Fotovoltaické články
|
|
- Romana Mašková
- před 9 lety
- Počet zobrazení:
Transkript
1 Fotovoltaické články (historie, současný stav a trendy) Prof. Ing. Vitězslav Benda, CSc ČVUT Praha, Fakulta elektrotechnická katedra elektrotechnologie
2 Fotovoltaika přímá přeměna energie slunečního záření na elektrickou energii objev fotovoltaického jevu (A. E. Becquerel ) 1877 první selénový FV článek (W. G. Adams a R. E. Day) 1954 křemíkový FV článek (D. M. Chapin, C. S. Fuller a G. L. Pearson) 1970 první FV článek na bázi GaAs heterostruktury (Alferov, Andreev a kol.) 1976 první FV článek na bázi amorfního Si ( D.Carlson and C. Wronski) 2008 instalovaný výkon FV elektráren překročil 14 GW p 2009 instalovaný výkon FV elektráren překročil 21 GW p
3 Generace volných nosičů náboje v materiálech s kovalentní vazbou d x d x G x G tot ) ( exp ) ( ) ( ) ; ( ) ( Ve vzdálenosti x pod povrchem je generováno za jednotku času G tot párů elektron-díra Je-li koncentrace nerovnovážných nosičů Dn, za jednotku čau rekombinuje R párů elektron-díra n dt n d R rec D D V ustáleném stavu je dynamická rovnováha
4 Část sluneční energie se využila na generaci volných nosičů nanokrystalický Si V homogenním materiálu je Dn = Dp (elektroneutralita)
5 Polovodičové fotovoltaické články Pro vytvoření potřebného rozdílu potenciálu je možno využít struktury s vestavěným elektrickým polem Vhodné struktury jsou: přechod PN heteropřechod (kontakt dvou různých materiálů). Generovaná proudová hustota J PV ( ) H Dn qg( ) dx q dx H 0 0 n J sr (0) J sr ( H )
6 V-A charakteristika fotovoltaických článků V-A charakteristika přechodu PN J 01 n 2 i D e L n n 1 p p0 D L p p 1 n n0 J 02 eu j eu j J J 01 exp 1 J kt 02 exp 2kT enid sc Paralelní odpor R p 1 R s I Sériový odpor R S A ill ozářená plocha A - celková plocha I PV D R p U R L Napětí na článku U = U j - R s I I U R I kt s s AillJ PV I01 exp e 1 I02 exp e 1 U R I 2kT U RsI R p
7 V-A charakteristika fotovoltaického článku a její důležité body Parametry závisejí na intenzitě dopadajícího záření Parametry U OC, I SC, U mp, I mp, P m = U mp I mp ( STC: 25 C, 1 kw/m 2, AM= 1,5) Činitel plnění U mp P I in mp FF U U mp OC I I mp SC účinnost článku
8 I (A) Vliv teploty na V-A charakteristiku a na účinnost 3,5 3 2,5 2 T U OC 0 1,5 1 0, ,1 0,2 0,3 0,4 0,5 0,6 0,7 U (V) 25 C 35 C 45 C 55 C 65 C 75 C 85 C 95 C U FV článků z c-si 1 U OC U T OC 0,4%/ K 1 T 0.5%/ K S rostoucí teplotou roste R s a klesá R p
9 Základní typy článků Krystalický Si Tenkovrstvé články CuInSe 2 amorfní křemík amorfní SiGe CdTe/CdS
10 Materiály a technologie pro fotovoltaické články Nové materiály Gratzel, DSSC polymery nanotechnologie 88% 12% R&D
11 Články z krystalického křemíku vývoj technologie
12 FV články a moduly z krystalického Si (c-si) FV články jsou realizovány z destiček krystalického Si o tloušťce 0,15 0,3 mm a hraně 100 až 200 mm c-si mono (43,4%) Ztráty materiálu při řezání cca 40% c-si multi (46,5%) c-si ribbon (2,6%) Polykrystalické pásky o šířce 100 až 150 mm a délce až 7 m jsou rozřezány laserem - minimální ztráty
13 Výroba FV článků z c-si
14 Výroba fotovoltaických článků (c-si) textura povrchu leptáním SiN(H) antireflexní vrstva a pasivace kontakty realizovány pomocí sítotisku (Ag a Al/Ag pasty) 15% 17%
15 FV článek ~0.5 V, ~30 ma/cm 2 Pro praktické použití je třeba články spojovat do série do modulů FV moduly musí být odolné proti vlhkosti, větru, dešti, krupobití (kroupy o průměru 25 mm), teplotním změnám (od -40 do +85 C) písku a mechanickému namáhání. Odolnost vůči napětí > 600 V Požadovaná životnost: let
16 Sériově zapojené FV články: všemi články teče stejný proud R s R s R s R s R p R p R p R p Optimální situace: I n článků n + 1 článků Všechny články mají stejný I mp Pokud články mají různý I mp, pracují mimo bod maximálního výkonu a účinost klesá U
17 Technologie modulů z c-si pájení těsnění tvrzené sklo EVA krycí folie (tedlar) Al rám krycí folie (tedlar) FV články tvrzené sklo EVA
18 Provozní teplota FV článků a modulů Provozní teplota FV článků v modulu závisí na teplotě okolí. Intenzitě dopadajícího záření na konstrukci modulu NOCT (Nominal Operating Cell Temperature) je definována jako teplota článků T c při teplotě okolí T a = 20 C. intenzitě slunečního záření G = 0.8 kwm 2 a rychlosti větru 1 ms 1. r thcab db b T c 1 h b T a r r thcaf thca G d f f ab 1 h f r thca r r thcaf thcaf r r thcab thcab Na zadní straně modulu je možno měřit teplotu modulu T mod T c T mod DT G G SCT
19
20
21 Stav výroby FV článků a modulů
22 Terrawattová éra: Vývojové trendy
23 Síťová parita. 2,5 EUR/W p
24 Podstatné snížení ceny Si: 2008 > 500 USD/kg USD/kg Snížení ceny modulů z krystalického křemíku
25 Další cíl EU: V roce 2020 dosáhnout výroby 10% celkové elektrické energie pomocí fotovoltaiky při ceně nižší než 0,1 /kwh
A VÝVOJOVÉ TRENDY. Prof. Ing. Vitězslav Benda, CSc. ČVUT Praha, Fakulta elektrotechnická katedra elektrotechnologie
FOTOVOLTAICKÉ SYSTÉMY DNES A VÝVOJOVÉ TRENDY Prof. Ing. Vitězslav Benda, CSc ČVUT Praha, Fakulta elektrotechnická katedra elektrotechnologie Fotovoltaika přímá přeměna energie slunečního záření na elektrickou
Ekonomické aspekty fotovoltaiky
Ekonomické aspekty fotovoltaiky Ekonomické hodnocení PV systémů Cena elektřiny vyrobená nějakým systémem (např. fotovoltaickým) se obvykle stanoví pomocí analýzy z hlediska životnosti systému Je-li životnost
Fotovoltaické systémy
Fotovoltaické systémy Prof. Ing. Vitězslav Benda, CSc ČVUT Praha, Fakulta elektrotechnická katedra elektrotechnologie 1000 W/m 2 Na zemský povrch dopadá část záření pod úhlem ϕ 1 6 MWh/m 2 W ( ϕ) = W0
Základní typy článků:
Základní typy článků: Články z krystalického Si c on ta c t a ntire fle c tio n c o a tin g Tenkovrstvé články N -ty p e P -ty p e Materiály a technologie pro fotovoltaické články Nové materiály Gratzel,
Fotovoltaický článek. Struktura na které se při ozáření generuje napětí. K popisu funkce se používá náhradní schéma
Fotovoltaický článek Struktura na které se při ozáření generuje napětí K popisu funkce se používá náhradní schéma V-A charakteristika fotovoltaických článků R s I Paralelní odpor R p Sériový odpor R S
FOTOVOLTAICKÉ SYSTÉMY
FOTOVOLTAICKÉ SYSTÉMY Prof. V. Benda, ČVUT Praha, Fakulta elektrotechnická Ing. Petr Wolf, Sunnywatt CZ, s.r.o. Ing. Kamil Staněk, Fakulta stavební ČVUT v Praze Tato prezentace je spolufinancována Evropským
Provozní podmínky fotovoltaických systémů
Provozní podmínky fotovoltaických systémů Pro provoz fotovoltaických systémů jsou důležité Orientace fotovoltaického pole vůči Slunci Lokální stínění Teplota PV pole P Pevná konstrukce (orientace, sklon)
Fotovoltaika. Ing. Stanislav Bock 3.května 2011
Fotovoltaika Ing. Stanislav Bock 3.května 2011 Fotovoltaický jev (fotoefekt) Fyzikální jev, při němž jsou elektrony uvolňovány (vyzařovány, emitovány) z látky (nejčastěji z kovu) v důsledku absorpce elektromagnetického
Obnovitelné zdroje elektrické energie Fotovoltaika kurz 3.
Obnovitelné zdroje elektrické energie Fotovoltaika kurz 3. 1 Obsah 3. Využití optického záření v energetice... 3 3.1. Sluneční záření, slunce jako zdroj energie... 3 3.2. Solární systémy...8 3.2.1 Fotovoltaické
Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Energie elektronů v atomech nabývá diskrétních hodnot energetické hladiny.
Polovodičové lasery Energie elektronů v atomech nabývá diskrétních hodnot energetické hladiny. Energetické hladiny tvoří pásy Nejvyšší zaplněný pás je valenční, nejbližší vyšší energetický pás dovolených
ČVUT v Praze. Fakulta stavební Thákurova 7, 166 29 Praha 6 email: kamil.stanek@fsv.cvut.cz http://fotovoltaika.fsv.cvut.cz BUDOVY PŘEHLED TECHNOLOGIE
ČVUT v Praze Fakulta stavební Thákurova 7, 166 29 Praha 6 email: kamil.stanek@fsv.cvut.cz http://fotovoltaika.fsv.cvut.cz FOTOVOLTAIKA PRO BUDOVY PŘEHLED TECHNOLOGIE Palivo: Sluneční záření 150 miliónů
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 FOTOVOLTAIKA ING. JAROSLAV TISOT
SOUČASNÉ TRENDY VE FOTOVOLTAICE
SOUČASNÉ TRENDY VE FOTOVOLTAICE Elektronika, mikroelektronika a inovace 2013 Ondřej Frantík Obsah Představení společnosti SOLARTEC Standartní struktura solárního článku Modifikace technologického postupu
Otázky pro samotestování. Téma1 Sluneční záření
Otázky pro samotestování Téma1 Sluneční záření 1) Jaká je vzdálenost Země od Slunce? a. 1 AU b. 6378 km c. 1,496 x 10 11 m (±1,7%) 2) Jaké množství záření dopadá přibližně na povrch atmosféry? a. 1,60210-19
1/64 Fotovoltaika - základy
1/64 Fotovoltaika - základy princip FV články FV panely účinnost vliv provozu na produkci Principy struktura křemíku 2/64 křemík krystalická mřížka: každý atom Si má čtyři vazební (valenční) elektrony,
Fotovoltaika - základy
1/64 Fotovoltaika - základy princip FV články FV panely účinnost vliv provozu na produkci Principy struktura křemíku 2/64 křemík krystalická mřížka: každý atom Si má čtyři vazební (valenční) elektrony,
Fotovoltaika - přehled
- přehled přednáška Výkonová elektronika Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace výuky technických předmětů. Fotovoltaika Fotovoltaika výroba elektrické energie ze energie
POROVNÁNÍ V-A CHARAKTERISTIK RŮZNÝCH TYPŮ FOTOVOLTAICKÝCH ČLÁNKŮ
POROVNÁNÍ V-A CHARAKTERISTIK RŮZNÝCH TYPŮ FOTOVOLTAICKÝCH ČLÁNKŮ Zadání: 1. Změřte voltampérové charakteristiky přiložených fotovoltaických článků a určete jejich typ. 2. Pro každý článek určete parametry
Otázky pro samotestování. Téma1 Sluneční záření
Otázky pro samotestování Téma1 Sluneční záření 1) Jaká je vzdálenost Země od Slunce? a. 1 AU b. 6378 km c. 1,496 x 10 11 m (±1,7%) 2) Jaké množství záření dopadá přibližně na povrch atmosféry? a. 1,60210-19
SOLYNDRA Solar Fotovoltaický systém pro ploché střechy SOLYNDRA. Nová forma fotovoltaiky.
SOLYNDRA Solar Fotovoltaický systém pro ploché střechy SOLYNDRA Nová forma fotovoltaiky. alwitra a SOLYNDRA Solar: solární kompetence pro ploché střechy Před více než deseti lety rozpoznala společnost
NAVRHOVÁNÍ DŘEVĚNÝCH KONSTRUKCÍ DLE ČSN EN 1995-1-1, ZÁKLADNÍ PROMĚNNÉ
Téma: NAVRHOVÁNÍ DŘEVĚNÝCH KONSTRUKCÍ DLE ČSN EN 1995-1-1, ZÁKLADNÍ PROMĚNNÉ Vypracoval: Ing. Roman Rázl TE NTO PR OJ E KT J E S POLUFINANC OVÁN EVR OPS KÝ M S OC IÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ
Technické podmínky výroby potištěných keramických substrátů tlustovrstvou technologií
Technické podmínky výroby potištěných keramických substrátů tlustovrstvou technologií Tento dokument obsahuje popis technologických možností při výrobě potištěných keramických substrátů PS (Printed Substrates)
Historie. Fotovoltaické elektrárny
Fotovoltaické elektrárny = aktivní využívání slunečního záření pro přímou výrobu elektrické energie sluneční záření se zachycuje ve formě fotonů a mění se přímo v elektřinu Klady nespotřebovávají při provozu
Srovnání a výhody tenkovrstvých technologií ve fotovoltaice
Srovnání a výhody tenkovrstvých technologií ve fotovoltaice Tenkovrstvé FV technologie se od klasických krystalických c-si technologií zcela liší vlastní geometrií FV článku, způsobem výroby, použitými
Základní typy článků:
Základní typy článků: Články z krystalického Si c on ta c t a ntire fle c tio n c o a tin g Tenkovrstvé články N -ty p e P -ty p e Materiály a technologie pro fotovoltaické články Nové materiály Gratzel,
Princip fotovoltaika
Fotovoltaiku lze chápat jako technologii s neomezeným r?stovým potenciálem a?asov? neomezenou možností výroby elektrické energie. Nejedná se však pouze o zajímavou technologii, ale také o vysp?lé (hi-tech)
OBSAH. 1. Energie Slunce, solární článek 2. Historie FV a trendy 3. Rozdělení FVS 4. Sluneční podmínky v ČR, PVGIS
1 OBSAH 1. Energie Slunce, solární článek 2. Historie FV a trendy 3. Rozdělení FVS 4. Sluneční podmínky v ČR, PVGIS 2 Cíle na poli OZE v EU a ČR EU 2010 až 21 % elektřiny z OZE ČR 2010 až 8 % elektřiny
λ hc Optoelektronické součástky Fotorezistor, Laserová dioda
Optoelektronické součástky Fotorezistor, Laserová dioda Úvod Optoelektronické součástky jsou založeny na interakci optického záření s elektricky nabitými částicemi v polovodičích. Vztah mezi energií fotonů
Budovy a energie Obnovitelné zdroje energie
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra technických zařízení budov Budovy a energie Obnovitelné zdroje energie doc. Ing. Michal Kabrhel, Ph.D. Verze 2.17 Princip: Křemíkový krystalický
Chytřejší solární systémy. Bílá kniha: SunPower panely generují nejvyšší finanční návratnost vašich solárních investic 2009. www.nemakej.
Chytřejší solární systémy : SunPower panely generují nejvyšší finanční návratnost vašich solárních investic 2009 www.nemakej.cz Obsah 3 4 Shrnutí Více energie díky panelům s nejvyšší účinností 22% účinnost
Univerzita Pardubice. Dopravní fakulta Jana Pernera
Univerzita Pardubice Dopravní fakulta Jana Pernera Návrh využití solární energie DPmP Tomáš Koval Bakalářská práce 2009 Prohlašuji, že tuto práci jsem vypracoval samostatně. Veškeré literární prameny
FOTOVOLTAICKÉ SYSTÉMY úvod do problematiky
FOTOVOLTAICKÉ SYSTÉMY úvod do problematiky TOMÁŠ KOSTKA, ÚNOR 2015 STŘEDNÍ ŠKOLA, HAVÍŘOV-ŠUMBARK, SÝKOROVA 1/613, PŘÍSPĚVKOVÁ ORGANIZACE 1 Obsah 1. Úvod 2. Základní zkratky a pojmy 3. Způsoby provozu
Protokol o měření. SOLAR s.r.o. IČO: Sídlo: Nová Ves, Petrova 234, PSČ
Zákazník: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Protokol o měření SOLAR s.r.o. IČO: 11111111 Sídlo: Nová Ves, Petrova 234, PSČ 999 23 Zakázka: Měřené položky: Počet stran: 5 2011_09_11_01 P Solar, PXM-P230
Aktuální trendy v akumulaci a fotovoltaice, bariéry rozvoje v ČR. Ing. Pavel Hrzina, Ph.D.
Aktuální trendy v akumulaci a fotovoltaice, bariéry rozvoje v ČR Ing. Pavel Hrzina, Ph.D. Solární energie a akumulace v ČR 2017 Osnova prezentace Vývoj nástrojů pro výrobu (PV moduly) Vývoj možností ukládání
Stavební integrace. fotovoltaických systémů
Tywoniak J., Staněk K., Ženka M. ČVUT v Praze Fakulta stavební, Katedra konstrukcí pozemních staveb Thákurova 7, 166 29 Praha 6, email: kamil.stanek@fsv.cvut.cz http://fotovoltaika.fsv.cvut.cz Stavební
Každé fotovoltaické zařízení se skládá z několika částí, kterými jsou:
Fotovoltaické zařízení jedná soubor většího počtu solárních panelů, střídačů, ostatních konstrukčních a podpůrných prvků. Energie vyrobená dopadem slunce na fotovoltaické panely se přemění ve střídačích
Unipolární tranzistory
Unipolární tranzistory MOSFET, JFET, MeSFET, NMOS, PMOS, CMOS Unipolární tranzistory aktivní součástka řízení pohybu nosičů náboje elektrickým polem většinové nosiče menšinové nosiče parazitní charakter
Fotovoltaické systémy připojené k elektrické síti
Fotovoltaické systémy připojené k elektrické síti Autonomní systémy problém s akumulací energie Systémy připojené k elektrické síti Elektrická siť nahrazuje akumulaci energie STŘÍDAČ Solar City - Amersfoort
Energetika v ČR XVIII. Solární energie
Energetika v ČR XVIII Solární energie Slunce snímek v oblasti rtg záření http://commons.wikimedia.org/wiki/file:sun_in_x-ray.png Projevy sluneční energie: - energie fosilních paliv (která vznikla z rostlinné
Lasery optické rezonátory
Lasery optické rezonátory Optické rezonátory Optickým rezonátorem se rozumí dutina obklopená odrazovými plochami, v níž je pasivní dielektrické prostředí. Rezonátor je nezbytnou součástí laseru, protože
EU peníze středním školám digitální učební materiál
EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky
VY_32_INOVACE_ELT-1.EI-14-ANORGANICKE IZOLANTY. Střední odborná škola a Střední odborné učiliště, Dubno
Číslo projektu Číslo materiálu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0581 VY_32_INOVACE_ELT-1.EI-14-ANORGANICKE IZOLANTY Střední odborná škola a Střední odborné učiliště, Dubno Ing.
POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ. (II) (Bl) ČESKOSLOVENSKÁ SOCIALISTICKÁ ( 1S ) (51) lat Cl. 4 С 21 D 1/09
ČESKOSLOVENSKÁ SOCIALISTICKÁ R E P U B L I K A ( 1S ) POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ (22) Přihlášeno 25 03 85 (21) pv 2131-85 252201 (II) (Bl) (51) lat Cl. 4 С 21 D 1/09 ÚRAD NO VYNÁLEZY A OBJEVY
Petr Klimek 13.11.08, Rusava
Petr Klimek 13.11.08, Rusava 1 OBSAH 1. Energie Slunce, solární článek 2. Historie FV a trendy 3. Rozdělení FVS 4. Sluneční podmínky v ČR, PVGIS 2 Cíle na poli OZE v EU a ČR EU 2010 až 21 % elektřiny z
Řízené polovodičové součástky. Výkonová elektronika
Řízené polovodičové součástky Výkonová elektronika Polovodičové součástky s řízeným zapnutím řídící signál přivede spínač z blokovacího do propustného stavu do závěrného stavu jen vnější komutací (přerušením)
Konstrukce fotovoltaických modulů. Ing. Pavel Hrzina, Ph.D.
Konstrukce fotovoltaických modulů Ing. Pavel Hrzina, Ph.D. 1 Osnova dnešní přednášky Materiály používané pro konstrukci FVP Konstrukce c-si FVP Konstrukce tenkovrstvých FVP Vnitřní zapojení modulů, funkce
Manuál k solárním modulům Solar-2, Solar-10 V1.4
Manuál k solárním modulům Solar-2, Solar-10 V1.4 ÚVOD Tento návod obsahuje informace o instalaci a bezpečnosti, se kterými byste se měli seznámit před tím, než začnete fotovoltaický modul používat. Distributor
Á Í Č Ě Č ň ť Š Č Ť ň ň ď Ť Ú ť Č ň ď ť Č Š Ž Ú Ť Ť Ť Ť ň Ť Ť ť Ť Ť Á Ť Ť Ť ď Ť Ť Ť Ť Ť Ť Ť Ť Ť ň ďť Ť Ť Ť Š Š Š ď ň Č Š ň Š ť Š ň Š Š Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ú Š ň ť ť Š ň Š Ž ť ť ť ň Š Č Š Š Í
DEGRADACE SOLÁRNÍCH ČLÁNKŮ SVĚTLEM LIGHT INDUCED DEGRADATION OF SOLAR CELLS
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROTECHNOLOGIE FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
Senzory v inteligentních budovách
Senzory v inteligentních budovách Pavel Ripka Katedra měření ČVUT FEL v Praze ripka@fel.cvut.cz http://measure.feld.cvut.cz/ Evropský sociální fond. Praha & EU: Investujeme do vaší budoucnosti Aplikace
Průvodce výběrem Stykače TeSys 5 Od 6 A do 16 A
Průvodce výběrem Od 6 A do 16 A Použití Jednoduché automatizační systémy Jmenovitý pracovní proud Ie max AC3 (Ue y 440 V) 6 A 6 A Ie AC1 (θ y 40 C) 12 A Jmenovité pracovní napětí 690 V Počet pólů 2 nebo
Signál. Pojmem signál míníme většinou elektrickou reprezentaci informace. měřicí zesilovač. elektrický analogový signál, proud, nebo většinou napětí
Signál Pojmem signál míníme většinou elektrickou reprezentaci informace. fyzikální veličina snímač měřicí zesilovač A/D převodník počítač elektrický analogový signál, proud, nebo většinou napětí digitální
č. 475/2005 Sb. VYHLÁŠKA kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů Ve znění: Předpis č.
č. 475/2005 Sb. VYHLÁŠKA ze dne 30. listopadu 2005, kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů Ve znění: Předpis č. K datu Poznámka 364/2007 Sb. (k 1.1.2008)
Optoelektronika. Zdroje. Detektory. Systémy
Optoelektronika Zdroje Detektory Systémy Optoelektronika Optoelektronické součástky využívají interakce záření a elektricky nabitých částic v polovodičích. 1839 E. Becquerel - Fotovoltaický jev 1873 W.
Redline. Ochrana obvodů. Ochrana osob. Zařízení přídavná. Přístroje modulové ostatní. Přípojnice. Zapouzdření. Rejstřík E.1. Systém přípojnic VBS E.
Ochrana obvodů.2 VS Ochrana osob.3.4 Přípojnice izolované typ kolíkový Přípojnice izolované typ vidlicový Zařízení přídavná.5.6 Příslušenství pro izolované přípojnice Přípojnice izolované Přístroje modulové
Server Internetu prostøednictvím slu eb (web, e-mail, pøenos souborù) poskytuje data. Na na í pracovní stanici Internet
Server Internetu prostøednictvím slu eb (web, e-mail, pøenos souborù) poskytuje data. Na na í pracovní stanici Internet
VLASTNOSTI POLOVODIČOVÝCH SOUČÁSTEK PRO VÝKONOVOU ELEKTRONIKU
VLASTNOSTI POLOVODIČOVÝCH SOUČÁSTEK PRO VÝKONOVOU ELEKTRONIKU Úvod: Čas ke studiu: Polovodičové součástky pro výkonovou elektroniku využívají stejné principy jako běžně používané polovodičové součástky
VY_32_INOVACE_06_III./2._Vodivost polovodičů
VY_32_INOVACE_06_III./2._Vodivost polovodičů Vodivost polovodičů pojem polovodiče čistý polovodič, vlastní vodivost příměsová vodivost polovodičová dioda tranzistor Polovodiče Polovodiče jsou látky, jejichž
Superkapacitory. Prof. Ing. Jaroslav Boušek, CSc. Fakulta elektrotechniky a komunikačních techologií VUT v Brně
Superkapacitory Prof. Ing. Jaroslav Boušek, CSc. Fakulta elektrotechniky a komunikačních techologií VUT v Brně Kapacitor s pevným dielektrikem Dielektrikum mezi elektrodami Polarizace dielektrika C S 0.
Systémová řešení OBO pro fotovoltaická zařízení Kompletně připravena. Bezpečně chránící.
Systémová řešení OBO pro fotovoltaická zařízení Kompletně připravena. Bezpečně chránící. Fotovoltaická zařízení inteligentně chráněna a bezpečně instalována TBS Systémy ochrany před tranzientními jevy
Obnovitelné zdroje energie Budovy a energie
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie Budovy a energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. 1 (FV) Přímé využití
Ž ř ú ř ř ř Šř ř ř ú ň Ž Ž ů ú ů šř ů ú ů ř ř Ž ř ř Č ř ř ř Č šř ů Ú Ř Ú ů ř ú ů š šř ř š ú š ř ř š š ř ř ú Ž Š ů š ř š ř Ž ů ú ů Ú Ž ř ú ř Ú ú šř ů š ů Ž Ž ř ů Ž Ú ů Ž ř ř ř ť ů ň ř ů Á ř ň ř ů Ř ú ó
Sonar. Sonar. Sonar Activity. Sonar Bas
10 Sonar Sonar Sonar Activity Sonar Bas Podhledové kazety umožňující volnost při projektování a širokou paletu řešení. Představují ojedinělé spojení akustických a protipožárních vlastností a tím zajišťují
Fotovoltaické systémy připojené k elektrické síti
Fotovoltaické systémy připojené k elektrické síti Autonomní systémy problém s akumulací energie Systémy připojené k elektrické síti Elektrická siť nahrazuje akumulaci energie STŘÍDAČ Solar City - Amersfoort
Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113
Sluneční energie, fotovoltaický jev Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113 1 Osnova přednášky Slunce jako zdroj energie Vlastnosti slunečního
2 MECHANICKÉ VLASTNOSTI SKLA
2 MECHANICKÉ VLASTNOSTI SKLA Pevnost skla reprezentující jeho mechanické vlastnosti nejčastěji bývá hlavním parametrem jeho využití. Nevýhodou skel je jejich poměrně nízká pevnost v tahu a rázu (pevnost
7. Kondenzátory. dielektrikum +Q + + + + + + + + U - - - - - - - - elektroda. Obr.2-11 Princip deskového kondenzátoru
7. Kondenzátory Kondenzátor (někdy nazývaný kapacitor) je součástka se zvýrazněnou funkční elektrickou kapacitou. Je vytvořen dvěma vodivými plochami - elektrodami, vzájemně oddělenými nevodivým dielektrikem.
Materiály. www.tzb-info.cz. Ing. Dagmar Kopačková, Ph.D. e mail:dagmar.kopackova@topinfo.cz. Internetový portál. www.tzb-info.cz
Internetový portál www.tzb-info.cz Ing. Dagmar Kopačková, Ph.D. e mail:dagmar.kopackova@topinfo.cz www.tzb-info.cz Materiály Moderní plasty nízká hmotnost, vysoká pevnost, houževnatost, snadná zpracovatelnost,
Provozní spolehlivost fotovoltaických systémů
Provozní spolehlivost fotovoltaických systémů Spolehlivost se vyjadřuje obvykle pomocí bezporuchovosti, tj. schopnosti zařízení plnit požadovanou funkci po stanovenou dobu t za stanovených podmínek bez
modulární přístroje pro diferenční obvodů
řada 90 mcb modulární přístroje pro diferenční obvodů MTC JISTIČE (EN 60898) MT Icn [A] 4500 6000 Charakteristika C B C B D In [A] * Jistič s nulovym vodičem vlevo. 1P 1P+N 1P+N* 2P 3P 4P 1P 1P+N 2P 3P
POUŽITÍ PRACOVNÍ PODMÍNKY PRACOVNÍ REŽIM. Třídy vnějších vlivů Základní charakteristiky - výňatek z ČSN 33 2000-3 (mod.
POUŽITÍ Servomotory ODACT OK jsou určeny k přestavování ovládacích orgánů vratným otočným pohybem s úhlem natočení výstupní části do 90 včetně případů, kde se vyžaduje těsný uzávěr v koncových polohách.
Redline. Ochrana obvodů. Ochrana osob. Zařízení přídavná. Přístroje modulové ostatní. Přípojnice. Zapouzdření. Rejstřík E.2. Systém přípojnic - VBS
Ochrana obvodů.2 - VS Ochrana osob.3.4 Přípojnice izolované typ kolíkový Přípojnice izolované typ vidlicový Zařízení přídavná.5.6 Příslušenství pro izolované přípojnice Přípojnice izolované Přístroje modulové
11-1. PN přechod. v přechodu MIS (Metal - Insolator - Semiconductor),
11-1. PN přechod Tzv. kontaktní jevy vznikají na přechodu látek s rozdílnou elektrickou vodivostí a jsou základem prakticky všech polovodičových součástek. v přechodu PN (který vzniká na rozhraní polovodiče
Koral. Podhledové kazety spojující estetický povrch a velmi dobré akustické vlastnosti se širokou oblastí použití.
Koral Podhledové kazety spojující estetický povrch a velmi dobré akustické vlastnosti se širokou oblastí použití. Koral Podhledové kazety Koral spojují estetický povrch a funkčnost s velmi dobrými akustickými
ESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELETROENERGETIKY A EKOLOGIE DIPLOMOVÁ PRÁCE
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELETROENERGETIKY A EKOLOGIE DIPLOMOVÁ PRÁCE Provozování FV systémů vedoucí práce: Ing. Milan Bělík, Ph. D. autor: Bc. Veronika Straková rok:
Nanotechnologie na km 2
Nanotechnologie na km 2 aneb o fotovoltaice v perspektivách A. Fejfar Fyzikální ústav Akademie věd České republiky, v.v.i. Cukrovarnická 10, 162 53 Praha 6, * e-mail: fejfar@fzu.cz Fejfar 21.9.2015 R&Dialogue
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově. 07_3_Elektrický proud v polovodičích
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_3_Elektrický proud v polovodičích Ing. Jakub Ulmann 3 Polovodiče Př. 1: Co je to? Př. 2: Co je to? Mikroprocesor
Silikonová lepidla a těsnicí hmoty
Silikonová lepidla a těsnicí hmoty Lepidla se dodávají v široké škále chemických složeních, z nichž každé má své specifické vlastnosti a použití. V této souvislosti jsou silikony často označovány spíše
Obnovitelné zdroje energie Budovy a energie
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie Budovy a energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. 1 Fotovoltaické solární
MOBILNÍ AUTONOMNÍ FOTOVOLTAICKÝ SYSTÉM
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROTECHNOLOGIE FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
Elektrické vlastnosti pevných látek
Elektrické vlastnosti pevných látek elektrická vodivost gradient vnějšího elektrického pole vyvolá přenos náboje volnými nositeli (elektrony, díry, ionty) měrná vodivost = e n n e p p [ -1 m -1 ] Kovy
2. Pasivní snímače. 2.1 Odporové snímače
. Pasivní snímače Pasivní snímače mění při působení měřené některou svoji charakteristickou vlastnost. Její změna je pak mírou hodnoty měřené veličiny a ta potom ovlivní tok elektrické energie ve vyhodnocovacím
Materiály a membrány pro kontrolu průchodu vlhkosti a vzduchu stavebními konstrukcemi.
Materiály a membrány pro kontrolu průchodu vlhkosti a vzduchu stavebními konstrukcemi. Mezikrokevní izolace pomocí pro clima DB+ Parobrzdná a vzduchotěsnící izolační pásovina pro clima DB+ poskytuje konstrukci
ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA
ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých
Ideální krystalová mřížka periodický potenciál v krystalu. pásová struktura polovodiče
Cvičení 3 Ideální krystalová mřížka periodický potenciál v krystalu Aplikace kvantové mechaniky pásová struktura polovodiče Nosiče náboje v polovodiči hustota stavů obsazovací funkce, Fermiho hladina koncentrace
O B S A H Z M Ě N Y: 1. PŘIPOJENÍ OBJEKTŮ NA ROZVOD ELEKTRICKÉ ENERGIE 2. VŠEOBECNÉ ÚDAJE 3. ZÁVĚR 1. PŘIPOJENÍ OBJEKTŮ NA ROZVOD ELEKTRICKÉ ENERGIE:
O B S A H Z M Ě N Y: 1. PŘIPOJENÍ OBJEKTŮ NA ROZVOD ELEKTRICKÉ ENERGIE 2. VŠEOBECNÉ ÚDAJE 3. ZÁVĚR 1. PŘIPOJENÍ OBJEKTŮ NA ROZVOD ELEKTRICKÉ ENERGIE: Objekt je napájen ze stávajícího distribučního rozvodu
Multifunkční přístroje pro revize elektrických instalací
Multifunkční přístroje pro revize elektrických instalací EurotestXA Euro set obj. č. MI 3105 EU EurotestXA Standard set obj. č. MI 3105 ST EurotestAT Standard set obj. č. MI 3101 ST Špičkové multifunkční
Elektronické sirény MAESTRO
Elektronické sirény MAESTRO Koncové prvky systému varování obyvatelstva Varovné signály při mimořádných událostech Reprodukce hlasových zpráv Ozvučení měst a obcí Základní charakteristika Technický popis
2. Pasivní snímače. 2.1 Odporové snímače
. Pasivní snímače Pasivní snímače při působení měřené veličiny mění svoji charakteristickou vlastnost, která potom ovlivní tok elektrické energie. Její změna je pak mírou hodnoty měřené veličiny. Pasivní
Chrániče proudové s nadproudovou ochranou (RCBO s) Řada DM60. Chrániče proudové s nadproudovou ochranou (RCBO s) Řada DM100
. Tabulka pro výběr chráničů proudových.4 Technická data chráničů proudových. hrániče proudové samostatné (R s) Řada P /.8 hrániče proudové s nadproudovou ochru (RO s) Řada M0.0.2 hrániče proudové s nadproudovou
Střední odborná škola a Střední odborné učiliště, Hradec Králové, Vocelova 1338, příspěvková organizace
Střední odborná škola a Střední odborné učiliště, Hradec Králové, Vocelova 1338, příspěvková organizace Registrační číslo projektu: Číslo DUM: Tematická oblast: Téma: Autor: CZ.1.07/1.5.00/34.0245 VY_32_INOVACE_08_A_07
TYRISTORY. Spínací součástky pro oblast největších napětí a nejvyšších proudů Nejčastěji triodový tyristor
TYRSTORY Spínací součástky pro oblast největších napětí a nejvyšších proudů Nejčastěji triodový tyristor Závěrný směr (- na A) stav s vysokou impedancí, U R, R parametr U RRM Přímý směr (+ na A) dva stavy
NAVRHOVÁNÍ DŘEVĚNÝCH KONSTRUKCÍ DŘEVO, VLASTNOSTI DŘEVA část 1.
Téma: NAVRHOVÁNÍ DŘEVĚNÝCH KONSTRUKCÍ DŘEVO, VLASTNOSTI DŘEVA část 1. Vypracoval: Ing. Roman Rázl TE NTO PR OJ E KT J E S POLUFINANC OVÁN EVR OPS KÝ M S OC IÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
Fotovoltaické systémy
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Fotovoltaické systémy Učební texty k semináři Autoři: Prof. Ing. Vítězslav Benda, CSc. (ČVUT v Praze) Ing. Kamil Staněk (ČVUT v Praze) Ing. Petr Wolf (Sunnywatt CZ, s.r.o.)
Agronomická fakulta. Vývoj a využití solární energie - fotovoltaické systémy. Bakalářská práce
Mendelova zemědělská a lesnická univerzita v Brně Agronomická fakulta Vývoj a využití solární energie - fotovoltaické systémy Bakalářská práce Vedoucí práce : Vypracovala : Ing. Martin Fajman, Ph.D. Denisa
Převodníky rozhraní RS-485/422 na optický kabel ELO E243, ELO E244, ELO E245. Uživatelský manuál
Převodníky rozhraní RS-485/422 na optický kabel ELO E243, ELO E244, ELO E245 Uživatelský manuál 1.0 Úvod...3 2.0 Principy činnosti...3 3.0 Instalace...3 3.1 Připojení rozhraní RS-422...3 3.2 Připojení