOVÁ PRÁCE Návrh rekonstrukce MVE v lokalitě Dvorec u Nepomuka Bc. Jiří Rod 2012 Anotace Předkládaná
PLAVIDLO. 3. Na písečném dně drží nejlépe kotva: a) Danforthova b) pluhová c) typu drak d) Bruceho
PLAVIDLO 1. Zrcadlem nafukovacího člunu se nazývá: a) dno s hladkými podlážkami b) pevná záďová část sloužící k uchycení závěsného motoru c) zpětné zrcátko na přídi člunu d) přední stříška člunu 2. Řetěz
Obnovitelné zdroje energie
Obnovitelné zdroje energie OZE V jaké souvislosti se můžeme setkat s pojmem OZE? Náplň semináře Energie Základní pojmy a veličiny OZE slunce, voda, vítr, biomasa, geotermální energie OZE v Zlínském kraji
Energie větru. Vzduch proudící v přírodě, jehož směr a rychlost se. sluneční energie.
Energie větru Energie větru Vzduch proudící v přírodě, jehož směr a rychlost se obvykle neustále mění. Příčiny: rotace země, sluneční energie. Energie větru Využitelný výkon větru asi 3 TW třetina současné
ČLÁNKY 3, 4. Petr Sopoliga. ENVIROS, s.r.o. 8. ledna 2006. Operativní hodnocení energetické náročnosti budovy Referenční budova
ČLÁNKY 3, 4 energetické náročnosti budovy budova Petr Sopoliga ENVIROS, s.r.o. 8. ledna 2006 ČLÁNKY 3, 4 Obsah přednášky Směrnice evropského parlamentu a rady č. 2002/91/ec zákona č. Návrh vyhlášky, kterou
geografie, jest nauka podávající nám, jak sám název značí-popis země; avšak obsah a rozsah tohoto popisu byl
82736-250px-coronelli_celestial_globe Geografie=Zeměpis geografie, jest nauka podávající nám, jak sám název značí-popis země; avšak obsah a rozsah tohoto popisu byl a posud do jisté míry jest sporný Topografie
VI. BUBNOVÉ MOTORY VÁLEČKY SE ZABUDOVANÝM MOTOREM. Stránka. Bubnový motor TM 114 1. Válečky se zabudovaným motorem Typ 840 50 2 4
VI. BUBNOVÉ MOTORY VÁLEČKY SE ZABUDOVANÝM MOTOREM Stránka Bubnový motor TM 114 1 Válečky se zabudovaným motorem Typ 840 50 2 4 Bubnový motor Typ 850 89 5-6 Typová řada TM 114 Bubnové motory typové řady
Technická zařízení budov zdroje energie pro dům
Technická zařízení budov zdroje energie pro dům (Rolf Disch SolarArchitektur) Zdroje energie dělíme na dva základní druhy. Toto dělení není příliš šťastné, ale protože je už zažité, budeme jej používat
Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava
Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 15. DIMENZOVÁNÍ A JIŠTĚNÍ ELEKTRICKÝCH VEDENÍ Obsah: 1. Úvod 2. podle přípustného oteplení 3. s ohledem na hospodárnost
Nezávislost na dodavatelích elektřiny
Internetový portál www.tzb-info.cz Nezávislost na dodavatelích elektřiny Ing. Bronislav Bechník, Ph.D. odborný garant oboru Obnovitelná energie a úspory energie bronislav.bechnik@topinfo.cz www.tzb-info.cz
1. Kreativita týmová trička výroba triček
1. Kreativita týmová trička výroba triček Vyřezali jsme si z papíru šablony, pak už jen stačilo několik barev ve spreji. 2. Teorie o vodních a větrných elektrárnách Energie větru Historie větrných elektráren
7. Vodní dílo SKALKA
7. Vodní dílo SKALKA POLOHA Tok Ohře říční km 242 hydrologické pořadí 1-13-01-012 Obec Cheb Okres Cheb Kraj Karlovarský Vodní dílo (VD) je nedílnou součástí vodohospodářské soustavy Skalka - Jesenice -
Slunce, erupce, ohřev sluneční koróny
Slunce, erupce, ohřev sluneční koróny Slunce jako božstvo Mnoho kultur uctívalo Slunce jako božstvo modlitbami i přinášením (lidských) obětí Egypt Re Indie Surya Řecko a Řím Apollón a Helios Mezopotámie
INJEKTOR KAPALNÝCH HNOJIV A CHEMIKÁLIÍ AMIAD
INJEKTOR KAPALNÝCH HNOJIV A CHEMIKÁLIÍ AMIAD 1 OBSAH 1. Injektor hnojiv Amiad popis 1.1. Používané typy 1.2. Vlastnosti 1.3. Hlavní části injektoru 1.4. Technická specifikace 2. Příprava injektoru instalace
Pro rozlišování různých typů hydraulických turbín se vžilo odvozené kritérium tzv. hydraulické podobnosti měrné otáčky
Hydroenergetika Rozvoj prvních civilizací byl spojen s využíváním vodní energie. Stagnující vývoj vodních strojů výrazně urychlila první průmyslová revoluce. V 19. století se začala prosazovat Francisova
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROENERGETIKY A EKOLOGIE DIPLOMOVÁ PRÁCE
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROENERGETIKY A EKOLOGIE DIPLOMOVÁ PRÁCE Posouzení možnosti stavby malé vodní elektrárny vedoucí práce: Prof. Ing. Jan Mühlbacher, CSc.
Rekultivace lomu Most Ležáky
Rekultivace lomu Most Ležáky Ing. Petr Dvořák Palivový kombinát Ústí, s.p., Ústí nad Labem Ing. Petr Dvořák dvorak@ko.pku.cz Abstrakt V sedmdesátých letech minulého století ustoupilo bývalé královské město
Energetický hydropotenciál v údolí horní Úpy
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA Katedra geografie Eva SOUČKOVÁ Energetický hydropotenciál v údolí horní Úpy Bakalářská práce Vedoucí práce: Mgr. Pavel Klapka, Ph.D. Olomouc 2011
Přehrada Mšeno na Mšenském potoce v ř. km 1,500
Přehrada Mšeno na Mšenském potoce v ř. km 1,500 Stručná historie výstavby vodního díla Jizerské hory, bohaté na srážky, jsou pramenní oblastí řady vodních toků. Hustě obydlené podhůří bylo proto často
HISTORICKÝ VÝVOJ DOPRAVY. část II. (od počátku tzv. dlouhého 19. století po současnost)
HISTORICKÝ VÝVOJ DOPRAVY část II. (od počátku tzv. dlouhého 19. století po současnost) ŽELEZNIČNÍ DOPRAVA za vzdáleného předchůdce kolejové dopravy doprava v kolejích (vyjeté či vyryté koleje v zemi) ve
okolo 500 let př.n.l. poč. 21.stol
Logo Mezinárodního roku udržitelné energie pro všechny Rok 2012 vyhlásilo Valné shromáždění Organizace Spojených Národů za Mezinárodní rok udržitelné energie pro všechny. Důvodem bylo upozornit na význam
Obnovitelné zdroje energie
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. 1 Energie větru 2 1 Energie větru Slunce
A5 S5 Coupé Cabriolet. Audi S5 Coupé Cabriolet. Náskok díky technice
A5 S5 Coupé Cabriolet Audi A5 Coupé Cabriolet Audi S5 Coupé Cabriolet Audi Náskok díky technice 120 Technická data Audi A5 Coupé Model A5 Coupé 1.8 TFSI A5 Coupé 2.0 TFSI quattro A5 Coupé 2.0 TDI Druh
VĚTRNÁ ENERGIE V KOSTCE
VĚTRNÁ ENERGIE V KOSTCE Vážení čtenáři, obnovitelné zdroje se staly nedílnou součástí energetického mixu v Evropě i po celém světě, a také v České republice si dobývají své místo. Dlouhodobým cílem evropské
Průvodce "Horní Planá"
Perník Kopec 48 48'58.57"N 13 54'3.46"E Zalesněný vrch Perník (1. 049 m) leží asi 10 km jižně od Volar nad pravým břehem Vltavy v Trojmezenské hornatině. Na jeho úbočích jsou četné skalní útvary, které
Obnovitelné zdroje energie Budovy a energie
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie Budovy a energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. 1 Energie větru 2 1 Energie
VZTAH DOPRAVY A ÚZEMÍ
VZTAH DOPRAVY A ÚZEMÍ doprava není základní funkce v území, ale je přitom velmi důležitá při tvorbě koncepce rozvoje města nejprve nutná analýza vztah doprava lidské činnosti území produkuje nebo přitahuje
50 let činností státního podniku Povodí Odry
50 let činností státního podniku Povodí Odry Územní prostor, který je v působnosti státního podniku Povodí Odry (6 252 km 2 s celkovou délkou vodních toků kolem 7 800 km), je z těch, co jsou spravovány
Podle chemických vlastností vody 1. sladkovodní jezera 2. slaná jezera 3. brakická jezera 4. smíšená jezera 5. hořká jezera
JEZERA Jezero je vodní nádrž, jež se nedá jednoduchým způsobem vypustit (na rozdíl od přehradních nádrží a rybníků), je napájena povrchovou vodou přítoky řek, podzemní vodou a není součástí světového oceánu.
PŘEHLED ČINNOSTÍ PRACOVNÍKŮ LABORATOŘE VODOHOSPODÁŘSKÉHO VÝZKUMU
PŘEHLED ČINNOSTÍ PRACOVNÍKŮ LABORATOŘE VODOHOSPODÁŘSKÉHO VÝZKUMU Vysoké učení technické v Brně, Fakulta stavební Ústav vodních staveb Laboratoř vodohospodářského výzkumu Veveří 331/95, 602 00 Brno Tel.:+420541147287,
Bretaň Itinerář cesty 15.-24.8.2008 Obecná charakteristika Bretaň (francouzsky Bretagne, bretonsky Breizh, v jazyce gallo Bertaèyn) je historická provincie v západní Francii na stejnojmenném poloostrově
VRT v Německu, trať Norimberk - Mnichov
VRT v Německu, trať Norimberk - Mnichov 1. Vysokorychlostní tratě Železniční dopravu lze rozdělit na konvenční a vysokorychlostní. Mezníkem mezi nimi je rychlost 200 km/h. Vysokorychlostní tratě mohou
VY_32_INOVACE_OV-3I-05-PREPRAVA_ROZVOD_PLYNU. Střední odborná škola a Střední odborné učiliště, Dubno
Číslo projektu Číslo materiálu Název školy Autor CZ.1.07/1.5.00/34.0581 VY_32_INOVACE_OV-3I-05-PREPRAVA_ROZVOD_PLYNU Střední odborná škola a Střední odborné učiliště, Dubno Nešvara Pavel, Krajč Silvestr
Zásobování vodou. Jaroslav Mikoláš & Radim Paloch
Zásobování vodou Jaroslav Mikoláš & Radim Paloch Přirozené vodní zdroje Zdroje vody Umělé vodní zdroje Dle 19 zákona č. 133/1985 Sb. je každý na výzvu velitele zásahu povinen poskytnout zdroje vody pro
PRÁCE S ATLASEM. Celkem 30 bodů. Potřebné vybavení: Školní atlas světa (Kartografie Praha, a. s.), psací potřeby
Soutežící: ˇ ZEMEPISNÁ ˇ OLYMPIÁDA PRÁCE S ATLASEM Celkem 30 bodů Potřebné vybavení: Školní atlas světa (Kartografie Praha, a. s.), psací potřeby 1 2 body Doprava patří mezi velmi rychle se rozvíjející
Obnovitelné zdroje energie Otázky k samotestům
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Obnovitelné zdroje energie Otázky k samotestům Ing. Michal Kabrhel, Ph.D. Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího
Petr Macher Západočeská univerzita v Plzni Univerzitní 8, 306 14 Plzeň Česká republika
KONSTRUKČNÍ NÁVRH PŘEVODOVKY PRO POHON DVOJKOLÍ REGIONÁLNÍHO VOZIDLA S ELEKTRICKÝM MOTOREM SVOČ FST 2014 Petr Macher Západočeská univerzita v Plzni Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT
Atmosféra Země a její složení
Atmosféra Země a její složení Země je obklopena vzduchovým obalem, který se nazývá atmosféra Země a sahá do výšky přibližně 1 000km. Atmosféra je složená z dusíku (78%), kyslíku (21%) vodíku, oxidu uhličitého,