Studium růstu kovových nanostruktur na povrchu křemíku Si(100)-(2 1) pomocí techniky STM
|
|
- Libor Kraus
- před 9 lety
- Počet zobrazení:
Transkript
1 Studium růstu kovových nanostruktur na povrchu křemíku Si(100)-(2 1) pomocí techniky STM Jan Pudl, KEVF MFF UK Technika STM Technika řádkovací tunelové mikroskopie (STM) umožňuje dosáhnout atomárního rozlišení v reálném prostoru. Je založena na pohybu ostrého vodivého hrotu nad vodivým povrchem vzorku. Přiložíme-li mezi hrot a vzorek napětí U a přiblížíme-li je na dostatečně malou vzdálenost, bude mezi nimi procházet tunelový proud I o velikosti I = UC ( U ) exp( 2 κ ), κ 0 s 2 [( 2 / h ) φ] 1/ 2 0 m e / =, kde s je efektivní šířka bariéry, φ její efektivní velikost, C(U) odchylka od voltampérové charakteristiky tunelového přechodu od linearity, m e hmotnost elektronu a h je Planckova konstanta. Tunelový proud je silně závislý na efektivní šířce bariéry, neboli na vzdálenosti hrotu od vzorku. To je důsledkem toho, že hustota elektronových stavů hrotu i vzorku exponenciálně klesá se vzdáleností od povrchu. Tohoto faktu se využívá pro regulaci vzdálenosti hrotu od vzorku pomocí negativní zpětné vazby. STM poskytuje informaci o elektronové struktuře a topologii zkoumaného vzorku. Tunelový proud ale přímo závisí pouze na lokální elektronové hustotě na povrchu vzorku a topologie z ní vyplývá netriviálním způsobem. Navíc obraz z STM závisí i na vlastnostech hrotu. A to jak jeho elektronové struktuře, tak i jeho tvaru. Samotná přítomnost hrotu nad povrchem vzorku pak tento ovlivňuje a tím i výsledný obraz. Tyto skutečnosti velice komplikují interpretaci obrazů z STM. Slitina stříbra a india na povrchu Si(100)-(2 1) Povrch Si(100)-(2 1) Povrch Si(100)-(2 1) je tvořen dimery uspořádanými do řádků [1]. Ve snaze snížit povrchovou energii dochází k přesunu náboje mezi atomy v dimeru, což vede ke sklonění dimerů (buckling) [2]. Na Si(100)-(2 1) se vyskytují dva typy teras [3]. Řádky dimerů na terase typu A jsou rovnoběžné se schody na povrchu, na terase typu B jsou řádky dimerů kolmé na schody. Řádky dimerů na terasách různých typů jsou navzájem kolmé. Na povrchu
2 Si(100)-(2 1) se vyskytují tři základní druhy defektů [4]. Defekty typu A (chybějící dimer) a B (dvojice chybějících dimerů) se v STM zobrazují jako díry v povrchu v obsazených i neobsazených stavech. Defekty typu C se v obsazených stavech zobrazují jako díry v povrchu, kdežto v neobsazených stavech se zobrazují jako výčnělek. Tyto defekty jsou pravděpodobně způsobeny adsorbovanou vodou na povrchu dvou sousedních křemíkových dimerů [5, 6]. Defekty hrají důležitou roli při růstu materiálu na povrchu. Defekty typu A a B ovlivňují difusní bariéru pro adsorbované atomy, defekty typu C a schody, na které jsou kolmé dimerové řádky, fungují jako nukleační centra. Struktura systému In/Si(100)-(2 1) Indium na povrchu Si(100)-(2 1) roste v podobě řetízků kolmých na dimerové řádky substrátu [7-9]. Indiové atomy v řetízku jsou uspořádány do dimerů adsorbovaných mezi dvěma sousedními dimerovými řádky křemíkového substrátu. Dimery substrátu jsou rovnoběžné s dimery v indiových řetízcích (tzv. parallel adatom dimer model). Atomy india v dimeru mají nenasycené vazby, což způsobuje velký rozdíl v kontrastu v STM obrazu v obsazených a neobsazených stavech. Struktura systému Ag/Si(100)-(2 1) Stříbro na povrchu Si(100)-(2 1) vytváří řetízky jen při velmi malých pokrytích. Při vyšších pokrytích roste, na rozdíl od india, v podobě dvoudimenzionálních ostrůvků. Atomární struktura stříbra na tomto povrchu křemíku není příliš dobře známa. Publikované práce na toto téma se většinou shodují v tom, že stříbro vytváří dimery. Liší se ale v jejich přesném umístění a orientaci vzhledem k substrátu [10, 11]. Systém In/Si(100)-(2 1) se zdá být zajímavým modelovým případem pro studium kvantových drátů. Bylo ale zjištěno ([12]), že takto narostlé kvantové dráty můžou být nevodivé. Toto by mohlo být ovlivněno přidáním dalšího kovu a vytvořením povrchové slitiny či dekorací indiových řetízků tímto druhým kovem. Tímto problémem se zatím mnoho prací nezabývalo. V publikaci [13] je studována současná depozice india a cínu. Cín vytváří na povrchu Si(100)-(2 1) řetízky s velice podobnou strukturou jako indium. Tvorba smíšených dimerů cín-indium je ale podle citované práce velmi nepravděpodobná. Podle [14] závisí vlastnosti vzniklých struktur na pořadí depozice jednotlivých kovů. Toto bylo hlavní motivací pro studium povrchových slitin kovů na povrchu Si(100)-(2 1). Z prvních experimentů studujících růst bimetalického systému india a stříbra vyplývají některé zajímavé vlastnosti. Morfologie vznikajících struktur závisí na pořadí depozice kovů.
3 Při současné depozici stříbra a india vznikají dvoudimenzionální ostrůvkové struktury složené z řetízků. Indium samo naproti tomu tvoří pouze izolované řetízky. Při postupné depozici nejprve stříbra a následně india vznikají podobné ostrůvkové struktury jako při současné depozici, což je patrně dáno velkou pohyblivostí stříbra. Při postupné depozici india a stříbra vznikají převážně řetízky, v nichž jsou smíchány stříbro a indium. Zahřejeme-li takto narostlou vrstvu na 100 C na dobu jedné minuty, vytvoří se opět ostrůvkové struktury jako při současné depozici. Pro odlišení stříbra a india v STM snímcích vytvořených bimetalických struktur lze s výhodou využít jejich rozdílného kontrastu v obsazených a neobsazených stavech. Přestože přesná struktura stříbra na povrchu Si(100)-(2 1) není známa, můžeme předpokládat alespoň tvorbu dimerů. Z počátku se zdálo, že deponovaná struktura sestává pouze z indiových a stříbrných dimerů. Na základě tohoto předpokladu byla provedeno statistické zpracování získaných STM snímků, ze kterého vyplynulo, že takto určený poměr množství deponovaných kovů by se výrazně lišil od poměru spočteného na základě měření tloušťky kmitajícím krystalem. Další experimenty, zvláště pak sledování časového vývoje deponovaných vrstev, ukázaly, že skutečná atomární struktura zkoumaného bimetalického systému je výrazně složitější. Tyto experimenty naznačují, že stříbro dekoruje indiové řetízky či dokonce roste přímo na nich a to při pokrytích mnohem menších než jedna monovrstva. Ze samotných STM snímků pravděpodobně nebude možné určit atomární strukturu a bude k jejímu určení provést teoretické výpočty. Použití metody kinetické Monte Carlo (KMC) pro studium růstu Metoda KMC je vhodná pro modelování stochastických procesů. Obecně probíhá v iteračních krocích, kdy se na základě četností uvažovaných procesů nejprve generuje čas příští události a následně typ procesu. Při konkrétních aplikacích této metody pak vstupují do hry kvalitativní vlastnosti zkoumaného systému a z nich vyplívající počet uvažovaných parametrů. Procesy probíhající při růstu tenkých vrstev jsou s výjimkou dopadu atomů na povrch považovány za tepelně aktivované a jejich četnost je dána výrazem kde υ 0 E a υ = ν 0 exp, kt je exponencielní prefaktor, Ea je aktivační energie procesu a T je teplota systému. Použití metody KMC pro studium růstu tenkých vrstev je tedy přirozené. Obecně je nutno
4 zahrnout do modelu minimálně dopad atomů na povrch, migrace atomů po povrchu a připojovaní, respektive odpojování atomů k/od ostrůvků. Počet parametrů, které musíme zahrnout do modelu je dán atomární strukturou zkoumaného systému a to jak substrátu tak adsorbátu. Pro migraci atomů na povrchu Si(100)- (2 1) je nutné zahrnout jeho anizotropii (směr kolmý a směr rovnoběžný s dimerovými řádky). Při simulaci růstu bimetalické vrstvy (kovy A a B) je pak nutné uvažovat minimálně čtyři parametry pro odpojování atomů od deponované struktury odpojení atomu A od atomu A, odpojení atomu B od atomu B a odpojení atomu A od atomu B, respektive atomu B od atomu A, jejichž aktivační energie jsou obecně různé. Porovnáním výsledků simulace a naměřených dat je možné určit jednak parametry růstových procesů, jednak alespoň částečně ověřit předpokládanou atomární strukturu deponované vrstvy. Nutno zdůraznit, že použití metody KMC je časově dosti náročné. Je nutno provést velké množství výpočtů a také získat velké množství experimentálních dat pro statistické srovnání simulace s experimentem. Ab initio výpočet atomární struktury Ab inito výpočty, nebo-li výpočty z prvních principů, jsou založeny na použití základních fyzikálních zákonů mikrosvěta. Spočívají v řešení pohybových rovnic a do výpočtu vstupují jako parametry pouze typy atomů a jejich počáteční polohy. Na rozdíl od jiných metod zde do výpočtu nevstupují žádné apriorní předpoklady o vlastnostech zkoumaného systému, jejichž platnost je vždycky nejistá a výsledek výpočtu přitom zásadně ovlivňují. Důležitým faktorem této metody je selfkonzistence, to jest vnitřní nerozporuplnost získaných výsledků. Spočítané polohy atomů jsou rovnovážnými polohami uvnitř zkoumané struktury. Tato metoda je ovšem velice náročná na znalost kvantově mechanických zákonů mikrosvěta a zvláště pak na strojový čas nutný k provedení takového výpočtu. Touto metodou tak není možné počítat rozsáhlejší atomární systémy kvůli neúnosným nárokům na paměť a výkon počítače. Povrch Si(100)-(2 1) je pro použití této metody poměrně jednoduchý protože v základní buňce, kterou je nutné do výpočtu zahrnout je malé množství atomů. Domnívám se proto, že by bylo možné tuto metodu použít pro výpočet atomární struktury zkoumaného bimetalického systému stříbra a india, přestože je situace komplikována přítomností tří různých chemických prvků. Výsledek výpočtu lze pak ověřit simulací KMC a také simulací obrázků STM.
5 Simulace obrázků STM Při simulaci STM obrázků je nutno zvážit, jak velký je vliv hrotu na zkoumaný systém. Z experimentu vyplývá [], že hrot má v případě systému In/Si(100)-(2 1) vliv podstatný, protože ovlivňuje četnosti některých procesů a mění tedy jejich aktivační energie. Tentýž závěr plyne pro bimetalický systém AgIn/Si(100)-(2 1) ze sledování časového vývoje deponovaných struktur, kdy byl pozorován výrazně rychlejší rozpad ostrůvků při vyšších napětích. Nelze tedy pro simulaci STM obrázků použít příliš velké aproximace, kterou navrhli Tersoff a Hamann, která vliv hrotu zcela pomíjí. Je nutné použít složitější poruchový přístup a započítat tak vliv hrotu. Problém tohoto přístupu (kromě větší složitosti) spočívá v tom, že o hrotu zpravidla nevíme téměř nic a jeho strukturu tak musíme v podstatě hádat. Závěr Složitost zkoumaného problému jasně ukazuje nejen užitečnost použití teorie při interpretaci STM obrázků a určování atomární struktury zkoumaných deponovaných vrstev, ale v podstatě nutnost jejího použití. Tím, že STM nám dává integrální informaci o zkoumaném povrchu (hrot v podstatě sleduje místa nad povrchem se stejnou vodivostí tunelového přechodu) a topologie je v této informaci netriviálně skryta, není možné určit jeho atomární strukturu pouze na základě měření pomocí STM. Navíc je vidět, že jednotlivé teoretické přístupy se vzájemně doplňují. Reference [1] Over, H. et al., Phys. Rev. B 55 (7), , 1997 [2] Wolkow, R. A., Phys. Rev. Lett. 68 (17), , 1992 [3] Yokoyama, T. et al., Phys. Rev. B 57 (8), , 1998 [4] Hamers, R. J. et al., J. Vac. Sci. Technol. A 7 (4), , 1989 [5] Hossain, M. et al., Phys. Rev. B 67 (15), , 2003 [6] Okano, S. et al., Surf. Sci. 554, , 2004 [7] Steele, B. E., Phys. Rev. B 47 (15), , 1993 [8] Evans, M. M. R. et al., Phys. Rev. B 59 (11), , 1999 [9] Dong, Z.-C. et al., Phys. Rev. B 63 (11), , 2001 [10] Winau, D. et al., Surf. Sci. 303, , 1994 [11] Lin et al., Phys. Rev. B, 47 (20), 13491, 1993 [12] Dong, Z.-C. et al., Surf. Sci. 380, 23-30, 1997 [13] Juré, L. et al., Appl. Surf. Sci , , 2000
6 [14] J. Nogami, "Self-Assembled Single Atom Wide Metal Lines On Si(001) Surfaces ", in Atomic and Molecular Wires, edited by C. Joachim and S. Roth (Kluwer Academic Publishers, Dordrecht, 1997), Vol. 341, pp [15] Kocán et al., Stability of In rows on Si(100) during STM observation, article in press
Skenovací tunelová mikroskopie a mikroskopie atomárních sil
Skenovací tunelová mikroskopie a mikroskopie atomárních sil M. Vůjtek Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky v rámci projektu Vzdělávání výzkumných
4. Stanovení teplotního součinitele odporu kovů
4. Stanovení teplotního součinitele odporu kovů 4.. Zadání úlohy. Změřte teplotní součinitel odporu mědi v rozmezí 20 80 C. 2. Změřte teplotní součinitel odporu platiny v rozmezí 20 80 C. 3. Vyneste graf
Mikroskopie se vzorkovací sondou. Pavel Matějka
Mikroskopie se vzorkovací sondou Pavel Matějka Mikroskopie se vzorkovací sondou 1. STM 1. Princip metody 2. Instrumentace a příklady využití 2. AFM 1. Princip metody 2. Instrumentace a příklady využití
vodič u něho dochází k transportu el. nabitých částic, který je nevratný, dochází ke vzniku proudu a disipaci energie
Chování polymerů v elektrickém a magnetickém poli vodič u něho dochází k transportu el. nabitých částic, který je nevratný, dochází ke vzniku proudu a disipaci energie dielektrikum, izolant, nevodič v
Studium mobility atomů kovů na povrchu Si(100) pomocí STM
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Filip Rozbořil Studium mobility atomů kovů na povrchu Si(100) pomocí STM Katedra fyziky povrchů a plazmatu Vedoucí diplomové práce:
Elektronová mikroskopie SEM, TEM, AFM
Elektronová mikroskopie SEM, TEM, AFM Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první
Proč elektronový mikroskop?
Elektronová mikroskopie Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop,, 1 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první komerční
E g IZOLANT POLOVODIČ KOV. Zakázaný pás energií
Polovodiče To jestli nazýváme danou látku polovodičem, závisí především na jejích vlastnostech ve zvoleném teplotním oboru. Obecně jsou to látky s 0 ev < Eg < ev. KOV POLOVODIČ E g IZOLANT Zakázaný pás
Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření
Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá
Nauka o materiálu. Přednáška č.2 Poruchy krystalické mřížky
Nauka o materiálu Přednáška č.2 Poruchy krystalické mřížky Opakování z minula Materiál Degradační procesy Vnitřní stavba atomy, vazby Krystalické, amorfní, semikrystalické Vlastnosti materiálů chemické,
NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014
NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 Miroslav Kabát, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT
SIMULACE ŠÍŘENÍ NAPĚŤOVÝCH VLN V KRYSTALECH MĚDI A NIKLU
SIMULACE ŠÍŘENÍ NAPĚŤOVÝCH VLN V KRYSTALECH MĚDI A NIKLU V. Pelikán, P. Hora, A. Machová Ústav termomechaniky AV ČR Příspěvek vznikl na základě podpory záměru ÚT AV ČR AV0Z20760514. VÝPOČTOVÁ MECHANIKA
Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce
Metody využívající rentgenové záření Rentgenografie, RTG prášková difrakce 1 Rentgenovo záření 2 Rentgenovo záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá se v lékařství a krystalografii.
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 11: Termická emise elektronů
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 15.4.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Úloha 11: Termická emise elektronů
PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne:
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. VII Název: Studium kmitů vázaných oscilátorů Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: 27. 2. 2012 Odevzdal
TEORETICKÉ VÝPOČTY PRO INTERPRETACI OBRAZŮ
vnitrek-2-06.qxd 22.3.2006 13:17 Page 65 TEORETICKÉ VÝPOČTY PRO INTERPRETACI OBRAZŮ RASTROVACÍ TUNELOVÉ MIKROSKOPIE Martin Ondráček, František Máca, Fyzikální ústav AV ČR, Na Slovance 2, 182 21 Praha 8
2. Určete frakční objem dendritických částic v eutektické slitině Mg-Cu-Zn. Použijte specializované programové vybavení pro obrazovou analýzu.
1 Pracovní úkoly 1. Změřte střední velikost zrna připraveného výbrusu polykrystalického vzorku. K vyhodnocení snímku ze skenovacího elektronového mikroskopu použijte kruhovou metodu. 2. Určete frakční
LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií)
LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií) RHEED (Reflection High-Energy Electron Diffraction difrakce elektronů s vysokou energií na odraz) Úvod Zkoumání povrchů pevných
Graf I - Závislost magnetické indukce na proudu protékajícím magnetem. naměřené hodnoty kvadratické proložení. B [m T ] I[A]
Pracovní úkol 1. Proměřte závislost magnetické indukce na proudu magnetu. 2. Pomocí kamery změřte ve směru kolmém k magnetickému poli rozštěpení červené spektrální čáry kadmia pro 8-10 hodnot magnetické
Výstupní práce Materiály a technologie přípravy M. Čada
Výstupní práce Makroskopická veličina charakterizující povrch z pohledu elektronických vlastností. Je to míra vazby elektronu k pevné látce a hraje důležitou roli při procesech transportu nabitých částic
7. Elektrický proud v polovodičích
7. Elektrický proud v polovodičích 7.1 Elektrické vlastnosti polovodičů Kromě vodičů a izolantů existují polovodiče. Definice polovodiče: Je to řada minerálů, rud, krystalů i amorfních látek, řada oxidů
Mikroskopie rastrující sondy
Mikroskopie rastrující sondy Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Metody mikroskopie rastrující sondy SPM (scanning( probe Microscopy) Metody mikroskopie rastrující sondy soubor
VÍŘIVÉ PROUDY DZM 2013 1
VÍŘIVÉ PROUDY DZM 2013 1 2 VÍŘIVÉ PROUDY ÚVOD Vířivé proudy tvoří druhou skupinu v metodách, které využívají ke zjišťování vad materiálu a výrobků působení elektromagnetického pole. Na rozdíl od metody
Protonové číslo Z - udává počet protonů v jádře atomu, píše se jako index vlevo dole ke značce prvku
Stavba jádra atomu Protonové Z - udává protonů v jádře atomu, píše se jako index vlevo dole ke značce prvku Neutronové N - udává neutronů v jádře atomu Nukleonové A = Z + N, udává nukleonů (protony + neutrony)
Praktikum I Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. XIX Název: Pád koule ve viskózní kapalině Pracoval: Matyáš Řehák stud.sk.: 16 dne:
Opakování: shrnutí základních poznatků o struktuře atomu
11. Polovodiče Polovodiče jsou krystalické nebo amorfní látky, jejichž elektrická vodivost leží mezi elektrickou vodivostí kovů a izolantů a závisí na teplotě nebo dopadajícím optickém záření. Elektrické
Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics
Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Rainer Scharf, Félix M. Izrailev, 1990 rešerše: Pavla Cimrová, 28. 2. 2012 1 Náhodné matice Náhodné matice v současnosti nacházejí
PRAKTIKUM II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: XI Název: Charakteristiky diody Pracoval: Pavel Brožek stud. skup. 12 dne 9.1.2009 Odevzdal
LOGO. Struktura a vlastnosti pevných látek
Struktura a vlastnosti pevných látek Rozdělení pevných látek (PL): monokrystalické krystalické Pevné látky polykrystalické amorfní Pevné látky Krystalické látky jsou charakterizovány pravidelným uspořádáním
Dualismus vln a částic
Dualismus vln a částic Filip Horák 1, Jan Pecina 2, Jiří Bárdoš 3 1 Mendelovo gymnázium, Opava, Horaksro@seznam.cz 2 Gymnázium Jeseník, pecinajan.jes@mail.com 3 Gymnázium Teplice, jiri.bardos@post.gymtce.cz
Obr Teplotní závislost intrinzické koncentrace nosičů n i [cm -3 ] pro GaAs, Si, Ge Fermiho hladina Výpočet polohy Fermiho hladiny
Obr. 2-12 Teplotní závislost intrinzické koncentrace nosičů n i [cm -3 ] pro GaAs, Si, Ge 2.7. Fermiho hladina 2.7.1. Výpočet polohy Fermiho hladiny Z Obr. 2-11. a ze vztahů ( 2-9) nebo ( 2-14) je zřejmá
Studium fotoelektrického jevu
Studium fotoelektrického jevu Úkol : 1. Změřte voltampérovou charakteristiku přiložené fotonky 2. Zpracováním výsledků měření určete hodnotu Planckovy konstanty Pomůcky : - Ampérmetr TESLA BM 518 - Školní
2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě nízkofrekvenční nevýkonový tranzistor KC 639. Mezní hodnoty jsou uvedeny v tabulce:
RIEDL 3.EB 10 1/11 1.ZADÁNÍ a) Změřte statické hybridní charakteristiky tranzistoru KC 639 v zapojení se společným emitorem (při měření nesmí dojít k překročení mezních hodnot). 1) Výstupní charakteristiky
Fakulta elektrotechniky a komunikačních technologíı Ústav automatizace a měřicí techniky v Brně
Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologíı Ústav automatizace a měřicí techniky Algoritmy řízení topného článku tepelného hmotnostního průtokoměru Autor práce: Vedoucí
Univerzita Tomáše Bati ve Zlíně
Univerzita Tomáše Bati ve Zlíně Ústav elektrotechniky a měření Základní pojmy elektroniky Přednáška č. 1 Milan Adámek adamek@ft.utb.cz U5 A711 +420576035251 Základní pojmy elektroniky 1 Model atomu průměr
Základní experiment fyziky plazmatu
Základní experiment fyziky plazmatu D. Vašíček 1, R. Skoupý 2, J. Šupík 3, M. Kubič 4 1 Gymnázium Velké Meziříčí, david.vasicek@centrum.cz 2 Gymnázium Ostrava-Hrabůvka příspěvková organizace, jansupik@gmail.com
Vojtěch Hrubý: Esej pro předmět Seminář EVF
Vojtěch Hrubý: Esej pro předmět Seminář EVF Plazma Pod pojmem plazma většinou myslíme plynné prostředí, které se skládá z neutrálních částic, iontů a elektronů. Poměr množství neutrálních a nabitých částic
Experimentální realizace Buquoyovy úlohy
Experimentální realizace Buquoyovy úlohy ČENĚK KODEJŠKA, JAN ŘÍHA Přírodovědecká fakulta Univerzity Palackého, Olomouc Abstrakt Tato práce se zabývá experimentální realizací Buquoyovy úlohy. Jedná se o
Techniky mikroskopie povrchů
Techniky mikroskopie povrchů Elektronové mikroskopie Urychlené elektrony - šíření ve vakuu, ovlivnění dráhy elektrostatickým nebo elektromagnetickým polem Nepřímé pozorování elektronového paprsku TEM transmisní
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 1. Čím se vyznačuje polovodičový materiál Polovodič je látka, jejíž elektrická vodivost lze měnit. Závisí na
7 Hallůvjevvkovuapolovodiči
Zadání 7 Hallůvjevvkovuapolovodiči 1. Změřte Hallův koeficient pro kov a polovodič při laboratorní teplotě. 2. Změřte měrnou vodivost obou vzorků. 3. Pro několik hodnot proudu a magnetické indukce ověřte,
Popis softwaru VISI Flow
Popis softwaru VISI Flow Software VISI Flow představuje samostatný CAE software pro komplexní analýzu celého vstřikovacího procesu (plnohodnotná 3D analýza celého vstřikovacího cyklu včetně chlazení a
ATOMOVÉ JÁDRO A JEHO STRUKTURA. Aleš Lacina Přírodovědecká fakulta MU, Brno
ATOMOVÉ JÁDRO A JEHO STRUKTURA Aleš Lacina Přírodovědecká fakulta MU, Brno "Poněvadž a-částice... procházejí atomem, pečlivé studium odchylek "těchto střel" od původního směru může poskytnout představu
Mol. fyz. a termodynamika
Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli
ELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník
ELEKTROSTATIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník Elektrický náboj Dva druhy: kladný a záporný. Elektricky nabitá tělesa. Elektroskop a elektrometr. Vodiče a nevodiče
INTERAKCE IONTŮ S POVRCHY II.
Úvod do fyziky tenkých vrstev a povrchů INTERAKCE IONTŮ S POVRCHY II. Metody IBA (Ion Beam Analysis): pružný rozptyl nabitých částic (RBS), detekce odražených atomů (ERDA), metoda PIXE, Spektroskopie rozptýlených
Měření momentu setrvačnosti
Měření momentu setrvačnosti Úkol : 1. Zjistěte pro dané těleso moment setrvačnosti, prochází-li osa těžištěm. 2. Zjistěte moment setrvačnosti daného tělesa k dané ose metodou torzních kmitů. Pomůcky :
1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o.
. Kvantové jámy Pokročilé metody růstu krystalů po jednotlivých vrstvách (jako MBE) dovolují vytvořit si v krystalu libovolný potenciál. Jeden z hojně používaných materiálů je: GaAs, AlAs a jejich ternární
Závislost odporu kovového vodiče na teplotě
4.2.1 Závislost odporu kovového vodiče na teplotě Předpoklady: 428, délková a objemová roztažnost napětí [V] 1,72 3,43 5,18 6,86 8,57 1,28 proud [A],,47,69,86,11,115,127,14,12,1 Proud [A],8,6,4,2 2 4 6
Nauka o materiálu. Přednáška č.10 Difuze v tuhých látkách, fáze a fázové přeměny
Nauka o materiálu Přednáška č.10 Difuze v tuhých látkách, fáze a fázové přeměny Difuze v tuhých látkách Difuzí nazýváme přesun atomů nebo iontů na vzdálenost větší než je meziatomová vzdálenost. Hnací
Fyzikální praktikum II
Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum II Úloha č. 9 Název úlohy: Charakteristiky termistoru Jméno: Ondřej Skácel Obor: FOF Datum měření: 16.11.2015 Datum odevzdání:... Připomínky opravujícího:
Inovace profesní přípravy budoucích učitelů chemie
Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem
ZADÁNÍ BAKALÁŘSKÉ PRÁCE
Vysoké učení technické v Brně, Fakulta strojního inženýrství Ústav fyzikálního inženýrství Akademický rok: 2013/2014 ZADÁNÍ BAKALÁŘSKÉ PRÁCE student(ka): Jakub Kuba který/která studuje v bakalářském studijním
Fyzika IV. -ezv -e(z-zv) kov: valenční elektrony vodivostní elektrony. Elektronová struktura pevných látek model volných elektronů
Elektronová struktura pevných látek model volných elektronů 1897: J.J. Thomson - elektron jako částice 1900: P. Drude: kinetická teorie plynů - kov jako plyn elektronů Drudeho model elektrony se mezi srážkami
2.3 Elektrický proud v polovodičích
2.3 Elektrický proud v polovodičích ( 6 10 8 10 ) Ωm látky rozdělujeme na vodiče polovodiče izolanty ρ ρ ( 10 4 10 8 ) Ωm odpor s rostoucí teplotou roste odpor nezávisí na osvětlení nebo ozáření odpor
F7030 Rentgenový rozptyl na tenkých vrstvách
F7030 Rentgenový rozptyl na tenkých vrstvách O. Caha PřF MU Prezentace k přednášce Numerické simulace Příklady experimentů Vybrané vztahy Sylabus Elementární popis vlnového pole: Rtg vlna ve vakuu; Greenova
U BR < 4E G /q -saturační proud ovlivňuje nárazovou ionizaci. Šířka přechodu: w Ge 0,7 w Si (pro N D,A,Ge N D,A,Si ); vliv U D.
Napěťový průraz polovodičových přechodů Zvyšování napětí na přechodu -přechod se rozšiřuje, ale pouze s U (!!) - intenzita elektrického pole roste -překročení kritické hodnoty U (BR) -vzrůstu závěrného
Metodika hodnocení strukturních změn v ocelích při tepelném zpracování
Metodika hodnocení strukturních změn v ocelích při tepelném zpracování Bc. Pavel Bílek Ing. Jana Sobotová, Ph.D Abstrakt Předložená práce se zabývá volbou metodiky hodnocení strukturních změn ve vysokolegovaných
KOROZNÍ CHOVÁNÍ Mg SLITIN V PROVZDUŠNĚNÉM FYZIOLOGICKÉM ROZTOKU
KOROZNÍ CHOVÁNÍ Mg SLITIN V PROVZDUŠNĚNÉM FYZIOLOGICKÉM ROZTOKU František HNILICA a, LUDĚK JOSKA b, BOHUMIL SMOLA c, IVANA STULÍKOVÁ c a České vysoké učení technické v Praze, Fakulta strojní, Technická
Vazby v pevných látkách
Vazby v pevných látkách Hlavní body 1. Tvorba pevných látek 2. Van der Waalsova vazba elektrostatická interakce indukovaných dipólů 3. Iontová vazba elektrostatická interakce iontů 4. Kovalentní vazba
HODNOCENÍ POVRCHOVÝCH ZMEN MECHANICKÝCH VLASTNOSTÍ PO ELEKTROCHEMICKÝCH ZKOUŠKÁCH. Klára Jacková, Ivo Štepánek
HODNOCENÍ POVRCHOVÝCH ZMEN MECHANICKÝCH VLASTNOSTÍ PO ELEKTROCHEMICKÝCH ZKOUŠKÁCH Klára Jacková, Ivo Štepánek Západoceská univerzita v Plzni, Univerzitní 22, 306 14 Plzen, CR, ivo.stepanek@volny.cz Abstrakt
Struktura a vlastnosti kovů I.
Struktura a vlastnosti kovů I. Vlastnosti fyzikální (teplota tání, měrný objem, moduly pružnosti) Vlastnosti elektrické (vodivost,polovodivost, supravodivost) Vlastnosti magnetické (feromagnetika, antiferomagnetika)
Úvod do fyziky tenkých vrstev a povrchů. Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál
Úvod do fyziky tenkých vrstev a povrchů Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál ty i hlavní typy nepružných srážkových proces pr chodu energetických
VLIV ZPŮSOBŮ OHŘEVU NA TEPLOTNÍ DEGRADACI TENKÝCH OTĚRUVZDORNÝCH PVD VRSTEV ZJIŠŤOVANÝCH POMOCÍ VYBRANÝCH METOD
23. 25.11.2010, Jihlava, Česká republika VLIV ZPŮSOBŮ OHŘEVU NA TEPLOTNÍ DEGRADACI TENKÝCH OTĚRUVZDORNÝCH PVD VRSTEV ZJIŠŤOVANÝCH POMOCÍ VYBRANÝCH METOD Ing.Petr Beneš Ph.D. Doc.Dr.Ing. Antonín Kříž Katedra
VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH
VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH Jan Hruška TV-FYZ Ahoj, tak jsme tady znovu a pokusíme se Vám vysvětlit problematiku vedení elektrického proudu v látkách. Co je to vlastně elektrický proud? Na to
Praktikum I Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. IV Název: Určení závislosti povrchového napětí na koncentraci povrchově aktivní látky
Měření charakteristik fotocitlivých prvků
Měření charakteristik fotocitlivých prvků Úkol : 1. Určete voltampérovou charakteristiku fotoodporu při denním osvětlení a při osvětlení E = 1000 lx. 2. Určete voltampérovou charakteristiku fotodiody při
Reflexní parotěsná fólie SUNFLEX Roof-In Plus v praktické zkoušce
Reflexní parotěsná SUNFLEX Roof-In Plus v praktické zkoušce Měření povrchových teplot předstěny s reflexní fólií a rozbor výsledků Tepelné vlastnosti SUNFLEX Roof-In Plus s tepelně reflexní vrstvou otestovala
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Praktikum z pevných látek (F6390)
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Praktikum z pevných látek (F6390) Zpracoval: Michal Truhlář Naměřeno: 13. března 2007 Obor: Fyzika Ročník: III Semestr:
Polovodičové prvky. V současných počítačových systémech jsou logické obvody realizovány polovodičovými prvky.
Polovodičové prvky V současných počítačových systémech jsou logické obvody realizovány polovodičovými prvky. Základem polovodičových prvků je obvykle čtyřmocný (obsahuje 4 valenční elektrony) krystal křemíku
5.0 ZJIŠŤOVÁNÍ FÁZOVÝCH PŘEMĚN
5.0 ZJIŠŤOVÁNÍ FÁZOVÝCH PŘEMĚN Metody zkoumání fázových přeměn v kovech a slitinách jsou založeny na využití změn převážně fyzikálních vlastností, které fázovou přeměnu a s ní spojenou změnu struktury
Elektrický proud v polovodičích
Elektrický proud v polovodičích Polovodič Látka, jejíž měrný elektrický odpor je při obvyklých teplotách mnohem menší než u izolantů, ale zase mnohem větší než u kovů. Polovodič Látka, jejíž měrný elektrický
Mikro a nano vrstvy. Technologie a vlastnosti tenkých vrstev, tenkovrstvé sensory - N444028
Mikro a nano vrstvy 1 Co je nanotechnolgie? Slovo pochází z řečtiny = malost, trpaslictví. Z něj n j odvozen termín n nanotechnologie. Jako nanotechnologie je označov ována oblast vědy, jejímž cílem je
Fyzika I. Něco málo o fyzice. Petr Sadovský. ÚFYZ FEKT VUT v Brně. Fyzika I. p. 1/20
Fyzika I. p. 1/20 Fyzika I. Něco málo o fyzice Petr Sadovský petrsad@feec.vutbr.cz ÚFYZ FEKT VUT v Brně Fyzika I. p. 2/20 Fyzika Motto: Je-li to zelené, patří to do biologie. Smrdí-li to, je to chemie.
PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úlohač.10 Název: Hallův jev. Pracoval: Lukáš Ledvina
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II. úlohač.10 Název: Hallův jev Pracoval: Lukáš Ledvina stud.skup.14 dne:16.10.2009 Odevzdaldne: Možný počet bodů Udělený
Ultrazvuková defektoskopie. Vypracoval Jan Janský
Ultrazvuková defektoskopie Vypracoval Jan Janský Základní principy použití vysokých akustických frekvencí pro zjištění vlastností máteriálu a vad typické zařízení: generátor/přijímač pulsů snímač zobrazovací
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.3 Polovodiče a jejich využití Kapitola
Elektrostruskové svařování
Nekonvenční technologie svařování Elektrostruskové svařování doc. Ing. Ivo Hlavatý, Ph.D. ivo.hlavaty@vsb.cz http://fs1.vsb.cz/~hla80 1 Elektroda zasahuje do tavidla, které je v pevném skupenství nevodivé.
Chemické metody plynná fáze
Chemické metody plynná fáze Chemické reakce prekurzorů lze aktivovat i UV zářením PHCVD. Foton aktivuje molekuly nebo atomy, které pak vytvářejí volné radikály nesoucí hodně energie > ty pak rozbijí velké
Reakční kinetika. Nauka zabývající se rychlostí chemických reakcí a ovlivněním rychlosti těchto reakcí
Nauka zabývající se rychlostí chemických reakcí a ovlivněním rychlosti těchto reakcí Vymezení pojmů : chemická reakce je děj, při kterém zanikají výchozí látky a vznikají látky nové reakční mechanismus
Automatická detekce anomálií při geofyzikálním průzkumu. Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011
Automatická detekce anomálií při geofyzikálním průzkumu Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011 Cíle doktorandské práce Seminář 10. 11. 2010 Najít, implementovat, ověřit a do praxe
Úloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu.
Úloha : Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu. Všechny zadané prvky mají krystalovou strukturu kub. diamantu. (http://en.wikipedia.org/wiki/diamond_cubic),
Základy vakuové techniky
Základy vakuové techniky Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova konstanta), k = 1,38. 10-23 J/K.. Boltzmannova konstanta, T.. absolutní
A:Měření odporových teploměrů v ultratermostatu B:Měření teploty totálním pyrometrem KET/MNV (8. cvičení)
A:Měření odporových teploměrů v ultratermostatu B:Měření teploty totálním pyrometrem KET/MNV (8. cvičení) Vypracoval : Martin Dlouhý Osobní číslo : A8B268P A:Měření odporových teploměrů v ultratermostatu
Úvod do koroze. (kapitola, která bude společná všem korozním laboratorním pracím a kterou studenti musí znát bez ohledu na to, jakou práci dělají)
Úvod do koroze (kapitola, která bude společná všem korozním laboratorním pracím a kterou studenti musí znát bez ohledu na to, jakou práci dělají) Koroze je proces degradace kovu nebo slitiny kovů působením
Fyzikální korespondenční seminář MFF UK
Úloha I.E... Pechschnitte 12 bodů; (chybí statistiky) Padá krajíc namazanou stranou dolů? Zkoumejte experimentálně tento Murphyho zákon s důrazem na statistiku! Záleží na rozměrech krajíce, složení a typu
ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY DROBNÝCH KOVOVÝCH OZDOB Z HROBU KULTURY SE ZVONCOVÝMI POHÁRY Z HODONIC METODOU SEM-EDX
/ 1 ZPRACOVAL Mgr. Martin Hložek TMB MCK, 2011 ZADAVATEL David Humpola Ústav archeologické památkové péče v Brně Pobočka Znojmo Vídeňská 23 669 02 Znojmo OBSAH Úvod Skanovací elektronová mikroskopie (SEM)
Hydromechanické procesy Obtékání těles
Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak
2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě zenerova dioda její hodnoty jsou uvedeny v tabulce:
REDL 3.EB 9 1/11 1.ZADÁNÍ a) Změřte voltampérovou charakteristiku zenerovy diody v propustném i závěrném směru. Charakteristiky znázorněte graficky. b) Vypočtěte a graficky znázorněte statický odpor diody
Elektronová Mikroskopie SEM
Elektronová Mikroskopie SEM 26. listopadu 2012 Historie elektronové mikroskopie První TEM Ernst Ruska (1931) Nobelova cena za fyziku 1986 Historie elektronové mikroskopie První SEM Manfred von Ardenne
Metodický návod: 5. Zvyšování vnějšího napětí na 3 V. Dochází k dalšímu zakřivování hladin a rozšiřování hradlové vrstvy.
Metodický návod: 1. Spuštění souborem a.4.3_p-n.exe. Zobrazeny jsou oddělené polovodiče P a N, majoritní nositelé náboje (elektrony červené, díry modré), ionty příměsí (čtverečky) a Fermiho energetické
1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu:
1 Pracovní úkoly 1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: a. platinový odporový teploměr (určete konstanty R 0, A, B) b. termočlánek měď-konstantan (určete konstanty a,
MŘÍŽKY A VADY. Vnitřní stavba materiálu
Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10;s platností do r. 2016 v návaznosti na platnost norem. Zákaz šířění a modifikace těchto materálů. Děkuji Ing. D.
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)
7. Elektrický proud v polovodičích
7. Elektrický proud v polovodičích 7.1 Elektrické vlastnosti polovodičů Kromě vodičů a izolantů existují polovodiče. Definice polovodiče: Je to řada minerálů, rud, krystalů i amorfních látek, řada oxidů
Polovodiče, dioda. Richard Růžička
Polovodiče, dioda Richard Růžička Motivace... Chceme součástku, která propouští proud jen jedním směrem. I + - - + Takovou součástkou může být polovodičová dioda. Schematická značka polovodičové diody
1. Změřte teplotní závislost povrchového napětí destilované vody σ v rozsahu teplot od 295 do 345 K metodou bublin.
1 Pracovní úkoly 1. Změřte teplotní závislost povrchového napětí destilované vody σ v rozsahu teplot od 295 do 35 K metodou bublin. 2. Měřenou závislost znázorněte graficky. Závislost aproximujte kvadratickou
VY_32_INOVACE_6/15_ČLOVĚK A PŘÍRODA. Předmět: Fyzika Ročník: 6. Poznámka: Vodiče a izolanty Vypracoval: Pták
VY_32_INOVACE_6/15_ČLOVĚK A PŘÍRODA Předmět: Fyzika Ročník: 6. Poznámka: Vodiče a izolanty Vypracoval: Pták Izolant je látka, která nevede elektrický proud izolant neobsahuje volné částice s elektrický
Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2017
Fakulta biomedicínského inženýrství Teoretická elektrotechnika Prof. Ing. Jan Uhlíř, CSc. Léto 2017 8. Nelineární obvody nesetrvačné dvojpóly 1 Obvodové veličiny nelineárního dvojpólu 3. 0 i 1 i 1 1.5