Povrchové stojaté vody, chemická stratifikace, eutrofizace
|
|
- Marcela Tesařová
- před 9 lety
- Počet zobrazení:
Transkript
1 1 Povrchové vody kontinentální = tekoucí (vodní toky) + stojaté (jezera, nádrže, rybníky) mořská voda Složení povrchových vod ovlivňuje: geologická skladba podloží a složení dnových sedimentů hydrologicko-klimatické poměry (srážky, teplota, roční období, dálkový transport škodlivin) půdně-botanické poměry (zalesnění, druhy půd) antropogenní činnost (průmysl, zemědělství, komunální odpady) příron podzemních vod
2 2 Povrchové stojaté vody fyzikálně-chemické podmínky typologie a typografie nádrží - nadmořská výška, plocha hladiny, hloubka, geologický podklad, stáří hustota a viskozita vody - ovlivňují koloběh látek, přítomnost organismů - závisejí na obsahu rozpuštěných látek, teplotě oxidačně-redukční potenciál (ORP) - závisí na ph a množství kyslíku - oxie (ORP > 50 mv), anoxie (ORP = (50, -50) mv), anaerobie (ORP < - 50 mv) hodnota ph vody - fotosyntéza: odčerpávání CO 2 => zvyšování ph - biogenní dekalcifikace: intenzivní fotosyntéza => ph = => rozpustný HCO 3- nerozpustný CaCO 3 - povlaky na vegetaci - acidita inhibuje fixaci N 2 a snižuje rozkladné procesy ve vodách
3 3 Povrchové stojaté vody fyzikálně-chemické podmínky povrchové napětí - závislost na teplotě a obsahu rozpuštěných látek ve vodě - umožňuje výskyt organismů na hladině a v blízkosti vodní blanky (neuston + pleuston) hydrostatický tlak - nestlačitelnost vody umožňuje přežít organismům i v hloubkách - rostoucí tlak => roste rozpustnost CO 2 a Ca ve vodě, roste stabilita systému CO 2 a HCO 3 - redukce vápenných koster u živočichů - růst o 0,1 MPa na 10m - eurybatní (snáží velké rozpětí) x stenobatní organismy sluneční záření - vliv na výskyt organismů, metabolické pochody, fotosyntézu - záření: nm = UV, VIS a IČ - odraz, rozptyl a absorpce - eufotická vrstva = horní prosvětlená, - afotická vrstva = spodní bez světla, odděleny kompenzační hladinou
4 4 Povrchové stojaté vody mixe a stratifikace v nádržích pohyby vodních mas - vertikální a horizontální turbulentní pohyby (pohyb se děje ve všech třech směrech) proudění (1 směr převládá) - příčiny: spád, vítr nebo hustotní/koncentrační gradient nádrže: amiktické = nemíchané monomiktické míchají se 1x ročně dimiktické - míchají se 2x ročně (naše mírné pásmo) holomiktické - míchané pořád meromiktické nádrže = chemicky stratifikované - mixolimnion, chemoklina, monimolimnion teplotní stratifikace souvisí s hustotou a viskozitou vody chemická stratifikace dána obsahem solí ve vodě
5 5 Povrchové stojaté vody mixe a stratifikace v nádržích Teplotní a kyslíkový režim jarní cirkulace - promíchávání vodního sloupce - konstantní teplota v celé nádrži: 4 C - trvá krátkou dobu Rozpustnost kyslíku ve vodě T [ C] O 2 [mg/l] (p = 101 kpa)
6 6 Povrchové stojaté vody mixe a stratifikace v nádržích letní stagnace - tvorba vrstev: 1) epilimnium 2) metalimnium - odděluje epi- a hypolimnium, pokles teploty o 1 C na 1m 3) hypolimnium
7 7 Povrchové stojaté vody mixe a stratifikace v nádržích letní stagnace (poznámky k obrázku) orthográdní křivka - oligotrofní jezera snížená fotosyntetická produktivita v oblasti epilimnia - vytvořený kyslík je spotřebován dýcháním => v porovnání s epilimniem je ho v hypolimniu více klinográdní křivka eutrofní nádrže - vysoká fotosyntetická činnost v epilimniu + postupný úbytek obsahu kyslíku po vertikále - úplné vyčerpání kyslíku ve vrstvě nade dnem => anaerobní rozklad organických látek => tvorba CO 2 a CH 4 a zapáchajících sirných sloučenin pozitivní heterográdní křivka = metalimnetické maximum - fotosyntéza na spodní hranici epilimnia s většinovým podílem v metalimniu negativní heterográdní křivka = metalimnetické minimum respirace organismů na hranici metalimnia a hypolimnia anomální křivka míchání vrstev přítokem spodní vody s vyšším obsahem kyslíku
8 8 Povrchové stojaté vody mixe a stratifikace v nádržích podzimní cirkulace promíchávání vodního sloupce - snížení teploty až na 4 C zimní stagnace - na dně 4 C - na hladině led 0 C - u eutrofních nádrží může dojít až k úplnému vyčerpání kyslíku u dna - rozklad organické hmoty - úhyn organismů
9 9 Povrchové stojaté vody koloběh kyslíku vstup/produkce/zdroj O 2 : - difúze při styku se vzduchem (zvyšována vlněním, čeřením) - fotosyntéza rostlin - přítok (u stojatých vod nezanedbatelné množství) výstup/spotřeba O 2 : - dýchání živočichů a rostlin - rozklad (dekompozice) organické hmoty bakteriemi - průchod bublin ostatních plynů vodním sloupcem - vzestup teploty (snižování procenta nasycení)
10 10 Povrchové stojaté vody koloběh kyslíku Změny koncentrací O 2, CO 2 a změny ph během dne (orientační průběh, eutrofní, nemíchaná nádrž)
11 11 Povrchové stojaté vody koloběh uhlíku
12 12 Povrchové stojaté vody koloběh fosforu clear water deprese fytoplanktonu, zvýšený obsah PO 4 3-
13 13 Povrchové stojaté vody koloběh dusíku
14 14 Povrchové stojaté vody koloběh síry
15 15 Povrchové stojaté vody koloběh železa a manganu - závislost na ORP: - v anoxickém prostředí - výskyt v redukované (rozpustné) formě - v oxickém prostředí výskyt ve formě oxidovaných sraženin
16 16 Povrchové stojaté vody koloběh železa a manganu
17 17 Eutrofizace vod = růst obsahu minerálních živin N a P a jejich sloučenin ve vodách, doprovodným jevem rozvoj fytoplanktonu, hlavně ve stojatých vodách trofický potenciál ukazatel obsahu biologicky využitelných živin: oligotrofní vody chudé na živiny, nízká primární produkce (150 g C/m 2 /rok), sekundární produkce i produkce ryb eutrofní vody bohaté na živiny, velká primární produkce (500 g C/m 2 /rok), sekundární produkce i produkce ryb; díky větší koncentraci organických látek někdy úplné vyčerpání O 2 z hypolimnia přirozená eutrofizace způsobena sloučeninami N a P z půdy, dnových sedimentů, rozkladu odumřelých organismů, nelze ji ovlivnit, vede ke stárnutí jezer velmi pomalá a přirozená přeměna původně oligotrofního jezera na eutrofní antropogenní (indukovaná) eutrofizace splachy hnojiv ze zeměděl. půdy, polyfosforečnany v pracích a čistících prostředcích, splaškové OV, atmosférická depozice s antropogenním podílem N a P
18 18 Eutrofizace vod přísun anorg. živin N a P porušuje biologickou rovnováhu ve vodě v případě P nutně biologicky využitelné formy orthofosforečnany limitujícím faktorem i CO 2 a jeho iontové formy (sinice a řasy schopny získávat CO 2 i rozkladem hydrogenuhličitanů) intenzivnější primární produkce, za určitých podmínek přemnožení fytoplanktonu zejména sinic, řas a rozsivek vegetační zabarvení = zelená/modrozelená barva celého sloupce vody vodní květ = nahromadění sinic a řas v masách těsně u hladiny Redfieldův poměr N:P=16 produkce biomasy nutně stechiometrický poměr C:N:P = 106:16:1 molární poměr celkového dusíku k celkovému fosforu (N:P) N:P 16 limitujícím prvkem růstu fytoplaktonu fosfor N:P 16 limitujícím prvkem dusík v ČR většinou N:P» 16 fosfor klíčovým faktorem eutrofizace
19 19 Eutrofizace vod zdroj: Wikipedia
20 20 Eutrofizace vod nebezpečí sekundárního znečištění vody organickými látkami (vznikajícími životní činností fytoplanktonu) zhoršení organoleptických vlastností vody (zápach) tvorba toxických organických látek cyanotoxiny (Anabaena flos-aquae, Aphanizomenon flos-aquae, r. Microcystis, r. Oscillatoria, r. Nostoc aj.) - poruchy gastrointestinálního traktu - alergické respirační reakce - dermatitidy - onemocnění jater
Kyslík. Kyslík. Rybářství 3. Kyslík. Kyslík. Koloběh kyslíku 27.11.2014. Chemismus vodního prostředí. Výskyty jednotlivých prvků a jejich koloběhy
Rybářství 3 Chemismus vodního prostředí Výskyty jednotlivých prvků a jejich koloběhy Kyslík Významný pro: dýchání hydrobiontů aerobní rozklad organické hmoty Do vody se dostává: difúzí při styku se vzduchem
Vodní prostředí. O čem to bude. Velký hydrologický cyklus v biosféře. Ze široka. Fyzikální vlastnosti vody. Chemické vlastnosti vody
Vodní prostředí O čem to bude Fyzikální vlastnosti vody Chemické vlastnosti vody Koloběhy látek ve vodě Ze široka Velký hydrologický cyklus v biosféře Světové oceány pokrývají 70,8% zemského povrchu Povrchové
Dekompozice, cykly látek, toky energií
Dekompozice, cykly látek, toky energií Vše souvisí se vším Živou hmotu tvoří 3 hlavní organické složky: - Bílkoviny, cukry, tuky Syntézu zajišťuje cca 20 biogenních prvků - Nejdůležitější C, O, N, H, P
Povrchové vody a zdroje jejich znečištění
Povrchové vody a zdroje jejich znečištění Martin Pivokonský 2. přednáška, kurz Znečišťování a ochrana vod Ústav pro životní prostředí PřF UK Ústav pro hydrodynamiku AV ČR, v. v. i. Tel.: 221 951 909 E-mail:
kyslík ve vodě CO 2 (vápenato-)uhličitanová rovnováha alkalita
kyslík ve vodě CO 2 ph (vápenato-)uhličitanová rovnováha alkalita elementární plyny s vodou nereagují, ale rozpouštějí se fyzikálně (N 2, O 2, ) plynné anorganické sloučeniny (CO 2, H 2 S, NH 3 ) s vodou
kyslík ve vodě CO 2 (vápenato-)uhličitanová rovnováha alkalita
kyslík ve vodě CO 2 ph (vápenato-)uhličitanová rovnováha alkalita elementární plyny s vodou nereagují, ale rozpouštějí se fyzikálně (N 2, O 2, ) plynné anorganické sloučeniny (CO 2, H 2 S, NH 3 ) s vodou
Hydrosféra - (vodní obal Země) soubor všeho vodstva Země povrchové vody, podpovrchové vody, vody obsažené v atmosféře a vody v živých organismech.
Hydrosféra - (vodní obal Země) soubor všeho vodstva Země povrchové vody, podpovrchové vody, vody obsažené v atmosféře a vody v živých organismech. hydrologie hydrogeografie oceánografie hydrogeologie Hydrologický
) se ve vodě ihned rozpouští za tvorby amonných solí (iontová, disociovaná forma NH 4+ ). Vzájemný poměr obou forem závisí na ph a teplotě.
Amoniakální dusík Amoniakální dusík se vyskytuje téměř ve všech typech vod. Je primárním produktem rozkladu organických dusíkatých látek živočišného i rostlinného původu. Organického původu je rovněž ve
METEOROLOGICKÉ A FYZIKÁLNĚ-CHEMICKÉ FAKTORY
Základní fyzikálně chemické parametry tekoucích a stojatých vod, odběr vzorků METEOROLOGICKÉ A FYZIKÁLNĚ-CHEMICKÉ FAKTORY Doc. Ing. Radovan Kopp, Ph.D. Odběr vzorků Při odběrech vzorků se pozoruje, měří
VODA. Voda na Zemi. Salinita vody CZ.1.07/2.2.00/28.0158. Modifikace profilu absolventa biologických studijních oborů na PřF UP. Ekologie živočichů 1
VODA EKO/EKŽO EKO/EKZSB Ivan H. Tuf Katedra ekologie a ŽP PřF UP v Olomouci Modifikace profilu absolventa : rozšíření praktické výuky a molekulárních, evolučních a cytogenetických oborů Voda na Zemi Oceány
Profil vod ke koupání - rybník Hnačov Souhrn informací o vodách ke koupání a hlavních příčinách znečištění
Profil vod ke koupání - rybník Hnačov Souhrn informací o vodách ke koupání a hlavních příčinách 1 Profil vod ke koupání Identifikátor profilu vod ke koupání 524005 Název profilu vod ke koupání (NZPFVK)
Vyhodnocení vývoje jakosti vody v nádržích na území ve správě státního podniku Povodí Labe Rok 2015
Vyhodnocení vývoje jakosti vody v nádržích na území ve správě státního podniku Povodí Labe Rok 2015 Monitoring nádrží: Monitoring jakosti vody zajišťuje státní podnik Povodí Labe prostřednictvím svých
NÁDRŽ KLÍČAVA VZTAH KVALITY VODY A INTENZITY VODÁRENSKÉHO VYUŽÍVÁNÍ
Citace Duras J.: Nádrž Klíčava vztah kvality a intenzity vodárenského využití. Sborník konference Pitná voda 2010, s. 271-276. W&ET Team, Č. Budějovice 2010. ISBN 978-80-254-6854-8 NÁDRŽ KLÍČAVA VZTAH
Každý ekosystém se skládá ze čtyř tzv. funkčních složek: biotopu, producentů, konzumentů a dekompozitorů:
9. Ekosystém Ve starších učebnicích nalezneme mnoho názvů, které se v současnosti jednotně synonymizují se slovem ekosystém: mikrokosmos, epigén, ekoid, biosystém, bioinertní těleso. Nejčastěji užívaným
S postupným nárůstem frekvence lokalit se zjevnou nadprodukcí (tzv. hypertrofie) přechází definice v devadesátých letech do podoby
Eutrofizace je definována jako proces zvyšování produkce organické hmoty ve vodě, ke které dochází především na základě zvýšeného přísunu živin (OECD 1982) S postupným nárůstem frekvence lokalit se zjevnou
Acidifikace Eutrofizace
Acidifikace Eutrofizace Acidifikace Kyselý déšť acid rain Čím je acidifikace určena? Stav vymizení neutralizační schopnosti Výskyt kyselých vod tedy koreluje s geochemickou reaktivitou hornin v podloží
Vývoj kvality vody VN Jordán v sezóně 2015
Ing. Jan Potužák, Ph.D., RNDr. Richard Faina, RNDr. Jindřich Duras, Ph.D. České Budějovice, prosinec 2015 Název a sídlo organizace: Povodí Vltavy, státní podnik Holečkova 8 150 24 Praha 5 Organizace realizující
Sloučeniny dusíku. N elementární N anorganicky vázaný. N organicky vázaný. resp. N-NH 3 dusitanový dusík N-NO. amoniakální dusík N-NH 4+
Sloučeniny dusíku Dusík patří mezi nejdůležitější biogenní prvky ve vodách Sloučeniny dusíku se uplatňují při všech biologických procesech probíhajících v povrchových, podzemních i odpadních vodách Dusík
Sloučeniny fosforu - P Geneze P
1 Sloučeniny fosforu - P Geneze P rozpouštění a vyluhování minerálů a zvětralých hornin ve vodách apatit [3 Ca 3 (PO 4 ) 2 Ca(F,Cl) 2 ], variscit (AlPO 4 2 H 2 O), strengit (FePO 4 2 H 2 O), vivianit [Fe
Primární produkce. Vazba sluneční energie v porostech Fotosyntéza Respirace
Primární produkce Vazba sluneční energie v porostech Fotosyntéza Respirace Nadzemní orgány procesy fotosyntetické Podzemní orgány funkce akumulátoru (z energetického hlediska) Nadzemní orgány mechanická
Základní fyzikálně-chemické vlastnosti vody. Molekula vody. Hustota. Viskozita
Vodní prostředí O čem to bude Fyzikální vlastnosti vody Chemické vlastnosti vody Koloběhy látek ve vodě Ze široka Velký hydrologický cyklus v biosféře Světové oceány pokrývají 70,8% zemského povrchu Povrchové
Základy pedologie a ochrana půdy
Základy pedologie a ochrana půdy 6. přednáška VZDUCH V PŮDĚ = plynná fáze půdy Význam (a faktory jeho složení): dýchání organismů výměna plynů mezi půdou a atmosférou průběh reakcí v půdě Formy: volně
molekulární struktura (vodíkové můstky, polarita) hustota viskozita teplo povrchové napětí adheze a koheze proudění
molekulární struktura (vodíkové můstky, polarita) hustota viskozita teplo povrchové napětí adheze a koheze proudění Proč se zabývat teplotou vody? řídí biologické děje (růst, přežívání, reprodukci, kompetici,...),
Mikrobiální znečištění. Obsah fosforu. Výskyt sinic
Profil vod ke koupání Souhrn informací o vodách ke koupání a hlavních příčinách Název 1 Profil vod ke koupání Identifikátor profilu vod ke koupání 524006 (IDPFVK) (m) Název profilu vod ke koupání (NZPFVK)
Klasifikace vod podle čistoty. Jakost (kvalita) vod. Čištění vod z rybářských provozů
Ochrana kvality vod Klasifikace vod podle čistoty Jakost (kvalita) vod Čištění vod z rybářských provozů Doc. Ing. Radovan Kopp, Ph.D. Klasifikace vod podle čistoty JAKOST (= KVALITA) VODY - moderní technický
Voda jako životní prostředí ph a CO 2
Hydrobiologie pro terrestrické biology Téma 8: Voda jako životní prostředí ph a CO 2 Koncentrace vodíkových iontů a systém rovnováhy forem oxidu uhličitého Koncentrace vodíkových iontů ph je dána mírou
č. 98/2011 Sb. VYHLÁŠKA ze dne 30. března 2011 o způsobu hodnocení stavu útvarů povrchových vod, způsobu hodnocení ekologického potenciálu silně
č. 98/2011 Sb. VYHLÁŠKA ze dne 30. března 2011 o způsobu hodnocení stavu útvarů povrchových vod, způsobu hodnocení ekologického potenciálu silně ovlivněných a umělých útvarů povrchových vod a náležitostech
Význam organických hnojiv pro výživu rybniční biocenózy
Význam organických hnojiv pro výživu rybniční biocenózy Pavel Hartman Název konference: Intenzivní metody chovu ryb a ochrana kvality vody Třeboň, únor 2012 1. Úvod a literární přehled Mnoho generací rybníkářů
Vliv teploty na růst
Vliv teploty na růst Zdroje živin, limitující prvky. Modely příjmu živin (Monod, Droop). Kompetice, kompetiční vyloučení, koexistence (Tilmanův model). Mixotrofie. Změny abundance v přírodních podmínkách
Sezónní peridicita planktonu. PEG model
Sezónní peridicita planktonu PEG model Paradox planktonu Paradox planktonu Vysvětlení ke kompetičnímu vytěsnění nutné déle trvající stálé podmínky, rozdíly v kompetičních schopnostech jsou asi příliš malé
neviditelné a o to více nebezpečné radioaktivní částice. Hrozbu představují i freony, které poškozují ozónovou vrstvu.
OCHRANA OVZDUŠÍ Ovzduší je pro člověka jednou z nejdůležitějších složek, které tvoří životního prostředí a bez které se nemůže obejít. Vdechovaný vzduch a vše, co obsahuje, se dostává do lidského těla
J.Lukavský, J.Pilný, H.Strusková
J.Lukavský, J.Pilný, H.Strusková Rybník Svet na medirytine Pavliny Schwarzenbergove Vzorkování Vzorkování bylo v r. 2004 zahuštěno na týdenní intervaly. Celkem bylo odebráno 32 vzorků (každý zahrnoval
Voda jako životní prostředí rozpuštěné látky : sloučeniny dusíku
Hydrobiologie pro terrestrické biology Téma 9: Voda jako životní prostředí rozpuštěné látky : sloučeniny dusíku Koloběh dusíku Dusík je jedním z hlavních biogenních prvků Hlavní zásobník : atmosféra, plynný
SINICE. Kde se vzaly? Co jsou to sinice? cyanobakterie (sinice) a řasy přirozená součást života ve vod. nádržích. důsledek eutrofizace.
Kde se vzaly? SINICE charakteristika cyanotoxiny prevence masového rozvoje možnosti jeho omezení odstraňování cyanotoxinů vodárenskými technologiemi cyanobakterie (sinice) a řasy přirozená součást života
Hydrochemie přírodní organické látky (huminové látky, AOM)
Hydrochemie přírodní organické látky (huminové látky, AM) 1 Přírodní organické látky NM (Natural rganic Matter) - významná součást povrchových vod dělení podle velikosti částic: rozpuštěné - DM (Dissolved
PRIMÁRNÍ PRODUKCE. CO 2 + H 2 A světlo, fotosyntetický pigment (CH 2 O) + H 2 O + 2A
PRIMÁRNÍ PRODUKCE PP je závislá na biochemických procesech fotosyntézy autotrofních organizmů její množství je dáno množstvím dostupných živin v systému produktem je biomasa vytvořená za časovou jednotku
Přemnožení sinic na přehradách
Modelování a simulace Marie Zachovalová, 72860 Miroslava Plachá, 139902 Přemnožení sinic na přehradách 1 Základní pojmy 1.1 Úvod Sinice jsou velkým problémem dnešní přírody. Na jedné straně jsou významnými
Vliv abiotických a biotických stresorů na vlastnosti rostlin 2015, ČZU Praha
Vliv abiotických a biotických stresorů na vlastnosti rostlin 2015, ČZU Praha Sándor T. Forczek #, Josef Holík #, Luděk Rederer &, Václav Koza & # Ústav experimantální botaniky AV ČR, v.v.i. & Povodí Labe
Obsah 5. Obsah. Úvod... 9
Obsah 5 Obsah Úvod... 9 1. Základy výživy rostlin... 11 1.1 Rostlinné živiny... 11 1.2 Příjem živin rostlinami... 12 1.3 Projevy nedostatku a nadbytku živin... 14 1.3.1 Dusík... 14 1.3.2 Fosfor... 14 1.3.3
Možné dopady měnícího se klimatu na zemědělství v ČR
Český hydrometeorologický ústav, pobočka Brno Mendelova univerzita v Brně Možné dopady měnícího se klimatu na zemědělství v ČR Jaroslav Rožnovský Okruhy přednášky Podnebí a zemědělství Počasí posledních
LIKVIDACE SPLAŠKOVÝCH ODPADNÍCH VOD
LIKVIDACE SPLAŠKOVÝCH ODPADNÍCH VOD Ing. Stanislav Frolík, Ph.D. - katedra technických zařízení budov - 1 Obsah přednášky legislativa, pojmy zdroje znečištění ukazatele znečištění způsoby likvidace odpadních
Biogeochemické cykly vybraných chemických prvků
Biogeochemické cykly vybraných chemických prvků Uhlík důležitý biogenní prvek cyklus C jedním z nejdůležitějších látkových toků v biosféře poměr mezi CO 2 a C org - vliv na oxidačně redukční potenciál
Technologie pro úpravu bazénové vody
Technologie pro úpravu GHC Invest, s.r.o. Korunovační 6 170 00 Praha 7 info@ghcinvest.cz Příměsi významné pro úpravu Anorganické látky přírodního původu - kationty kovů (Cu +/2+, Fe 2+/3+, Mn 2+, Ca 2+,
Abiotické faktory působící na vegetaci
Abiotické faktory působící na vegetaci Faktory ovlivňující strukturu a diverzitu rostlinných společenstev Abiotické - sluneční záření - vlhkost půdy - chemismus půdy nebo vodního prostředí (ph, obsah žvin)
CZ.1.07/1.5.00/34.1013
Datum: 30. 12. 2012 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07/1.5.00/34.1013 Číslo DUM: VY_32_INOVACE_269 Škola: Akademie - VOŠ, Gymn. a SOŠUP Světlá nad
Hydrochemie anorganické látky ve vodách: Al, Fe, Mn, těžké kovy. obsah v zemské kůře: Al ~ 7,5 8,3 hmot.% - třetí nejvíce zastoupený prvek
1 Hliník - Al obsah v zemské kůře: Al ~ 7,5 8,3 hmot.% - třetí nejvíce zastoupený prvek Geneze Al zvětrávání některých hlinitokřemičitanů, např. albitu NaAlSi 3 O 8 nebo anortitu CaAl 2 Si 2 O 8, slíd,
Produkce je získávána bez použití krmiv a hnojiv (přirozená produkce) nebo s omezeným využitím malých dávek krmiv nebo hnojiv.
Extenzivní chov ryb Extenzivní chov ryb předpokládá existenci tzv. normální (nezhuštěné) rybí obsádky. Počet ryb v nádrži je přizpůsoben úživnosti nádrže a množství přirozené potravní nabídky (vodní bezobratlí,
Ekosystém II. Koloběh hmoty: uhlík, dusík, fosfor. Člověk a biosféra
Ekosystém II. Koloběh hmoty: uhlík, dusík, fosfor Člověk a biosféra Koloběh hmoty v ekosystému Zásoby (pools) chemických prvků jsou uloženy v různých rezervoárech - atmosféra - hydrosféra - litosféra -
OBECNÁ FYTOTECHNIKA BLOK: VÝŽIVA ROSTLIN A HNOJENÍ Témata konzultací: Základní principy výživy rostlin. Složení rostlin. Agrochemické vlastnosti půd a půdní úrodnost. Hnojiva, organická hnojiva, minerální
SSOS_ZE_2.01 Atmosréra
Číslo a název projektu Číslo a název šablony CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT DUM číslo a název SSOS_ZE_2.01
STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace
Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
KYSLÍKOVÉ DEFICITY - PROJEV NESTABILITY RYBNIČNÍHO EKOSYSTÉMU? Ing. Ivana Beděrková Ing. Zdeňka Benedová doc. RNDr. Libor Pechar, CSc.
KYSLÍKOVÉ DEFICITY - PROJEV NESTABILITY RYBNIČNÍHO EKOSYSTÉMU? Ing. Ivana Beděrková Ing. Zdeňka Benedová doc. RNDr. Libor Pechar, CSc. Úvod do problematiky Fytoplankton=hlavní producent biomasy, na kterém
NH4 NO3 Total N PO4 Ca Mg K Na OM [mg/kg] [mg/kg] [mg/kg] [mg/kg] [g/kg] [g/kg] [g/kg] [g/kg] % Výška [m n. m.] P O P O P O P O P O P O P O P O P O
Tab. 13.. Střední hodnoty a směrodatné odchylky (s.d.) fyzikálně-chemických parametrů půdy z nadmořských výšek z obou lokalit rozdělené podle typu habitatu. Textura ukazuje procentuální zastoupení půdních
Jevy a organismy pozorovatelné pouhým okem
Jevy a organismy pozorovatelné pouhým okem Determinační kurz 2013 Bohuslavice, 10.-13.6.2013 Petr Pumann Moto: Pro posouzení rizika nezáleží na tom, zda je napočítáno např. 191 360 buněk/ml nebo odhadnuto
Eutrofizace Acidifikace
Eutrofizace Acidifikace Eutrofizace Eutrofizace Atkins (1923), Juday (1926), Fischer (1924) fosfor limitujícím prvkem, přidání způsobilo vzestup rybí produkce X dusík, draslík 60. léta 20. století vodní
CZ.1.07/2.2.00/28.0149
Vodní ekosystémy VIII Ekosystém volného moře Rozvoj a inovace výuky ekologických oborů formou komplementárního propojení studijních programů Univerzity Palackého a Ostravské univerzity CZ.1.07/2.2.00/28.0149
ZMĚNA VSTUPU FOSFORU DO VN ŠVIHOV A JEJÍHO POVODÍ V OBDOBÍ REKONSTRUKCE ČOV PELHŘIMOV. J. Dobiáš, J. Duras, K. Forejt
ZMĚNA VSTUPU FOSFORU DO VN ŠVIHOV A JEJÍHO POVODÍ V OBDOBÍ REKONSTRUKCE ČOV PELHŘIMOV J. Dobiáš, J. Duras, K. Forejt Povodí VN Švihov Návaznost na bilanci ČOV a opatření na biologických rybnících Největší
Technická Univerzita v Liberci Fakulta mechatroniky a mezioborových inženýrských studií. AQUATEST a.s.
Technická Univerzita v Liberci Fakulta mechatroniky a mezioborových inženýrských studií AQUATEST a.s. O čem to dnes bude??? Využití biofilm tvořících MO Obecné požadavky na vlastnosti nosiče biomasy Nový
ochrana a organizace povodí
ochrana a organizace povodí Tomáš DOSTÁL doc.ing. Dr. Tomáš LABURDA, Ing.; Jan DEVÁTÝ Ing., Martin NEUMANN Ing., Petr KAVKA Ing.Ph.D. katedra hydromeliorací a krajinného inženýrství B602, dostal@fsv.cvut.cz
ostatní rozpuštěné látky: křemík, vápník, železo, síra
uhlík dusík fosfor ostatní rozpuštěné látky: křemík, vápník, železo, síra opakování z minulé lekce: uhličitanová rovnováha CO 2 v povrchových vodách ne více než 20-30 mg l -1 podzemní vody obvykle desítky
3. STRUKTURA EKOSYSTÉMU
3. STRUKTURA EKOSYSTÉMU 3.4 VODA 3.4.1. VLASTNOSTI VODY VODA Voda dva významy: - chemická sloučenina 2 O - přírodní roztok plynné kapalné pevné Skupenství Voda jako chemická sloučenina 1 δ+ Základní fyzikální
primární producenti: řasy, sinice, vodní rostliny konkurence o zdroje mikrobiální smyčka
primární producenti: řasy, sinice, vodní rostliny konkurence o zdroje mikrobiální smyčka přirozená jezera (ledovcová, tektonická, ) tůně rybníky přehradní nádrže umělé tůně (lomy, pískovny) Dělení stojatých
Realizace opatřen. ení na. Ing. Jan Moronga
Realizace opatřen ení na Brněnsk nské údoln dolní nádr drži Ing. Jan Moronga Kritéria projektu snížení množství sinic v sedimentech o 50% zvýšení koncentrace kyslíku 1,0 m nade dnem na 2 mg/l Kritéria
SYSTÉMY BIOLOGICKÉHO ODSTRAŇOVÁNÍ NUTRIENTŮ
SYSTÉMY BILGICKÉH DSTRAŇVÁNÍ NUTRIENTŮ Degradace organických dusíkatých sloučenin Bílkoviny (-NH 2 ) hydrolýza deaminační proteázy enzymy aminokyseliny amoniakální dusík + organické látky nitrifikace ox/anox
POMALÉM PÍSKOVÉM. Ing. Lucie Javůrková, Ph.D. RNDr. Jana Říhová Ambrožová, Ph.D. Jaroslav Říha
APLIKACE GEOTEXTILIE NA POMALÉM PÍSKOVÉM FILTRU Ing. Lucie Javůrková, Ph.D. RNDr. Jana Říhová Ambrožová, Ph.D. Jaroslav Říha Úvod 2004 - Experiment s geotextilií na modelu (ÚV Velebudice) - hodnoceny 3
Základy koloidní chemie
Základy koloidní chemie verze 2013 Disperzní soustava směs nejméně dvou látek (složek) Nejběžnějšími disperzními soustavami jsou roztoky, ve kterých složku, která je ve směsi v přebytku, nazýváme rozpouštědlo
13/10/2015 NÁPLŇ PŘEDNÁŠKY ÚVOD DO HYDROBIOLOGIE KYSLÍK KYSLÍK KYSLÍK KYSLÍK. Chemismus vody. Obsah a koloběh základních látek ve vodě
ÚVOD DO HYDROBIOLOGIE NÁPLŇ PŘEDNÁŠKY Chemismus vody Obsah a koloběh základních látek ve vodě O 2, C, CO 2, P, N, S, Si, Miloslav Petrtýl http://home.czu.cz/petrtyl/ KYSLÍK KYSLÍK Význam? dýchání živých
Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR
Celkový dusík Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí Dopady na zdraví člověka, rizika
Vody vznikající v souvislosti s těžbou uhlí
I. Přikryl, ENKI, o.p.s., Třeboň Vody vznikající v souvislosti s těžbou uhlí Abstrakt Práce hodnotí různé typy vod, které vznikají v souvislosti s těžbou uhlí, z hlediska jejich ekologické funkce i využitelnosti
I. Morfologie toku s ohledem na bilanci transportu plavenin a splavenin
I. Morfologie toku s ohledem na bilanci transportu plavenin a splavenin I.1. Tvar koryta a jeho vývoj Klima, tvar krajiny, vegetace a geologie povodí určují morfologii vodního toku (neovlivněného antropologickou
VESMÍR. za počátek vesmíru považujeme velký třesk před 13,7 miliardami let. dochází k obrovskému uvolnění energie, která se rozpíná
VESMÍR za počátek vesmíru považujeme velký třesk před 13,7 miliardami let dochází k obrovskému uvolnění energie, která se rozpíná vznikají první atomy, jako první se tvoří atomy vodíku HVĚZDY vznikají
Martin Hynouš hynous@ghcinvest.cz gsm: 603 178 866
Martin Hynouš hynous@ghcinvest.cz gsm: 603 178 866 1. VODA 2. LEGISLATIVA 3. TECHNOLOGIE 4. CHEMIE H 2 0 nejběţnější sloučenina na světě tvoří přibliţně 71% veškerého povrchu Země je tvořena 2 atomy vodíku
Úprava podzemních vod
Úprava podzemních vod 1 Způsoby úpravy podzemních vod Neutralizace = odkyselování = stabilizace vody odstranění CO 2 a úprava vody do vápenato-uhličitanové rovnováhy Odstranění plynných složek z vody (Rn,
Havarijní úhyny ryb a jejich hlavní příčiny
SÍŤ ENVIRONMENTÁLNÍCH A PORADENSKÝCH CENTER PRO PÉČI O MOKŘADY A VODU V KRAJINĚ Havarijní úhyny ryb a jejich hlavní příčiny J. Máchová 1), R. Faina 2), Z. Svobodová 1), H. Kroupová 1), O. Valentová 1)
6.Úprava a čistění vod pro průmyslové a speciální účely
6.Úprava a čistění vod pro průmyslové a speciální účely Ivan Holoubek Zdeněk Horsák RECETOX, Masaryk University, Brno, CR holoubek@recetox.muni.cz; http://recetox.muni.cz Inovace tohoto předmětu je spolufinancována
PRŮBĚH CHEMICKÉ REAKCE
PRŮBĚH CHEMICKÉ REAKCE Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 12. 12. 2012 Ročník: osmý Vzdělávací oblast: Člověk a příroda / Chemie / Chemické reakce 1 Anotace: Žáci se seznámí s chemickou
4 ROKY HYDROBIOLOGA NA MOSTECKÉM JEZEŘE
4 ROKY HYDROBIOLOGA NA MOSTECKÉM JEZEŘE JANA ŘÍHOVÁ AMBROŽOVÁ, BARBORA KOFROŇOVÁ VŠCHT ÚTVP TECHNICKÁ 5, PRAHA 6 UJEP FŽP KPV KRÁLOVA VÝŠINA 7, ÚSTÍ NAD LABEM V rámci řešeného projektu TA ČR č. TA 01020592,
Ekosystém I. Primární a sekundární produce, dekompozice Trofická struktura Účinnost transformace. Koloběh hmoty
Ekosystém I. Primární a sekundární produce, dekompozice Trofická struktura Účinnost transformace Koloběh hmoty Ekosystém Společenstvo a abiotické podmínky - propojeno tokem energie a koloběhem hmoty -
Biologicky rozložitelné suroviny Znaky kvalitního kompostu
Kompost patří k nejstarším a nejpřirozenějším prostředkům pro zlepšování vlastností půdy. Pro jeho výrobu jsou zásadní organické zbytky z domácností, ze zahrady atp. Kompost výrazně přispívá k udržení
Čištění důlních vod prostřednictvím bioremediace v přírodních mokřadech
Čištění důlních vod prostřednictvím bioremediace v přírodních mokřadech Spolupracovaly: Technická univerzita v Liberci, fakulta mechatroniky a mezioborových studií Masarykova univerzita, Přírodovědecká
Voda koloběh vody a vodní bilance
Voda koloběh vody a vodní bilance Voda na Zemi Sladkovodní zásobníky ledovce (více jak 2/3!) půda (22,22%) jezera (0,33%) atmosféra (0,03%) řeky (0,003%) světové sladkovodní zásoby jsou především v půdě
Negativní vliv faktorů bezprostředněse podílejících se na množství a kvalitu dodávané organické hmoty do půdy
Organickáhnojiva a jejich vliv na bilanci organických látek v půdě Petr Škarpa Mendelova univerzita v Brně Agronomická fakulta Ústav agrochemie, půdoznalství, mikrobiologie a výživy rostlin Organická hnojiva
Podle chemických vlastností vody 1. sladkovodní jezera 2. slaná jezera 3. brakická jezera 4. smíšená jezera 5. hořká jezera
JEZERA Jezero je vodní nádrž, jež se nedá jednoduchým způsobem vypustit (na rozdíl od přehradních nádrží a rybníků), je napájena povrchovou vodou přítoky řek, podzemní vodou a není součástí světového oceánu.
DEKOMPOZICE, CYKLY LÁTEK, TOKY ENERGIÍ
DEKOMPOZICE, CYKLY LÁTEK, TOKY ENERGIÍ Vše souvisí se vším Živou hmotu tvoří 3 hlavní organické složky: Bílkoviny, cukry, tuky Syntézu zajišťuje cca 20 biogenních prvků Nejdůležitější C, O, N, H, P tzv.
BIOLOGIE OCEÁNŮ A MOŘÍ
BIOLOGIE OCEÁNŮ A MOŘÍ 1. ekologické faktory prostředí světlo salinita, hustota, tlak teplota obsah rozpuštěných látek a plynů 2 1.1 sluneční světlo ubývání světla do hloubky odraz světla od vodní hladiny,
Potřeba pitné vody Distribuční systém v Praze. Želivka (nádrž Švihov, řeka Želivka) povrchová voda
Potřeba pitné vody Distribuční systém v Praze Želivka (nádrž Švihov, řeka Želivka) povrchová voda Kárané (řeka Jizera) Podolí (řeka Vltava) podzemní voda povrchová voda 1 Podzemní voda Kárané 680 studní
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Anotace: Inovace a zkvalitnění výuky prostřednictvím ICT Základy ekologie Ekosystém, dělení
Střední škola obchodu, řemesel a služeb Žamberk. Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ
Střední škola obchodu, řemesel a služeb Žamberk Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ Registrační číslo projektu: CZ.1.07/1.5.00/34.0130 Šablona: III/2 Ověřeno ve výuce dne: 7.6.2013
Monitoring stavu vody ve vodní nádrži v parku Pod Plachtami
Sdružení Flos Aquae Monitoring stavu vody ve vodní nádrži v parku Pod Plachtami Autorský kolektiv: Ing. Eliška Maršálková, Ph.D. Ing. Marcela Lagová Prof. Ing. Blahoslav Maršálek, CSc. Brno, květen 2013
Střední škola obchodu, řemesel a služeb Žamberk. Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ
Střední škola obchodu, řemesel a služeb Žamberk Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ Registrační číslo projektu: CZ.1.07/1.5.00/34.0130 Šablona: III/2 Ověřeno ve výuce dne: 8.3.2013
Denitrifikace odpadních vod s vysokou koncentrací dusičnanů
Denitrifikace odpadních vod s vysokou koncentrací dusičnanů Dorota Horová, Petr Bezucha Unipetrol výzkumně vzdělávací centrum, a.s., Ústí nad Labem dorota.horova@unicre.cz Souhrn Biologická denitrifikace
Problematika vzorkování povrchových vod ke koupání
Problematika vzorkování povrchových vod ke koupání Seminář Laboratorní metody, vzorkování a způsoby hodnocení povrchových vod ke koupání Výzkumný ústav vodohospodářský T.G.M., v.v.i., 29.4.2014 Petr Pumann
ODPADNÍ VODY ODPADNÍ VODY. další typy znečištění. Ukazatele znečištění odpadních vod. přehled znečišťujících látek v odpadních vodách
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 množství (mil.m 3 ) ODPADNÍ VODY ODPADNÍ VODY vody
HYDROSFÉRA 0,6% 2,14% 97,2%
HYDROSFÉRA 0,6% 2,14% 97,2% PODZEMNÍ VODA Fosilní voda Proudící voda evapotranspirace Celkový odtok Přímý odtok infitrace Základní odtok VODA OBNOVITELNÝ PŘÍRODNÍ ZDROJ Hydrologický cyklus Zdrojem energie
Ammonium hydrogencarbonate, Ammonium bicarbonate Molární hmotnost: 79,06 Molekulový vzorec: NH 4 HCO 3
BEZPEČNOSTNÍ LIST podle Nařízení (ES) č. 1907/2006/EC (REACH), ve znění nařízení č.453/2010/ec Datum vydání: 3.4.2014 Datum revize: 1.6.2015 HYDROGENUHLIČITAN AMONNÝ ODDÍL 1. IDENTIFIKACE LÁTKY / SMĚSI
Jan POTUŽÁK a Kateřina KOLÁŘOVÁ. Povodí Vltavy, státní podnik, VHL České Budějovice
Jan POTUŽÁK a Kateřina KOLÁŘOVÁ Povodí Vltavy, státní podnik, VHL České Budějovice Mapy a umístění rybník Zhejral VN Karhov Rybník Zhejral (49 º 13'12.975''N; 15º18 48.557''E) Zatopená plocha: 14,46 ha
05 Biogeochemické cykly
05 Biogeochemické cykly Ekologie Ing. Lucie Kochánková, Ph.D. Prvky hlavními - biogenními prvky: C, H, O, N, S a P v menších množstvích prvky: Fe, Na, K, Ca, Cl atd. ve stopových množstvích I, Se atd.
Koloběh látek v přírodě - koloběh dusíku
Koloběh látek v přírodě - koloběh dusíku Globální oběh látek v přírodě se žádná látka nevyskytuje stále na jednom místě díky různým činitelům (voda, vítr..) se látky dostávají do pohybu oběhu - cyklu N
Studium a využití mokřadních systémů pro čištění ídůlních vod. Ing. Irena Šupíková
Studium a využití mokřadních systémů pro čištění ídůlních vod Ing. Irena Šupíková Obsah práce Téma -přírodní geochemické procesy a podmínky pro čištění kyselých DV (Fe, Mn, sírany) - sanační pilotní systém