Malé vodní elektrárny - proč, kde a jak? ALTERNATIVNÍ ENERGIE 6/2001 Libor Šamánek, Česká asociace pro obnovitelné energie, o.p.s.
|
|
- Vlasta Horáčková
- před 10 lety
- Počet zobrazení:
Transkript
1 Malé vodní elektrárny - proč, kde a jak? ALTERNATIVNÍ ENERGIE 6/2001 Libor Šamánek, Česká asociace pro obnovitelné energie, o.p.s. Brno Česká republika je svou geografickou polohou (leží na rozvodí tří moří, řeky zde pramení) přímo předurčena k využití vodní energie v malých vodních elektrárnách (MVE). Tímto pojmem jsou označovány všechny vodní elektrárny S instalovaným výkonem do 10MW. Voda - forma energie Kinetická energie je ve vodních tocích dána rychlostí proudění, která je závislá na spádu toku. Její využití je možné vodními rovnotlakými stroji, založenými na rotačním principu (vodní kolo, turbíny typu Bánki a Pelton). Optimální využití vyžaduje, aby obvodová rychlost stroje byla nižší než je rychlost proudění, jinak lopatky pouze ustupují proudu bez možnosti převzetí energie a jakéhokoliv zatížení. 0táčky rovnotlakých strojů jsou pomalé (tlak no lopatky, způsobený poloviční obvodovou rychlostí oproti rychlosti proudění, je po celé cestě předávání energie stejný) a voda vstupuje do turbíny pouze v některých částech jejího obvodu a nezahltí celý obvod plynule (částečný ostřik). Energie potenciální vzniká získáním hladiny vody o větší výšce, z níž voda proudí vhodným přivaděčem do míst s nižší hladinou. Rozdíl těchto dvou výškových potenciálů vytváří tlak, který se využívá v přetlakových (reakčních) strojích (turbíny typu Kaplan, Francis, Reiffenstein, turbíny vrtulové a vhodná čerpadla v turbínovém provozu). V přetlakové turbíně se část tlaku vody přemění v rychlost pro zajištění požadovaného průtoku, zbylý tlak se při průchodu lopatkou turbíny postupně snižuje a v místě, kde ji opouští, je prakticky využít. Otáčky oběžného kolo přetlakové turbíny jsou několikanásobně vyšší než absolutní rychlost proudění. Podíl MVE na energetické bilanci ČR Energie získávaná z vodních toků není v bilanci naší energetiky zdaleka rozhodující, ani příliš výrazná, zůstává však jejím velmi cenným, obnovitelným zdrojem. Vodní elektrárny se na celkovém instalovaném výkonu v republice podílejí zhruba 17% a na výrobě necelými 4%. Technicky využitelný potenciál řek ČR činí 3380 GWh/rok. Z toho potenciál využitelný v MVE je 1570 GWh/rok. Dnes využitý potenciál v MVE je málo přes 50%, když zbývající menší část potenciálu má již méně vhodné hydrologické podmínky. V České republice by tedy měl být stále ještě dostatek lokalit pro výstavbu, nebo obnovu MVE. Z hlediska dispozice o rozložení zdrojů vodní energie na našem území, mají právě MVE nezastupitelnou roli také proto, že jsou rozptýleny po celém území. To je výhodné právě pro připojování do energetické sítě, kde nezatěžují přenosovou soustavu. Celoplošné rozšíření elektrizační soustavy potom umožňuje připojení téměř ve všech lokalitách s možností použití asynchronních generátorů, což je provozně jednodušší a levnější (není třeba nákladné a složité regulační části). Pro uplatnění MVE je však podstatné, aby jejich ekonomické ukazatele byly srovnatelné, nebo spíše výhodnější než ukazatele jiných energetických zdrojů. Právě MVE se vyznačují podstatně delší životností, než je doba návratnosti investic na zřízení. Dá
2 se říci, že výroba z MVE patří k nejlevněji získávané elektrické energii, která je nejen ekologicky čistá, ale v mnoho směrech i kladně ovlivňuje režim vodního toku. Posouzení hydroenergetického potenciálu Hydroenergetický potenciál určují dva základní parametry: Využitelný spád - Hrubý spád zjistíme nivelací na úseku od vtokového objektu (obvykle nad jezem) po úroveň spodní hladiny na odpadu z turbíny. Odečtením všech ztrát na trase před turbínou (v česlích, v přiváděcím kanálu, v potrubí atp.) získáme spád čistý, tj. pro turbínu užitečný. Větší spád znamená výhodnější investici. Průtok (průtočné množství vody v daném profilu, který chceme využít) získáme od Českého hydrometeorologického ústavu, nebo od Správy toku povodí. Získáme tzv. roční odtokovou závislost nebo také M-denní závislost (křivku). Data se uvádějí číselně v obvyklém členění po 30 dnech v roce (viz obr.1). Odtoková křivka (závislost) udává průtok zaručený v daném profilu toku po určitý počet dní. Vodní elektrárny se obvykle dimenzují na množství 90.ti až 180 ti denní, což opět ovlivňuje technická úroveň technologie. hlavně schopnost turbíny přizpůsobit se regulací průtočným změnám. Zde je také potřeba brát zřetel na tzv. asanační množství vody, které je nutno ponechat v řečišti. Asanační množství bývá předepsáno při vodoprávním řízení. O využití průtoku o dosažitelném výkonu dává přehled obr. 2. Roční výrobo je úměrná ploše ohraničené křivkou výkonu. Výkon vodní turbíny se stanoví zjednodušeným vzorcem P=Q.H.k
3 kde je P výkon [kw] Q průtočné množství vody [m 3 /s] H spád využitelný turbínou [m] k je bezrozměrná konstanta uváděná v rozsahu od 6,5 do 8,5 (ovlivňuje účinnost soustrojí - technická úroveň použité technologie). Příklad: Spád H = 2 m. Po dobu 90 dní v průměrně vodném roce je průtok Q = 1 m 3 /s. Turbína bude mít pro k = 7,5 výkon P = 15 kw jehož bude dosahovat po dobu 90 dní. Ve zbývající části roku bude výkon současně s účinností klesat až do zastavení. Roční výrobu elektrické energie lze v uvedeném případě odhadnout na kwh. Výběr vhodného turbosoustrojí I když tento problém je nutno ponechat odborníkům, projektantům MVE, je vždy dobré umět se orientovat alespoň v zásadních podmínkách, k čemuž slouží základní charakteristika typů turbín dle průtoku a spádu (obr. 3). Teorie vodních turbín je v současnosti již na takovém stupni vývoje, že nelze pro běžné průtoky o spády očekávat výraznější zdokonalení a zvýšení účinností. Vývoj směřuje k prefabrikaci jednotlivých částí MVE, zejména v konstrukci kompaktních soustrojí, čímž se podstatně omezí rozsáhlé a nákladné montáže přímo na vodním díle. Firmy zabývající se výrobou obvykle nabízejí ucelené řady turbín, z nichž se pochopitelně vybírá ta, která vyhoví nejvíce parametrům zvolené lokality. Doporučujeme vždy provádět výběr v soutěži minimálně mezi třemi dodavateli. Charakteristika na obr. 3 názorně ukazuje, že nejvhodnější a nejčastěji použitou turbínou v našich podmínkách s malými spády od 1,5 m do 10 m je turbína typu Kaplan. Turbíny se rozlišují: podle uspořádání na vertikální, horizontální, šikmé;
4 podle způsobu přivádění vody na přímoproudé, kolenové, kašnové, spirální, kotlové; padle spádu na nízkotlaké (do 10 m), středotlaké (do 100 m), vysokotlaké (nad 100 m); Členění malých vodních elektráren Za malou vodní elektrárnu je považována každá s výkonem do 10 MW. Podrobněji se MVE děli podle výkonu na: průmyslové (od 1 do 10 MW); závodní, nebo veřejné (od 100 do 1000 kw); drobné, nebo minielektrárny (od 35 do 100 kw); mikrozdroje, nebo také mobilní zdroje (pod 35 kw). Zdroj energie pro podnikání - příklad
5 Výše investice do MVE závisí no místních podmínkách. Kolik bude stát malé vodní turbosoustrojí o výkonu 150 kw na dvou odlišných tocích? Porovnejme dvě turbosoustrojí TG1 a TG2 o stejném výkonu P = 150 kw (vypočteném ze vzorce P=Q.H.k) a s různými hodnotami spádu a průtočného množství vody: TG1: H = 2m, Q = 10 m 3 /s, k = 7,5 průměr oběžného kola turbíny OK = 1600 mm cena technologie u TG1 bude 7 mil. Kč TG2: H = 20 m, Q = 1 m 3 /s, k = 7,5 průměr oběžného kola turbiny OK = 350 mm cena technologie u TG2 bude do 1 mil. Kč Průměr oběžného kola je ovlivněn požadovanou hltností turbiny (nejvyšší průtok turbínou) a určuje celkovou velikost a technickou náročnost technologického zařízení MVE (v návaznosti na to také stavební části a tím i celého investičního záměru). V důsledku se vše projeví na celkových investicích. V podobném poměru budou také investice na stavební část. Je zřejmé, že rozdíl dvou výkonově stejných MVE se bude cenově značně lišit, proto investice nelze posuzovat pouze podle instalovaného výkonu. Postup pro získání stavebního povolení ro zvolenou lokalitu zjistěte, zda je pro váš záměr volná, tj. zda není obsazena jiným subjektem, nebo zda v níi nejsou jiné vyšší zájmy (Okresní úřad, útvar ŽP) Zjistěte, zda lze ziskat potřebné pozemky do vlastnictví, nebo dlouhodobého pronájmu (Okresni úřad, útvar výstavby). Opatřete si technicko ekonomické posouzení svého záměru (projektant, poradenské středisko EKIS nebo ČEZ, a.s.) Opatřete si mapovou dokumentaci - snímky z pozemkové mapy (Katastrální úřad). Požádejte o souhlas z vodohospodářského hlediska (Správce toku povodí). Požádejte o souhlas a podmínky k připojeni MVE na veřejnou distribuční síť (rozvodná energetická společnost). Získejte stanovisko z hlediska územního plánu a požádejte o zahájení územního a vodoprávního řízení (Okresní úřad útvar výstavby a útvar životního prostředí). Zadejte vypracování projektové dokumentace (projektant). S vyhotovenou projektovou dokumentací požádejte o stavební povolení (Okresní, stavební úřad). Objednejte technologické zařízení MVE (dodavatelská firma). Zadejte stavební práce po dohodě s dodavatelem technologie. Získejte licenci "výrobce elektrické energie" (Energetický regulační úřad). Závěr Aby byla elektrická energie vyrobená v MVE opravdu "čistá", je třeba dodržovat některá pravidla již při výběru lokality, přípravě projektové dokumentace, vlastním provádění stavby a hlavně při provozu. Nejčastěji diskutovaná problematika: Vhodné začlenění do reliéfu lokality - ve fázi projektové dokumentace je vždy nutné dodržet způsob provedení a typ objektu, jak bylo předepsáno stavebním
6 úřadem, event. urbanistou, aby stavbou nebyl narušen místní krajinný ráz. Dodržováni odběru sjednaného množství vody - nejvhodnějším opatřením je využíváni spolehlivých automatik v součinnosti s hladinovou regulací. Odstraňování naplavenin vytažených z vody podle směrnice MŽP je nutno zajistit jejich odvoz a likvidaci, v žádném případě je nelze vracet do toku. Kontaminace vody ropnými produkty u nových technologií se předpokládá maximální využití samomazných ložisek a používání ekologicky nezávadných maziv na bázi rostlinných olejů, u starších technologií je vždy možné řešení, které nepoškodí přírodu. Akustický projev MVE - pokud by MVE za provozu narušovala nepřípustným hlukem prostředí, je nutno v lokalitě provést opatření na odhlučnění na náklady provozovatele. Při dodržení všech uvedených opatření nemůže MVE svým provozem narušit živolní prostředí, naopak často přispěje v lokalitě a jejím okolí k revitalizaci místního říčního systému (čistí a provzdušňuje tok).
Hydroenergetika (malé vodní elektrárny)
Hydroenergetika (malé vodní elektrárny) Hydroenergetický potenciál ve světě evaporizace vody (¼ solární energie) maximální potenciál: roční srážky 10 17 kg prum výška kontinetálního povrchu nad mořem =
Vydal: nám. Přemysla Otakara II. 87/25, 370 01 České Budějovice Autor textů: Ing. Josef Šťastný Fotografie poskytli: Ing. Otakar Chlouba, Ing.
Vydal: nám. Přemysla Otakara II. 87/25, 370 01 České Budějovice Autor textů: Ing. Josef Šťastný Fotografie poskytli: Ing. Otakar Chlouba, Ing. Martin Halama a Ing. Edvard Sequens ze Sdružení Calla, OÖ
Elektroenergetika 1. Vodní elektrárny
Vodní elektrárny Využití vodního toku Využití potenciální (polohové a tlakové) a čátečně i kinetické energie vodního toku Využití hydroenergetického potenciálu vodních toků má výhody oproti jiným zdrojům
Elektrárny. Malé vodní elektrárny ve vodárenských provozech
Elektrárny Malé vodní elektrárny ve vodárenských provozech Malé vodní elektrárny Výhody MVE jednoduchost, spolehlivost, dlouhá životnost nízké provozní náklady plně automatizované rozptýlenost - omezení
21.6.2011. Projekt realizovaný na SPŠ Nové Město nad Metují
Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 03 - TP ing. Jan Šritr ing. Jan Šritr 2 1 Vodní
VYUŽITÍ ENERGIE VODNÍHO SPÁDU
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 VYUŽITÍ ENERGIE VODNÍHO SPÁDU
Víte, jak funguje malá vodní elektrárna?
Víte, jak funguje malá vodní elektrárna? Malými vodními elektrárnami rozumíme vodní elektrárny o výkonu menším než 10 MW. Používají se k výrobě elektřiny pro osobní potřebu, pro průmyslové účely i k dodávkám
Popis výukového materiálu
Popis výukového materiálu Číslo šablony III/2 Číslo materiálu VY_32_INOVACE_ SZ_20.7. Autor: Ing. Luboš Veselý Datum vytvoření: 13. 02. 2013 Předmět, ročník Tematický celek Téma Druh učebního materiálu
Ústav zemědělské, potravinářské a environmentální techniky. Ing. Zdeněk Konrád Energie vody. druhy, zařízení, využití
Ústav zemědělské, potravinářské a environmentální techniky Ing. Zdeněk Konrád 17.4.2008 Energie vody druhy, zařízení, využití Kapitola 1 strana 2 Voda jako zdroj mechanické energie atmosférické srážky
Rotační výsledkem je otáčivý pohyb (elektrické nebo spalovací #5, vodní nebo větrné
zapis_energeticke_stroje_vodni08/2012 STR Ga 1 z 5 Energetické stroje Rozdělení energetických strojů: #1 mění pohyb na #2 dynamo, alternátor, čerpadlo, kompresor #3 mění energii na #4 27. Vodní elektrárna
Malá vodní elektrárna
Středoškolská technika 2016 Setkání a prezentace prací středoškolských studentů na ČVUT Malá vodní elektrárna Tomáš Bubeníček Vyšší odborný škola a střední průmyslová škola stavební Praha Dušní 17 Praha
Obnovitelné zdroje energie Budovy a energie
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie Budovy a energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. 1 Energie větru 2 1 Energie
Využití vodní energie Doc. Ing. Aleš Havlík, CSc.
Využití vodní energie Doc. Ing. Aleš Havlík, CSc. Historie využití vodní energie Starověk čerpání vody do závlahových kanálů pomocí vodního kola. 6. století vodní kola ve Francii 1027 mlýnský náhon vytesaný
KATALOG OPATŘENÍ a KATALOG DOBRÉ RRAXE
a KATALOG DOBRÉ RRAXE Výstup je vytvořen v rámci projektu ENERGYREGION (pro využití místních zdrojů a energetickou efektivnost v regionech) zaměřujícího se na vytváření strategií a konceptů využívání obnovitelných
Obnovitelné zdroje energie
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. 1 Energie větru 2 1 Energie větru Slunce
2. Vodní dílo HORKA. MĚSTSKÝ ÚŘAD OSTROV Starosta města. Příl. č.1k části B4.10 Krizového plánu určené obce Ostrov č. j.: 9-17/BR/09 Počet listů: 3
2. Vodní dílo HORKA POLOHA Tok Libocký potok říční km 10,4 hydrologické pořadí 1-13-01-080 Obec Krajková, Habartov, Nový Kostel Okres Cheb, Sokolov Kraj Karlovarský Vodní dílo (VD) je vybudováno jako samostatné
Technologie výroby elektrárnách. Základní schémata výroby
Technologie výroby elektrárnách Základní schémata výroby Kotle pro výroby elektřiny Získávání tepelné energie chemickou reakcí fosilních paliv: C + O CO + 33910kJ / kg H + O H 0 + 10580kJ / kg S O SO 10470kJ
znění pozdějších předpisů. Výkupní ceny elektřiny dodané do sítě v Kč/MWh Zelené bonusy v Kč/MWh Datum uvedení do provozu
Návrh cenového rozhodnutí Energetického regulačního úřadu ke dni 26. října 2010, kterým se stanovuje podpora pro výrobu elektřiny z obnovitelných zdrojů energie, kombinované výroby elektřiny a tepla a
STUDIE: SOUHRN PODMÍNEK PRO UPLATNĚNÍ MALÝCH OZE V ČR
STUDIE: SOUHRN PODMÍNEK PRO UPLATNĚNÍ MALÝCH OZE V ČR Zpracoval: ECO trend Research centre, s.r.o. Datum: Červen 2014, aktualizovaná verze Obsah 1 Úvod 3 2 Cíle a vazby na aktuální koncepční a strategické
pevné, přivádí-li vodu do oběžného kola na celém obvodě, nazývá se rozváděcí kolo,
1 VODNÍ TURBÍNY Zařízení měnící energii vody v energii pohybovou a následně v mechanickou práci. Hlavními částmi turbín jsou : rozváděcí ústrojí oběžné kolo. pevné, přivádí-li vodu do oběžného kola na
Změna manipulačního řádu
KATALOG OPATŘENÍ ID_OPATŘENÍ 30 NÁZEV OPATŘENÍ Změna manipulačního řádu DATUM ZPRACOVÁNÍ Prosinec 2005 1. POPIS PROBLÉMU Manipulační řád (dále jen MŘ) vycházející z platného povolení k nakládání s vodami
energie, kombinované výroby elektřiny a tepla a druhotných energetických zdrojů.
Cenové rozhodnutí Energetického regulačního úřadu č. /2011 ze dne listopadu 2011, kterým se stanovuje podpora pro výrobu elektřiny z obnovitelných zdrojů energie, kombinované výroby elektřiny a tepla a
energie, kombinované výroby elektřiny a tepla a druhotných energetických zdrojů.
Cenové rozhodnutí Energetického regulačního úřadu č. 7/2011 ze dne 23. listopadu 2011, kterým se stanovuje podpora pro výrobu elektřiny z obnovitelných zdrojů energie, kombinované výroby elektřiny a tepla
Malé zdroje elektrické energie Vodní energie
1 Vodní energie Vodní energie je považována za energii obnovitelnou. Jejím zdrojem jsou déšť a sníh v koloběhu, udržovaným sluneční energií. Vodní energie se projevuje jako energie potenciální, tlaková
Osnova kurzu. Výroba elektrické energie. Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 3
Osnova kurzu 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 1 Základy teorie elektrických obvodů 2 Základy teorie elektrických
LOPATKOVÉ STROJE LOPATKOVÉ STROJE
Předmět: Ročník: Vytvořil: Datum: STROJÍRENSTVÍ ČTVRTÝ BIROŠČÁKOVÁ I. 22. 11. 2013 Název zpracovaného celku: LOPATKOVÉ STROJE LOPATKOVÉ STROJE Lopatkové stroje jsou taková zařízení, ve kterých dochází
MALÁ VODNÍ ELEKTRÁRNA NOVÉ MLÝNY - OSTROV
Středoškolská technika 2018 Setkání a prezentace prací středoškolských studentů na ČVUT MALÁ VODNÍ ELEKTRÁRNA NOVÉ MLÝNY - OSTROV Adéla Platilová, David Jirásek Střední odborná škola a Střední zdravotnická
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra technických zařízení budov. Budovy a energie Obnovitelné zdroje energie
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra technických zařízení budov Budovy a energie Obnovitelné zdroje energie doc. Ing. Michal Kabrhel, Ph.D. Verze 2.17 Energie větru 2 1 Energie
VZDĚLÁVACÍ PROJEKT NA TÉMATA OBNOVITELNÝCH ZDROJŮ ENERGIE, ÚSPORY ENERGIÍ A SNIŽOVÁNÍ EMISÍ V DOPRAVĚ
ENERSOL 2016 VZDĚLÁVACÍ PROJEKT NA TÉMATA OBNOVITELNÝCH ZDROJŮ ENERGIE, ÚSPORY ENERGIÍ A SNIŽOVÁNÍ EMISÍ V DOPRAVĚ Kategorie projektu: Enersol a praxe STŘEDOČESKÝ KRAJ Jméno, příjmení žáka: Anna Hlavničková
3. Vodní dílo JESENICE
3. Vodní dílo JESENICE POLOHA Tok Odrava říční km 4,17 hydrologické pořadí 1-13-01-066 Obec Cheb Okres Cheb Kraj Karlovarský Vodní dílo (VD) Jesenice je nedílnou součástí vodohospodářské soustavy Skalka
Sborník technických řešení malých vodních elektráren
Sborník technických řešení malých vodních elektráren 1. Úvod 1.1 Historie malých vodních elektráren (MVE) Vodní energie patří k nejdéle využívaným obnovitelým zdrojům primární energie. První zmínky o využití
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROENERGETIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
Příručka. Obnovitelné zdroje energie
Příručka Obnovitelné zdroje energie str. 1 OBSAH 1 2 1.1 Co jsou to obnovitelné zdroje energie 2 1.2 Všeobecné výhody a nevýhody obnovitelných zdrojů energie 2 1.3 Co může jednotlivce, podnikatelský subjekt
č. 475/2005 Sb. VYHLÁŠKA kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů Ve znění: Předpis č.
č. 475/2005 Sb. VYHLÁŠKA ze dne 30. listopadu 2005, kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů Ve znění: Předpis č. K datu Poznámka 364/2007 Sb. (k 1.1.2008)
1. ÚVOD...4 2. VYUŽITÍ SOLÁRNÍ ENERGIE...5
Obsah 1. ÚVOD...4 2. VYUŽITÍ SOLÁRNÍ ENERGIE...5 2.1. Potenciál solární energie v ČR 5 2.2. Podmínky výběru vhodné lokality pro využití solární energie 6 2.3. Rozdělení ČR podle možnosti využití solární
Přehrada Křižanovice na Chrudimce v ř. km 37,150
Přehrada Křižanovice na Chrudimce v ř. km 37,150 Stručná historie výstavby vodního díla Řeka Chrudimka má při své celkové délce téměř 109 kilometrů výškový rozdíl pramene a ústí 470 m, tj, 4,7, a průtoky
REGISTR PRÁVNÍCH PŘEDPISŮ OBLAST: ENERGETIKA
Aktualizováno k zákonu 376/2012 Sb. Typ právního předpisu Číslo předpisu Zákon 406/2000 Název právního předpisu Zákon o hospodaření energií Změny právního předpisu 359/2003 694/2004 180/2005 177/2006 406/2006
Výstavba soukromé malé vodní elektrárny
1. Identifikační číslo: 2. Kód: 13.5 3. Pojmenování (název) životní situace: Výstavba soukromé malé vodní elektrárny 4. Základní informace k životní situaci: Podmínky a postup při záměru realizovat malou
21 HYDROENERGETICKÉ VYUŽITÍ VELMI MALÝCH SPÁDŮ V ZÁVISLOSTI NA EKONOMICKÉ EFEKTIVITĚ
21 HYDROENERGETICKÉ VYUŽITÍ VELMI MALÝCH SPÁDŮ V ZÁVISLOSTI NA EKONOMICKÉ EFEKTIVITĚ Stanislav Hes ČVUT v Praze Fakulta elektrotechnická Katedra elektroenergetiky 1. Úvod do problematiky V dnešní době
8. Vodní dílo STANOVICE
8. Vodní dílo STANOVICE POLOHA Tok Lomnický potok říční km 3,2 hydrologické pořadí 1-13-02-030 Obec Stanovice Okres Karlovy Vary Kraj Karlovarský Vodní dílo (VD) je součástí vodohospodářské soustavy Stanovice
11. Obnovitelné zdroje energie, energie vody a větru 11.1 Obnovitelný a neobnovitelný zdroj energie
11. Obnovitelné zdroje energie, energie vody a větru 11.1 Obnovitelný a neobnovitelný zdroj energie K velkým problémům lidstva v současné době patří zajišťování jeho energetických potřeb. Energetická potřeba
znění pozdějších předpisů. 3 ) Vyhláška č. 475/2005 Sb., kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů, ve
Cenové rozhodnutí Energetického regulačního úřadu č. 4/2009 ze dne 3. listopadu 2009, kterým se stanovuje podpora pro výrobu elektřiny z obnovitelných zdrojů energie, kombinované výroby elektřiny a tepla
Účel vodního díla. Kategorie vodního díla. Základní technické parametry vodního díla
Přehrada Seč na Chrudimce v ř.km 50,722 Stručná historie výstavby vodního díla Řeka Chrudimka má při své celkové délce téměř 109 kilometrů výškový rozdíl pramene a ústí 470 m, tj, 4,7, a průtoky před výstavbou
475/2005 Sb. VYHLÁŠKA ze dne 30. listopadu 2005, kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů
475/2005 Sb. VYHLÁŠKA ze dne 30. listopadu 2005, kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů Změna: 364/2007 Sb. Změna: 409/2009 Sb. Změna: 300/2010 Sb. Změna:
REGISTR PRÁVNÍCH PŘEDPISŮ OBLAST: ENERGETIKA
List/listů: 1/15 Aktualizováno k zákonu 239/2013 Sb. Typ právního předpisu Číslo předpisu Název právního předpisu Zákon 406/2000 Zákon o hospodaření energií Změny právního předpisu 359/2003 694/2004 180/2005
VODNÍ ELEKTRÁRNA VRANÉ
VODNÍ ELEKTRÁRNA VRANÉ 80 let provozu SKUPINA ČEZ JAK ŠEL ČAS NA VODNÍ ELEKTRÁRNĚ VRANÉ 1930 zahájení výstavby 1935 montáž technologie 1936 uvedení do provozu 1961, 1978, 2007 a 2009 generální opravy soustrojí
VĚTRNÉ ELEKTRÁRNY Tomáš Kostka
VĚTRNÉ ELEKTRÁRNY Tomáš Kostka VĚTRNÁ ELEKTRÁRNA Větrná elektrárna (větrná turbína) využívá k výrobě elektrické energie kinetickou energii větru. Větrné elektrárny řadíme mezi obnovitelné zdroje energie.
NÁLEŽITOSTI ŽÁDOSTI O PŘIPOJENÍ VÝROBNY ELEKTŘINY K PŘENOSOVÉ SOUSTAVĚ NEBO DISTRIBUČNÍ SOUSTAVĚ
Příloha č. 1 k vyhlášce č. 51/2006 Sb. NÁLEŽITOSTI ŽÁDOSTI O PŘIPOJENÍ VÝROBNY ELEKTŘINY K PŘENOSOVÉ SOUSTAVĚ NEBO DISTRIBUČNÍ SOUSTAVĚ 1. Obchodní firma (vyplňuje žadatel - podnikatel zapsaný v obchodním
režimu vodního toku, (2) Správci povodí a státní podnik Lesy České republiky pozdějších předpisů.
Strana 2645 252 VYHLÁŠKA ze dne 2. srpna 2013 o rozsahu údajů v evidencích stavu povrchových a podzemních vod a o způsobu zpracování, ukládání a předávání těchto údajů do informačních systémů veřejné správy
znění pozdějších předpisů. 3 ) Vyhláška č. 475/2005 Sb., kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů, ve
Cenové rozhodnutí Energetického regulačního úřadu č. 4/2009 ze dne 3. listopadu 2009, kterým se stanovuje podpora pro výrobu elektřiny z obnovitelných zdrojů energie, kombinované výroby elektřiny a tepla
Využití vodní energie vodní elektrárny. Dr. Ing. Petr Nowak ČVUT v Praze Fakulta stavební Katedra hydrotechniky
Využití vodní energie vodní elektrárny Dr. Ing. Petr Nowak ČVUT v Praze Fakulta stavební Katedra hydrotechniky Typy energetických zdrojů klasické fosilní - uhlí, plyn, ropa jaderné obnovitelné vodní energie
Předmět: Stavba a provoz strojů Ročník: 4.
Předmět: Stavba a provoz strojů Ročník: 4. Anotace: Tento digitální učební materiál poskytuje ucelený přehled o základních typech lopatkových strojů, v tomto díle o turbínách. Diskutovány jsou jednotlivé
STREN turbína typu NTR je náporová točivá parní redukce určena k redukci tlaku páry a následné výrobě elektrické energie.
STREN turbína typu NTR je náporová točivá parní redukce určena k redukci tlaku páry a následné výrobě elektrické energie. STREN turbína automaticky redukuje tlak středotlaké páry na požadovanou hodnotu
ALTERNATIVNÍ ZDROJE ENERGIE - průtočné, přílivové a přečerpávací elektrárny, vodíkový palivový článek (interaktivní tabule)
Zvyšování kvality výuky v přírodních a technických oblastech CZ.1.07/1.1.28/02.0055 ALTERNATIVNÍ ZDROJE ENERGIE - průtočné, přílivové a přečerpávací elektrárny, vodíkový palivový článek (interaktivní tabule)
Posouzení provozu plánované MVE Hostěnice
Posouzení provozu plánované MVE Hostěnice Zpracoval: Dr. Ing. Petr Nowak Fakulta stavební Katedra hydrotechniky České vysoké učení technické v Praze V Praze, srpen 2013 1 OBSAH: 1 OBJEDNATEL...3 2 ZADÁNÍ...3
Využití vodní energie Pracovní list
Číslo projektu Název školy Předmět CZ.1.07/1.5.00/34.0425 INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV Černoleská 1997, 256 01 Benešov BIOLOGIE A EKOLOGIE Tematický okruh Téma Ročník 2. Autor Datum výroby
SYSTÉMY A VYBAVENÍ VĚTRNÝCH ELEKTRÁREN
SYSTÉMY A VYBAVENÍ VĚTRNÝCH ELEKTRÁREN Jak již bylo v předchozích kapitolách zmíněno, větrné elektrárny je možné dělit dle různých hledisek a kritérií. Jedním z kritérií je například konstrukce větrného
znění pozdějších předpisů. 3 ) Vyhláška č. 475/2005 Sb., kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů, ve
Cenové rozhodnutí Energetického regulačního úřadu č. 8/2008 ze dne 18. listopadu 2008, kterým se stanovuje podpora pro výrobu elektřiny z obnovitelných zdrojů energie, kombinované výroby elektřiny a tepla
Cenové rozhodnutí Energetického regulačního úřadu č. 8/2006 ze dne 21. listopadu 2006,
Cenové rozhodnutí Energetického regulačního úřadu č. 8/2006 ze dne 21. listopadu 2006, kterým se stanovuje podpora pro výrobu elektřiny z obnovitelných zdrojů energie, kombinované výroby elektřiny a tepla
Malé vodní elektrárny
Malé vodní elektrárny Malé vodní elektrárny slouží k ekologicky šetrné výrobě elektrické energie. Mohou využívat potenciálu i těch vodních toků, které mají kolísavý průtok vody a jsou silně závislé na
Popis výukového materiálu
Popis výukového materiálu Číslo šablony III/2 Číslo materiálu VY_32_INOVACE_ SZ _ 20. 12. Autor: Ing. Luboš Veselý Datum vypracování: 28. 02. 2013 Předmět, ročník Tematický celek Téma Druh učebního materiálu
Zpracovala: Jana Fojtíková
Větrné elektrárny Zpracovala: Jana Fojtíková email: Jana-Fojtikova@seznam.cz Obsah: Co je to vítr, jak vzniká? Historie využívání větrné energie. Co je to větrná elektrárna? Schéma větrné elektrárny. Princip
SCHMIEDING ARMATURY CZ, s.r.o. Kavitace v uzavřených trubních systémech. Manhardt Lindel / ERHARD-Armaturen
SCHMIEDING ARMATURY CZ, s.r.o. Kavitace v uzavřených trubních systémech Manhardt Lindel / ERHARD-Armaturen Co je kavitace? Kavitace je označení pro fyzikální proces, který se může vyskytnout u kapalných
JAK SE ELEKTŘINA DISTRIBUUJE
JAK SE ELEKTŘINA DISTRIBUUJE aneb: z elektrárny ke spotřebiči prof. Úsporný 2 3 Z ELEKTRÁRNY KE SPOTŘEBIČI Abychom mohli využívat pohodlí, které nám nabízí elektřina, potřebujeme ji dostat z elektráren
Parní turbíny Rovnotlaký stupeň
Parní turbíny Dominanci parních turbín v energetickém průmyslu vyvolaly provozní a ekonomické výhody,zejména: Menší investiční náklady, hmotnost a obestavěný prostor, vztažený na jednotku výkonu. Možnost
Alternativní energie KGJ Green Machines a.s. Kogenerace pro všechny. Buďte nezávislý a už žádné účty.
Alternativní energie KGJ Green Machines a.s. Kogenerace pro všechny. Buďte nezávislý a už žádné účty.. Green Mikro- kogenerační jednotky na Zemní plyn Bioplyn a LPG a Spirálové větrné turbíny Green s alternativními
MALÉ VODNÍ ELEKTRÁRNY KAŠNOVÉHO TYPU.
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE MALÉ VODNÍ ELEKTRÁRNY KAŠNOVÉHO TYPU. SMALL
TC BQO SIGMA PUMPY HRANICE 426 2.98 81.03
SIGMA PUMPY HRANICE ČERPADLOVÉ TURBÍNY SIGMA PUMPY HRANICE, s.r.o. Tovární 605, 753 01 Hranice tel.: 0642/261 111, fax: 0642/202 587 Email: sigmahra@sigmahra.cz TC BQO 426 2.98 81.03 Použití Čerpadlové
Předmět úpravy. Vymezení pojmů
391/2004 Sb. VYHLÁŠKA ze dne 23. června 2004 o rozsahu údajů v evidencích stavu povrchových a podzemních vod a o způsobu zpracování, ukládání a předávání těchto údajů do informačních systémů veřejné správy
Popis výukového materiálu
Popis výukového materiálu Číslo šablony III/2 Číslo materiálu VY_52_INOVACE_ SZ_20. 8 Autor: Ing. Luboš Veselý Datum vytvoření: 14. 02. 2013 Předmět, ročník Tematický celek Téma Druh učebního materiálu
PARNÍ TURBÍNY EKOL PRO VYUŽITÍ PŘI KOMBINOVANÉ VÝROBĚ ELEKTRICKÉ ENERGIE A TEPLA
PARNÍ TURBÍNY EKOL PRO VYUŽITÍ PŘI KOMBINOVANÉ VÝROBĚ ELEKTRICKÉ ENERGIE A TEPLA PARNÍ TURBÍNY EKOL PRO VYUŽITÍ PŘI KOMBINOVANÉ VÝROBĚ ELEKTRICKÉ ENERGIE A TEPLA Ing. Bohumil Krška Ekol, spol. s r.o. Brno
NÁLEŽITOSTI ŽÁDOSTI O PŘIPOJENÍ VÝROBNY ELEKTŘINY K PŘENOSOVÉ NEBO DISTRIBUČNÍ SOUSTAVĚ
Příloha č. 1 k vyhlášce č. 51/2006 Sb. NÁLEŽITOSTI ŽÁDOSTI O PŘIPOJENÍ VÝROBNY ELEKTŘINY K PŘENOSOVÉ NEBO DISTRIBUČNÍ SOUSTAVĚ 1. Obchodní firma - vyplňuje žadatel podnikatel zapsaný Část B - údaje o zařízení
REGISTR PRÁVNÍCH PŘEDPISŮ OBLAST: ENERGETIKA
List/listů: 1/9 Typ právního předpisu Zákon 406/2000 Zákon 458/2000 Vyhláška 150/2001 Změny Číslo předpisu Název právního předpisu právního předpisu Zákon o hospodaření energií Zákon o podmínkách podnikání
Návrh VYHLÁŠKA. ze dne 2015,
Návrh VYHLÁŠKA ze dne 2015, kterou se stanoví technicko-ekonomické parametry a doby životnosti výroben elektřiny a výroben tepla z podporovaných zdrojů energie Energetický regulační úřad stanoví podle
Poborovice 1 - Úhlava - 67,091 ř.km
ZÁKLADNÍ PARAMETRY PŘÍČNÉ PŘEKÁŽKY VAZBA NA HYDROLOGICKÉ ČLENĚNÍ POVODÍ DRUH pevný SPÁD [m] 1,95 ČÍSLO HYDROL.POŘ. 110030340 ÚSEK HR. ČLENĚNÍ VODNÍHO TOKU 1324700 TVAR přímý STŘ. DÉLKA [m] 25,26 ÚTVAR
Obnovitelné zdroje energie a úspory úloha státu. do regulovaných cen. XIV. jarní konference AEM 2. a 3. března 2010 Poděbrady. Josef Fiřt předseda ERÚ
Obnovitelné zdroje energie a úspory úloha státu Podpora OZE a její dopad do regulovaných cen XIV. jarní konference AEM 2. a 3. března 2010 Poděbrady Josef Fiřt předseda ERÚ Podpora výroby elektřiny z OZE
Výukový modul VODNÍ ENERGIE ZELENÝ MOST MEZI ŠKOLOU A PRAXÍ ENVIRONMENTÁLNÍ VZDĚLÁVACÍ MODULY PRO TRVALE UDRŽITELNÝ ROZVOJ CZ.1.07/1.1.00/14.
Výukový modul VODNÍ ENERGIE ZELENÝ MOST MEZI ŠKOLOU A PRAXÍ ENVIRONMENTÁLNÍ VZDĚLÁVACÍ MODULY PRO TRVALE UDRŽITELNÝ ROZVOJ CZ.1.07/1.1.00/14.0153 1 V rámci projektu Zelený most mezi školou a praxí environmentální
METODIKA ME 51/01 DOKUMENTACE ZAMĚŘENÍ SKUTEČNÉHO PROVEDENÍ STAVBY
ČEZ DISTRIBUCE SKUPINA ČEZ parafa správce dokumentace nebo pověřeného zaměstnance pořadové číslo kopie DRUH DOKUMENTU METODIKA ČÍSLO DOKUMENTU ME 51/01 NÁZEV DOKUMENTACE ZAMĚŘENÍ SKUTEČNÉHO PROVEDENÍ STAVBY
Radčice - Mže - 6,205 ř.km
ZÁKLADNÍ PARAMETRY PŘÍČNÉ PŘEKÁŽKY VAZBA NA HYDROLOGICKÉ ČLENĚNÍ POVODÍ DRUH pevný SPÁD [m] 1,6 ČÍSLO HYDROL.POŘ. 110011860 ÚSEK HR. ČLENĚNÍ VODNÍHO TOKU 1309700 TVAR přímý STŘ. DÉLKA [m] 29,3 ÚTVAR POVRCH.VOD
Malé vodní elektrárny PLZEŇSKO
Malé vodní elektrárny PLZEŇSKO Darová Řeka Berounka, největší vodní tok na Plzeňsku, byla využívána už ve středověku k pohonu mlýnů a pil. Řeka má poměrně malý spád, ale po větší část roku dost velký průtok
Posuzování OZE v rámci PENB. Ing. Jan Schwarzer, Ph.D.
Posuzování OZE v rámci PENB 1 Zákon 406/2000 Sb. O hospodaření energií.. 7 Snižování energetické náročnosti budov 7a Průkaz energetické náročnosti. Vyhláška 78/2013 Sb. o energetické náročnosti budov Průkaz
DLOUHÉ STRÁNĚ PŘEČERPÁVACÍ VODNÍ ELEKTRÁRNA
DLOUHÉ STRÁNĚ PŘEČERPÁVACÍ VODNÍ ELEKTRÁRNA Obr. 1: Letecký pohled na nádrže 3 Obsah POLOHA... 5 HISTORIE... 5 NÁDRŽE... 6 ELEKTRÁRNA... 7 DODAVATELÉ... 9 NÁKLADY A OPRAVY... 9 MÉ FOTO Z NÁVŠTĚVY VODNÍ
Kde se MVE Bělov nachází?
Kde se MVE Bělov nachází? MVE Bělov leží nedaleko obce Bělov, která se nachází ve Zlínském kraji, nedaleko od města Zlína a Otrokovic. Leží na levém břehu řeky Moravy, přesněji na ř.km 166,77. Řeka Morava
Vodohospodářské stavby BS001. Přehrady a využití vodní energie
CZ.1.07/2.2.00/15.0426 Posílení kvality bakalářského studijního programu Stavební Inženýrství Vodohospodářské stavby BS001 Přehrady a využití vodní energie Harmonogram přednášek 1. Úvod a základní informace
2. Výběr formy podpory výroby el. v obnovitelném zdroji
Úvodní informace a obecné technické podmínky pro provozování elektrických zdrojů s instalovaným výkonem do 16 kw v distribuční síti E.ON Distribuce, a.s. Nově zřizovat, technologicky měnit nebo rozšiřovat
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ NÁVRH MALÉ VODNÍ ELEKTRÁRNY BAKALÁŘSKÁ PRÁCE. doc. Ing. ANTONÍN MATOUŠEK, CSc.
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROENERGETIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
ZADÁNÍ ROZSAHU DÍLA. Výpustná a odběrná zařízení. Základní údaje:
ZADÁNÍ ROZSAHU DÍLA Základní údaje: Název stavby : VD HORNÍ BEČVA optimalizace provozu MVE Číslo akce : 513 147 TEC Vodní tok : Rožnovská Bečva v km 32,1 Číslo hydrologického pořadí: 4-11-01-094 Kraj:
Model a animace Kaplanovy přímoproudé turbíny
Středoškolská technika 2016 Setkání a prezentace prací středoškolských studentů na ČVUT Model a animace Kaplanovy přímoproudé turbíny Pavel Imlauf Integrovaná střední škola, 2.ročník Kumburská 846, 509
Obnovitelné zdroje energie. Masarykova základní škola Zásada Česká republika
Obnovitelné zdroje energie Masarykova základní škola Zásada Česká republika Větrná energie Veronika Čabová Lucie Machová Větrná energie využití v minulosti Původně nebyla převáděna na elektřinu, ale sloužila
znění pozdějších předpisů. 3 ) Vyhláška č. 475/2005 Sb., kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů, ve
Cenové rozhodnutí Energetického regulačního úřadu č. 7/2007 ze dne 20. listopadu 2007, kterým se stanovuje podpora pro výrobu elektřiny z obnovitelných zdrojů energie, kombinované výroby elektřiny a tepla
Fotovoltaika - legislativa. Ing. Stanislav Bock 24. května 2011
Fotovoltaika - legislativa Ing. Stanislav Bock 24. května 2011 Legislativa ČR Zákon č. 180/2005 Sb., o podpoře využívání obnovitelných zdrojů. Zákon č. 458/2000 Sb., o podmínkách podnikání a o výkonu státní
Energie mořských vln ALTERNATIVNÍ ENERGIE 6/2001 Ing. Dalibor Skácel
Energie mořských vln ALTERNATIVNÍ ENERGIE 6/2001 Ing. Dalibor Skácel Dvě třetiny naší planety je pokryto oceány, vodní plochou, která je diky vlivu Měsíce, Slunce a díky rotaci Země kolem vlastni osy v
Parní turbíny Rovnotlaký stupe
Parní turbíny Dominanci parních turbín v energetickém průmyslu vyvolaly provozní a ekonomické výhody,zejména: Menší investiční náklady, hmotnost a obestavěný prostor, vztažený na jednotku výkonu. Možnost
Akční plán energetiky Zlínského kraje
Akční plán energetiky Zlínského kraje Ing. Miroslava Knotková Zlínský kraj 19/12/2013 Vyhodnocení akčního plánu 2010-2014 Priorita 1 : Podpora efektivního využití energie v majetku ZK 1. Podpora přísnějších
VYHLÁŠKA ze dne 30. dubna 2018 o způsobu a rozsahu zpracovávání návrhu a stanovování záplavových území a jejich dokumentace
Strana 1026 Sbírka zákonů č. 79 / 2018 79 VYHLÁŠKA ze dne 30. dubna 2018 o způsobu a rozsahu zpracovávání návrhu a stanovování záplavových území a jejich dokumentace Ministerstvo životního prostředí stanoví
Bezpečnostní program
Bezpečnostní program bezpečnostního programu. Obsah: Prezentace EDĚ - vybrané objekty s popisem - blokový transformátor - transformátor vlastní spotřeby - turbogenerátor TG 200 MW - regulační stanice plynu
Malá vodní elektrárna Spálov
Malá vodní elektrárna Spálov Na úvod něco z teorie a minulosti využívání energie vody Část energie slunečního záření dopadajícího na zem se přetváří v energii vody. Ta patří mezi nevyčerpatelné (obnovitelné),
Podpora výroby elektřiny z OZE a KVET v roce Rostislav Krejcar
Podpora výroby elektřiny z OZE a KVET v roce 2012 Rostislav Krejcar Obsah prezentace Obnovitelné zdroje energie (OZE) Legislativa vývoj novely zákona č. 180/2005 Sb. Platná sekundární legislativa k zákonu
ALTERNATIVNÍ ZDROJE ENERGIE
ALTERNATIVNÍ ZDROJE ENERGIE Využití energie slunce Na zemský povrch dopadá průměrně 0,2 kw/m 2 V ČR dopadne na 1 m 2 přibližně 1000 kwh energie ročně Je několik možností, jak přeměnit energii slunečního
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROENERGETIKY A EKOLOGIE DIPLOMOVÁ PRÁCE
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROENERGETIKY A EKOLOGIE DIPLOMOVÁ PRÁCE Posouzení možnosti stavby malé vodní elektrárny vedoucí práce: Prof. Ing. Jan Mühlbacher, CSc.