1. ÚVOD VYUŽITÍ SOLÁRNÍ ENERGIE...5

Rozměr: px
Začít zobrazení ze stránky:

Download "1. ÚVOD...4 2. VYUŽITÍ SOLÁRNÍ ENERGIE...5"

Transkript

1

2 Obsah 1. ÚVOD VYUŽITÍ SOLÁRNÍ ENERGIE Potenciál solární energie v ČR Podmínky výběru vhodné lokality pro využití solární energie Rozdělení ČR podle možnosti využití solární energie Zajímavé lokality a objekty pro využití solární energie Výroba elektrické energie PV panely Výroba TUV plochými (trubicovými) vodními kolektory Přitápění a výroba TUV plochými (trubicovými) vodními kolektory Ohřev bazénu plochými (trubicovými) vodními kolektory Využití pasivního solárního ohřevu budov 9 3. VYUŽITÍ ENERGIE VODY Malé vodní elektrárny Vývoj a současný stav MVE Způsob využití hydropotenciálu Způsob využití hydropotenciálu podle koncepce a dispozice Vyráběné základní typy turbín Turbíny násoskové Turbíny BÁNKI Kašnové turbíny Přímoproudé turbíny Spirální turbíny Zabezpečení výstavby a provozu MVE Obecný postup při realizaci MVE Předprojektová příprava Získání stavebního povolení Realizace Překážky netechnického charakteru při realizaci MVE Překážky legislativní Překážky související se zvláštním charakterem lokality Překážky majetko-právní Překážky ekonomické Investice a ekonomie výstavby a provozu MVE VYUŽITÍ VĚTRNÉ ENERGIE S větrem a nikdy jinak Energie větru Praktické stanovení energie větru Vertikální profil větru Vítr na území České republiky Vyhledávání a hodnocení lokalit vhodných pro využití energie větru VYUŽITÍ GEOTERMÁLNÍ ENERGIE Energetický potenciál naší planety Zemský tepelný tok Možnosti využívání zemského tepla 50 2

3 Využívání nízkoteplotních zdrojů Možnosti využívání geotermální energie v ČR Potenciál geotermální energie u nás Oblasti podmíněně vhodné pro výrobu elektrické energie Jáchymov Boží Dar - Potůčky Kadaň Chomutov - Most Ústí nad Labem - Děčín Mělnicko Ostravsko Struktura vídeňské pánve - Břeclavsko Struktura Vizovice Problematika využití geotermální energie Závěry VYUŽITÍ ENERGIE BIOMASY Potenciál energie biomasy v ČR Predikce spotřeby biomasy Využití energie biomasy spalováním, vhodné lokality Spalování dřevní hmoty Spalování slámy Přepracování biomasy na bioplyn Zajímavé lokality a objekty pro využití energie biomasy DATABÁZE VHODNÝCH LOKALIT PRO VYUŽITÍ OZE ZÁVĚR...75 Seznam tabulek 76 Seznam obrázků 76 Použitá literatura 77 3

4 1. Úvod Cílem práce je podat základní informace o výběru optimálních lokalit pro využití obnovitelných zdrojů energie v podmínkách ČR. Obnovitelné zdroje energie (dále OZE) jsou zdroje, které pro svoji činnost využívají nevyčerpatelné přírodní zdroje energie. Ty může lidstvo čerpat ze Slunce jako solární, větrnou a vodní, ze Země jako geotermální a z moře jako gravitační. Tyto druhy energie lidstvo doprovází během jeho celé existence, jsou prakticky nevyčerpatelné. Jejich používání neznečišťuje životní prostředí. Využití OZE je vždy do určité míry omezeno lokalitou a také způsobem použití. Správná volba vhodné lokality je prvým nezbytným krokem k úspěšné instalaci. Je až zarážející, v kolika případech různých instalací OZE v ČR nebyla tato základní podmínka bezezbytku splněna. Chyba se okamžitě projeví podstatným snížením výroby energie (a tedy ekonomické efektivity zařízení), v horším případě jeho nefunkčností. Nevhodná volba lokality je z ekonomického pohledu často nevratná chyba. Obvykle se demontáž, repase (případně úprava) a následná montáž zařízení na jiné lokalitě nevyplatí (např. přemístění malé vodní elektrárny, která je obvykle vyrobena na míru pro vybranou lokalitu). Z pohledu výběru lokality lze OZE rozdělit na tři skupiny: 1. OZE využitelné celoplošně a) Využití solárního záření solárními kolektory a fotovoltaickými panely b) Využití geotermálního a okolního nízkopotenciálního tepla tepelnými čerpadly 2. OZE využitelné na menších plochách, nebo lokálně a) Využití biomasy spalováním b) Využití biomasy přepracováním na bioplyn 3. OZE využitelné pouze lokálně s úzkou vazbou na lokalitu a) Využití vodní energie malými vodními elektrárnami b) Využití energie větru větrnými elektrárnami Z uvedeného rozdělení vyplývá, že se nároky na lokalitu značně liší podle typu OZE. Zatímco u prvé skupiny lze při instalaci téměř vždy postupovat od spotřebitele systémem chceme ohřívat vodu solárním kolektorem (vytápět tepelným čerpadlem tento dům v ), co pro to máme udělat?, je u třetí skupiny postup právě opačný: máme vodní tok se spádem X a průtokem Y, můžeme zde realizovat malou vodní elektrárnu? Práce respektuje uvedené rozdělení a rozdílné nároky jednotlivých OZE na lokality. Proto nejsou v prvé skupině vybrány konkrétní instalace, ale práce se zaměřila zejména na výběr vhodné lokality, popis podmínek využití v ČR. Ve druhé skupině se práce zaměřila na zjištění podmínek možnosti využití v jednotlivých krajích ČR s dalšími známými lokálními specifikacemi. Ve třetí skupině se práce zaměřila na rozbor podmínek ČR s vytipováním vhodných území a lokalit pro využití OZE. 4

5 2. Využití solární energie Solární energie jednoznačně patří mezi OZE využitelné celoplošně. Na celém území ČR jsou vhodné podmínky pro tento zdroj energie. Více než výběr lokality je v případě využití solárního záření kritický způsob instalace zařízení a jeho správné začlenění do energetického systému spotřebitele Potenciál solární energie v ČR Energii solárního záření lze přeměnit na tepelnou energii a nebo elektrickou energii. Možnosti názorně ukazuje následující obrázek. Výroba tepla solárními kolektory Ploché vodní a trubicové kolektory Aktivně Teplovzdušné kolektory Využití solárního záření Výroba elektrické energie Fotovoltaické články Solárně - termická přeměna Pasivně Přeměna solárního záření na teplo architektonickým uspořádáním budov Obrázek 1: Možnosti přeměny solárního záření. V podmínkách ČR lze reálně uvažovat o všech možnostech přeměny solárního záření, kromě solárně termické. Pro ni nejsou vhodné podmínky. Solární systémy se v převážné většině využívají k ohřevu TUV, vody v bazénu a pro přitápění (případně vytápění). V současné době jsou nejperspektivnější solární systémy s plochými vodními kolektory. Dají se bez obtíží instalovat na stávající budovy. Mohou zabezpečit ohřev TUV, přitápění případně v kombinaci s ohřevem bazénu. Lze očekávat velkou budoucnost systémů pasivního solárního přitápění budov. Na rozdíl od zahraničí není u nás tento systém rozšířen. Důvodem jsou nejen vyšší investiční náklady při realizaci, ale také nedostatek zkušeností a odborníků schopných efektivně navrhnout funkční systém. Názory na využitelný potenciál solární energie v ČR se různí. Důvodem je velká nejistota budoucího vývoje energetiky zejména cen energií, zájmu spotřebitelů o využití solárních systémů a stupně jejich integrace do stávajících energetických soustav, (bude velký rozdíl, rozšíří-li se solární systémy kromě ohřevu TUV ve větší míře např. na přitápění). Podle posledních odhadů potenciálů OZE provedených v rámci prací na energetické politice ČR je využitelný potenciál energie solárního záření 3,5 PJ/rok (972,2 GWh) [1]. 5

6 2.2. Podmínky výběru vhodné lokality pro využití solární energie Při výběru lokality se daleko více než k vlastní lokalizaci v rámci území sledují její technicko ekonomické ukazatele. Plocha pro umístění solárních jímačů (kolektorů, PV článků) by měla splňovat následující kriteria: 1. Orientace na jih, případně mírně na jihozápad. 2. Celodenní osvit Sluncem bez stínících překážek. 3. Možnost umístit kolektory s požadovaným sklonem, tj k vodorovné rovině. Pro celoroční provoz je optimální sklon Co nejkratší potrubní rozvody. V případě využití pasivních solárních prvků pro přitápění (vytápění) budov se sleduje: - Maximální využití jižní strany budovy, jež musí být osluněná (bez stínících překážek), měla by mít co největší plochu, severní stěna by měla mít nejmenší plochu. - Prvky pasivní solární architektury se umísťují na jižní stěnu, u jednodušších systémů to jsou např. velká okna pro zachycení solárního záření, u dokonalejších systémů je celá jižní stěna prosklená a za ní je teprve vlastní nosná a akumulační stěna s okny do místností, dveřmi, větracími kanály a pod. - Je nutné zabezpečit akumulaci takto získaného tepla. Obvykle se k tomu využívá stavební konstrukce, při tom je nutné zabezpečit rozvod tepla (teplého vzduchu) do ostatních místností. - Jižní stěna, prosklené plochy a další prvky musí být zkonstruovány tak, aby se zamezilo úniku tepla vedením a sáláním v době minima slunečního svitu (např. v zimně v noci). - Je nutné zabezpečit zejména v letních měsících odvětrání jižních místností v budově a také zabezpečit systém clonění velkých prosklených ploch z důvodu přehřívání budovy v létě. - V ideálním případě lze využít přebytky tepla pro ohřev TUV (bazénu) Vliv umístění solárního systému v konkrétní lokalitě (území) se projevuje: 1. Proměnným počtem hodin solárního svitu (viz. následující kapitola). 2. Intenzitou solárního záření, která se mění podle znečištěním atmosféry (město, venkov, hory). 3. Tepelnými ztrátami kolektorů (ty se mění podle chodu ročních venkovních teplot a vlivu větru či jiných nepříznivých meteorologických jevů, zejména námrazy) Rozdělení ČR podle možnosti využití solární energie Průměrný počet hodin solárního svitu se v ČR pohybuje kolem h/rok. Nejmenší počet hodin má severo-západ území. Směrem na jiho-východ počet hodin narůstá. Lokality se od sebe běžně liší v průměru o +/- 10%. V některých ojedinělých případech je odchylka vyšší. Maxima a minima jsou v následující tabulce: 6

7 Hodnota h/rok Lokalita % Min h Teplice 79% Min h Turnov 91% Max h Znojmo 117% Průměr h 100% Tabulka 1: Maximální a minimální počty hodin solárního záření ve vybraných městech ČR. Teplice spolu s Ústím nad Labem (1 197 h/rok) mají vůbec nejnižší počty hodin solárního záření. Vzhledem ke stáří dat (novější dosud nebyla zveřejněna) je možné, že má na uvedené hodnoty velký určitý vliv průmyslové znečištění atmosféry, které je dnes vzhledem k útlumu průmyslu nižší. Obvyklé min. hodnoty se spíše pohybují kolem h/rok (jako má město Turnov). Měsíc/počet hodin v měsíci CELKEM Město I. II. III. IV. V. VI. VII. VIII. IX. X. XI. XII. (h/rok) Benecko Brno České Bud Hradec Kr Cheb Jeseník Jindřich. Hrad Karlovy Vary Klatovy Luhačovice Olomouc Opava Ostrava Pardubice Plzeň Praha Prostějov Přerov Sedlčany Strážnice Šumperk Telč Teplice Třeboň Turnov Ústí nad Lab Val. Meziříč Velké Meziř Vsetín Vyšší Brod Zábřeh n. M Žatec Znojmo Tabulka 2: Průměrné měsíční sumy slunečního svitu vybraných měst [2]. 7

8 Počty hodin slunečního záření rok od roku velmi kolísají (běžně o desítky až stovky hodin). Proto je vhodné vycházet z dlouhodobého průměru s tím, že se bude od skutečnosti více či méně lišit. Velmi dobrou představu o možném využití solární energie dává následující mapka globálního solárního záření, které dopadá na vodorovnou plochu o velikosti 1 m 2 za rok. Obrázek 2: Průměrné roční sumy globálního záření v MJm -2 [2]. Mapka neplatí pro oblasti se silně znečištěnou atmosférou. Zde je nutné počítat s poklesem globálního záření o 5 10%, v ojedinělých případech 15 20%. Pro oblasti s nadmořskou výškou od 700 do m.n.m. je nutné počítat s 5% nárůstem globálního záření Zajímavé lokality a objekty pro využití solární energie Výběr vhodných lokalit se téměř výhradně soustřeďuje na technicko-ekonomické ukazatele využití solárního systému. Teplo (elektrická energie) vyrobené solárním systémem vstupuje do konkurenčního boje s klasickými energiemi dostupnými na trhu, zejména však s elektrickou energií a se zemním plynem. Jejich ceny nejsou ustálené a podléhají státní cenové regulaci. Stále neproběhlo odstranění dotací pro maloodběr Výroba elektrické energie PV panely Ve světě stále rozšířenější a podporovanější forma využití energie solárního záření nenachází v ČR dostatek podpory ze strany státu. Vysoké pořizovací náklady a nízké výkupní ceny vyrobené elektrické energie prakticky znemožňují komerční využití. Solární systémy s PV panely a dodávkou do rozvodné sítě si zřejmě budou pořizovat zájemci, kterým zařízení přinese další efekty a kteří si je mohou dovolit. Jedná se zejména o instalace na budovy bank, hotelů a průmyslových konsorcií. Z fotovoltaických panelů (článků) lze udělat na fasádě zajímavé mozaiky, které zároveň dodávají elektrickou energii. Pro tento účel se vyrábí různobarevné články. I přes nižší účinnost je o barevné PV články zájem. Prvou instalací tohoto druhu je instalace PV solárního systému na hotelu Corinthia Panorama Hotel v Praze. Podle zatím neověřených informací se chystá další instalace. 8

9 Základní parametry PV systému hotelu Corinthia Panorama: Připojení k síti 12/99 Instalovaný špičkový výkon W p Celková plocha 66 m 2 Počet panelů 132 Typ panelů / špičkový výkon Typ solárních článků Výrobce Síťový střídač Nominální výkon Typ Počet jednotek 3 Aktuální informace o výkonu FV systému STR36-45-GO-G / 45 Wp z monokrystalického křemíku, aktivní strana zlaté barvy Solartec s.r.o. 3 x W Fronius Sunrise Midi ve vstupní hale hotelu a na Internetu Tabulka 3: Základní parametry PV systému hotelu Corinthia Panorama. Jednou z možností jak rozšířit využití PV systémů je i nepřímá státní podpora např. stanovením odpisového procenta shodného se stavbou (Švýcarská federace) Výroba TUV plochými (trubicovými) vodními kolektory Výroba TUV se bude v příštích letech s největší pravděpodobností soustřeďovat do těchto objektů: 1. Rodinné domky (starší i novostavby), tak jako dosud. Problémem stále zůstane špatná konkurenceschopnost vůči elektrickému ohřevu v nízké sazbě. 2. Menší penziony a hotely (solární ohřev bude zajímavý zejména tam, kde je malá kapacita pro klasický ohřev a kde je velká spotřeba TUV např. tam kde se vaří). 3. Kempy (vhodné využití jednodušších solárních systémů) Přitápění a výroba TUV plochými (trubicovými) vodními kolektory 1. Moderní, zejména nízkoenergetické rodinné domky (novostavby). U těchto budov je velmi nízká potřeba tepla, s optimalizací energetické soustavy domu je využití solárního systému zajímavé Ohřev bazénu plochými (trubicovými) vodními kolektory 1. Ohřev malých venkovních bazénů u RD. Solární ohřev je velmi zajímavou alternativou a dokáže významně zvýšit využití bazénu prodloužením sezóny. 2. Ohřev větších bazénů: bude i nadále velmi individuálním případem. Pro efektivní využití je potřeba splnit mnohem více podmínek, než v prvém případě. Velmi vzrostou požadavky na umístění kolektorů a zastavěnou plochu, provozovatel bazénu musí provést pečlivé technicko-ekonomické vyhodnocení, než se pro instalaci rozhodne Využití pasivního solárního ohřevu budov 1. Rodinné domky a menší obytné domy: Efektivní využití lze předpokládat zejména u novostaveb, kde se celá koncepce budovy přizpůsobí systému pasivního solárního ohřevu. 9

10 2. Administrativní budovy, penziony, hotely: v souladu se zahraničními zkušenostmi lze očekávat výstavbu větších nízkoenergetických budov s pasivním solárním ohřevem a využitím vnitřních tepelných zisků (teplo, které produkují lidé, technika apod.). Jednou z prvých instalací je např. dům s pečovatelskou službou ve Svitavách. 10

11 3. Využití energie vody 3.1. Malé vodní elektrárny Energie získávaná z vodních toků není v bilanci naší energetiky zdaleka rozhodující, ani příliš výrazná, zůstává však velmi cenným, ale dosud málo využitým obnovitelným zdrojem energie. Vodní elektrárny se na celkovém instalovaném výkonu v republice podílejí zhruba 17 % a na výrobě necelými 4 %. Česká republika je svou geografickou polohou, (leží na rozvodí tří moří, řeky zde pramení), přímo předurčena k využití vodní energie v malých vodních elektrárnách - dále jen MVE. Podle ČSN Malé vodní elektrárny jsou tímto pojmem označovány všechny vodní elektrárny s instalovaným výkonem do 10 MW. Technicky využitelný potenciál v MVE je GWh/rok. Dnes využitý potenciál MVE činí zhruba 45 %, tj. cca 700 GWh/rok. V České republice by teoreticky měl být stále dostatek lokalit pro výstavbu, nebo obnovu MVE, avšak skutečnost již tak optimální není. Zbývající potenciál má výrazně horší hydrologické podmínky než potenciál již využitý, z čehož vyplývá, že ekonomie u budoucích realizací se bude vyznačovat zhoršujícími se návratnostmi investic a tím i úbytkem zájmu investorů. Hydroenergetický potenciál bude zastoupen pouze lokalitami s velmi nízkými spády, což při daných průtocích bude vyžadovat podstatně vyšší investice na technologii i na stavební části. Podle současného trendu výstavby MVE, dojde v příštích cca 5 letech k výraznému útlumu staveb, pokud nebudou budoucím realizacím zajištěny podstatně výhodnější ekonomické podmínky (viz. předchozí odstavce). Krajní mezí pro již málo ekonomické záměry je hranice spádu kolem hodnoty 1,5 m. Z hlediska dispozice a rozložení zdrojů vodní energie na našem území, mají právě MVE nezastupitelnou roli také tím, že netvoří kompaktní skupinu, ale jsou rozptýleny po celém území. To je výhodné právě pro připojování do energetické sítě, kde nezatěžují přenosovou soustavu. Celoplošné rozšíření elektrizační soustavy potom umožňuje připojení téměř ve všech lokalitách, s možností použití asynchronních generátorů, což je provozně jednodušší a levnější, (není třeba nákladné a složité regulační části). Pro uplatnění MVE je však podstatné, aby jejich ekonomické ukazatele byly srovnatelné, nebo spíše výhodnější než ukazatele jiných energetických zdrojů. MVE se vyznačují podstatně delší životností, než je doba návratnosti investic na výstavbu. Dá se říci, že výroba MVE patří k nejlevněji získávané elektrické energii, která je nejen ekologicky čistá, ale v mnoha směrech i kladně ovlivňuje režim vodního toku, což je právě důvod pro který by si MVE zasloužily více pozornosti. 11

12 Vývoj a současný stav MVE Trend vývoje výstavby MVE v České republice v uplynulém období znázorňuje následující tabulka: Rok Počet Inst. výkon (MW) Roční výr. (MWh) Tabulka 4: Vývoje MVE v České republice v letech (hodnoty jsou vždy zaokrouhleny) Z tabulky je patrný vzestupný trend výstavby MVE po roce Je však také zřejmé, že za poslední 5 leté období se projevil pokles zájmu, jehož příčinou bylo i postupné obsazování výhodnějších lokalit, když pro další realizace zůstávají k dispozici pouze lokality s nízkými spády, ekonomicky méně výhodné Způsob využití hydropotenciálu Základní technické parametry lokalit dosud energeticky nevyužívaných lze rozdělit do několika skupin podle spádu a průtoku: Číslo skupiny Využitelný spád (H) Četnost rozsah průtoku (Q) Četnost ve skupině 1. méně než 2 m 40 % nad 10 m 3 s % 1-10 m 3 s % nad 10 m 3 s % 2. 2 m - 4 m 30 % 1-10 m 3 s % do 1 m 3 s % nad 5 m 3 s % 3. 4 m - 6 m 20 % 1-5 m 3 s % do 1 m 3 s % nad 5 m 3 s -1 5 % 4. 6 m - 10 m 5 % 1-5 m 3 s % do 1 m 3 s % 5. více než 10 m 5 % nad 1 m 3 s -1 5 % do 1 m 3 s % Tabulka 5: Rozdělení dosud nevyužívaných lokalit do skupin podle spádu a průtoku. 12

13 Pro jednotlivé skupiny dle spádu lze použít vhodnou koncepci a přiřadit vhodnou technologii: Skupina Koncepce MVE Typ turbíny Uspořádání soustrojí průtočná Kaplan přímoproudé 1. derivační - beztlaková horizontální jezová břehová průtočná Kaplan přímoproudé derivační - beztlaková Vrtulová /Propeler/ horizontální 2. derivační - tlaková Násosková provedení S pilířová provedení šikmé jezová průtočná Kaplan přímoproudé 3. derivační - tlaková Násosková horizontální i jezová - pilířová BANKI vertikální průtočná Kaplan horizontální i 4. derivační tlaková Francis vertikální akumulační BANKI jezová - pilířová Reifenstein průtočná Francis horizontální i 5. akumulační Reifenstein vertikální přehradová BANKI převážně tlak. přivaděč Tabulka 6: Vhodná koncepce MVE pro jednotlivé skupiny. Pro spády větší než 10 m lze úspěšně použít i čerpadlové turbíny a pro spády nad 30 m turbíny Pelton. Pro všechny uvedené skupiny dělené podle spádu a průtoků se nabízí dostatek výrobců hlavně tuzemských, případně i zahraničních. V tuzemsku je v současnosti 8 firem, které nabízejí dodávky turbín, kompletace turbosoustrojí a mnozí také dodání i s montáží na lokalitě (na klíč). K dispozici jsou dnes u nás prakticky všechny známé typy turbín: Kaplan, Francis, Pelton, Bánki, Reifenstein i čerpadlové turbíny, vše v jakémkoliv uspořádání i velikostech. Nabídky výrobců technologií pro MVE značně převyšují poptávku, což vytváří potřebnou konkurenci a přivádí některé z nich na velice dobrou technickou úroveň, srovnatelnou s nejlepšími zahraničními výrobci. Také servisní a opravárenská činnost může uspokojit i náročné provozovatele MVE Způsob využití hydropotenciálu podle koncepce a dispozice. Možnosti využití vodní energie, (její kinetické energie a jejího potenciálu tlakového), je možno rozdělit do tří oblastí: 1. Využití vodního toku, kde je množství vody dáno vodnatostí - průtočností toku. Tlak se získá vybudováním vzdouvacího objektu a jeho derivací o vhodné délce. Vodní tok je vždy charakterizován větší či menší změnou průtočnosti. Dá se také říci že M - denní křivka ročních průtoků, (závislost průtoku na počtu dní v roce), je více nebo méně strmá. Pro MVE to má vliv na její technologii, která se musí těmto změnám přizpůsobit, aby provoz MVE v průběhu celého roku byl ekonomicky co nejoptimálnější. Větší průtočné změny toku ve využitém profilu, potom vyžadují, v zájmu ekonomického 13

14 provozu vyšší regulační schopnost turbíny. Při vhodné dispozici a dostatečném prostoru v lokalitě je také vhodnější použití dvou, nebo tří soustrojí menších, levnějších s jednoduchou regulací, čímž je vyšší regulace částečně nahrazena. Dvě menší turbíny jsou schopné vždy zpracovat menší průtok, než jedna velká o stejném výkonu. Minimum ještě zpracovatelného průtoku se pohybuje obvykle kolem 20%. Tato skutečnost potom přímo ovlivňuje výši investic. Vzhledem k převažujícímu potenciálu s velmi nízkými spády, který bude na vodních tocích pro příští realizace nejčastější - viz. předchozí kapitola, budou předmětem zájmu právě turbíny přímoproudé - Kaplanovy, s dokonalou plnou, automatickou regulací. 2. Využití retenční nádrže, rybníka, nebo jiného akumulačního zařízení, kde se získá vhodný tlak, s malou změnou spádu. Stejně tak průtočné množství vykazuje pouze malé změny, získané právě retencí nádrže. V České republice je zhruba rybníků o celkové ploše přes 50 tis. ha. Český rybářský svaz a Státní rybářství obhospodařují cca rybníků, o ploše asi 45 tis. ha. Energetické využití je prozatím minimální a naráží na množství dosud nevyřešených problémů. Již před 10 ti lety byla posuzována možnost energetického využití u 220 rybníků, byl pořízen jejich seznam ve spolupráci s tehdejším Svazem ochránců přírody a vypracováno několik studií. Bylo posuzováno: - Vliv denního kolísání hladiny na vodní ptactvo. - Vliv kolísání hladiny na faunu a flóru. - Jiná problematika budování MVE na rybnících. Závěry provedených studií, které se zabývaly touto problematikou, vyjádřily zásadní hlediska pro budování MVE na rybnících, ze kterých vyplynula nutnost diferencovaného přístupu k instalaci MVE s ohledem na zabezpečení produkce ryb a při rozhodování k realizaci podmínku zvažování všech ekologických i ekonomických aspektů. Z 220 sledovaných rybníků bylo energeticky využito pouze necelých 20 %. MVE je u retenčních nádrží možno projektovat jako průtočné - tam kde z rybníků odtéká množství, které do něho přitéká. U rybníků které se doplňují pouze v intervalech, tam kde přitékající voda má možnost rybník kanálem obtéci, bude MVE projektována jako akumulační, pro provoz pouze v energetických špičkách. Právě u MVE se špičkovým provozem je největší problém s kolísáním hladiny. Podle provedených studií je vhodné kolísání hladiny do 10 cm, výjimečně však do 20 cm, závisí to na mnoha okolnostech a hlavně na dispozici konkrétní nádrže. Charakteristické pro MVE na nádržích jsou pouze malé změny spádu a také možnost vyrovnávat změny v průtoku. Technologie takové MVE potom neklade velké nároky na regulaci a je technicky jednodušší a proto i levnější. Předpokládaný využitelný výkon na cca 220 ti nádržích je odhadován na 3000 kw. 3. Využití vodárenských objektů vybudovaných pro účely zásobování pitnou nebo užitkovou vodou, kde je možno získat téměř konstantní vysoké tlaky a průtoky bez větších změn. Tato možnost realizace MVE dlouho vyvolávala obavy z možné kontaminace vody ropnými produkty z použité technologie. Moderní technologie pouze se samomaznými ložisky umožnila i zde energetické využití. Již v polovině osmdesátých let se instalovaly první MVE na vodárenských nádržích - např. Stanovice u Karl. Var, nebo Římov u Českých Budějovic. V současnosti jsou již využity desítky vodárenských nádrží a 14

15 výstavba dále pokračuje - např. Křetínka (120 kw), Boskovice (100 kw), Hradiště-SVČ (2400 kw), Jizerský vrch (160 kw), Teplice-SVČ (110 kw), atp. Výhodou těchto realizací je vysoký, téměř konstantní spád, jen málo se měnící průtok a jednoduché zabudování do vodárenského objektu, z čehož plyne nízká investice a jejich rychlá návratnost. Budování MVE na vodárenských nádržích je tudíž po všech stránkách výhodné, což umožnilo ekologické zabezpečení technologie a příslušenství MVE, kde jsou ropná maziva zcela vyloučena Vyráběné základní typy turbín. Přehled nejčastěji používaných typů turbín v ČR je uveden pouze v základním provedení, od nejjednodušších a nejlevnějších až po technicky nejdokonalejší Turbíny násoskové. Jde o velmi jednoduché vrtulové turbíny pro energetické mikrozdroje. Turbíny, které u nás vyrábí fy. MAVEL se vyrábějí ve dvou velikostech: TM 3 s průměrem oběžného kola 300 mm a TM 5 s průměrem 550 mm. Jsou to násoskové turbíny s litinovou komorou a plechovou svařovanou sací rourou, jejíž rozměr je upraven podle podmínek v dané lokalitě. Rozváděcí i oběžné lopatky jsou pevné, neregulovatelné, nebo na přání s přestavitelnými lopatkami oběžného kola. Rozváděcí kolo je pevné, nepřestavitelné. Vyrábějí se oběžná kola s několika profily otevření tak, aby pro dané průtočné poměry bylo možné zvolit optimální variantu. Turbíny pracují s asynchronními motory v generátorovém chodu - tedy vždy v součinnosti s energetickou sítí. Mikrosoustrojí s násoskou je uváděno do provozu pomocí vlastního elektromotoru. Při zapnutí do sítě pracuje turbína jako čerpadlo (cca 15 s) a po zaplnění násosky vodou, soustrojí přechází automaticky do turbinového chodu (nadsynchronní skluz), v němž elektromotor pracuje jako generátor. Soustrojí se odstavuje zavzdušněním násosky. Obrázek 3: Násosková turbína firmy MAVEL, a.s., typ TM 3. 15

16 Turbíny MAVEL se vyrábějí od roku 1983 původně jako turbíny METAZ u fy. METAZ v Týnci nad Sázavou. Byly to první vyráběné turbíny v ČR od roku 1982 (mimo ČKD Blansko). Těchto strojů u nás poměrně spolehlivě pracuje cca 700 kusů, na spádech od 2 m do 6 m. Jsou vhodné např. do lokalit, kde nahrazují původní vodní kolo na svrchní vodu. Zde se pak pouze vybuduje opěrná zeď, viz. Obrázek 3, čímž vznikne kašna. V ní se poměrně jednoduchým způsobem instaluje turbína MAVEL. Současný výrobce MAVEL, a.s. v Benešově dodává kompletní soustrojí včetně generátoru a elektrického rozvaděče. Podmínkou omezující nasazení těchto jednoduchých turbín je pokud možno konstantní průtok a konstantní (málo se měnící) úroveň horní hladiny. Výkon závisí i na způsobu instalace - na délce vodorovné části savky, ve které vznikají ztráty na spádu. Účinnost těchto strojů se pohybuje od 72 % do 80 %, což jsou velmi dobré hodnoty pro tuto velikost a pro použitou technologii výroby. Typ MAVEL TM 3 lze ekonomicky nasadit od spádu 3 m a průtoku 0,3 m 3 /s, MAVEL TM 5 od spádů kolem 2 m a průtoků asi 0,8 m 3 /s. Horní hranicí spádu je hodnota 6 m. Pohyblivé části turbíny jsou samomazné (dolní vodící ložisko), nebo se zabezpečením proti úniku maziva - mimo kontakt s říční vodou (horní závěsné ložisko). Tím jsou tyto turbíny ekologicky nezávadné, způsobilé i pro provoz ve vodárenských přivaděčích. Vhodnost instalace turbín MAVEL do dané lokality však vždy musí posoudit projektant, popř. výrobce turbíny Turbíny BÁNKI Jde o velmi jednoduchou rovnotlakou turbínu, dříve často používanou pro její odolnost, provozní nenáročnost a jednoduchost výroby. Tyto turbíny se zásadně montují na přiváděcí potrubí. Klasické Bánkiho turbíny u nás v současné době vyrábí firma MAVEL, a.s. (ČKD - TURBO TECHNICS) a její verzi s patentovou úpravou regulační části fy. CINK (turbína typu CINK). Obrázek 4: Turbína Bánki výrobce MAVEL, a.s (ČKD-Turbotechnics). 16

17 Základní rozměry ukazuje následující tab.: Typ A B C D E H B až až až 400 B až až až 700 B až až až 800 Tabulka 7: Základní rozměry (mm) turbín Bánki, firmy MAVEL, a.s. (ČKD-Turbotechnics). Obrázek 4 schématicky znázorňuje turbíny firmy Turbotechnics, typ Bánki B 15, B 30 a B 45. Základní rozměry těchto strojů uvádí připojená tabulka. Tyto typové řady dodává výrobce standardně, na přání však vyrobí turbínu přizpůsobenou i jiným nárokům. Soustrojí jsou vybavena buď ručním ovládáním nebo automatickým zařízením pro bezobslužný provoz. Průtok vody je regulován obtékanou klapkou v přívodu vody, která zároveň slouží jako regulační uzávěr. Průtok lze regulovat v rozmezí 0 až 100 %, přičemž účinnost turbíny v rozsahu 30 až 100 % průtoku neklesne pod 65 % (údaj výrobce). Maximální účinnost je však vyšší. Přívod vody lze orientovat v různých sklonech - od horizontálního po vertikální (podle konfigurace v lokalitě). Pro využití spádu je možné instalovat savku. Ta se navrhuje buď přímá, nebo kolenová. Soustrojí dodává výrobce na základovém rámu nebo na savce, což umožňuje velmi jednoduchou montáž na vodním díle. Turbíny jsou podle velikosti použitelné pro spády 5 až 60 m a průtoky 0,01 až 0,9 m3/s. Jejich výkon je 0,5 až 120 kw. Jako generátor je ve většině případů použit asynchronní motor. V některých lokalitách pracují tato soustrojí do tzv. vydělené sítě - např. Brnčálova chata a Nálepkova chata ve Vysokých Tatrách ve Slovenské republice. Turbíny Cink jsou dále zdokonalené Bánkiho turbíny. Turbína je na vstupu vody do oběžného kola přetlaková, na výtoku podtlaková vlivem působení savky. Regulace průtoku je řešena pohybem spirály válcového segmentu proti pevné spirále skříně turbíny. Regulační segment je zároveň tlakovým uzávěrem. Malé průběžné otáčky s minimální změnou průtoku eliminují nebezpečné hydraulické rázy v tlakových přivaděčích. Dobu zavírání turbín lze přizpůsobit podmínkám díla a může probíhat i několik minut. Tím je možné v projektu vynechat technologická zařízení omezující nepříznivé tlakové poměry v dlouhých přiváděcích potrubích. Tyto turbíny je podle výrobce možné nasadit na spády od 1,5 m do 500 m. Výrobky firmy Cink (Obrázek 5) obsáhnou oblast výkonů od 5 kw do 5 MW. Firma je úspěšná v zahraničí, kde získala odbyt v mnoha zemích Evropy a v poslední době i mimo Evropu v Indii a Nepálu, atp. Turbíny uváděných výrobců mají atest pro použití ve vodárenství, včetně zdrojů pitné vody. 17

18 Obrázek 5: Jedno z provedení turbíny CINK Kašnové turbíny V převážné většině mlýnů a dnes obnovovaných MVE vůbec, jsou turbíny umístěny v kašně s volnou hladinou, (na rozdíl od turbín spirálních). Klasické uspořádání takové "mlýnské" MVE je reprezentováno Francisovou turbínou uloženou horizontálně, se savkou otočenou do kašny nebo se suchou savkou, tj. otočenou do strojovny. Typickým představitelem těchto turbín jsou výrobky pardubické firmy J. Prokop a synové, staré více než 50 let. Není-li možné tyto staré turbíny obnovit, (většinou pro špatný stav oběžného kola), mohou být nahrazeny kašnovými, nebo i přímoproudými Kaplanovými turbínami. Obrázek 6: Kašnová Kaplanova turbína výrobce ČKD Blansko, typ 4 K 84. Kašnové horizontální turbíny určené pro MVE vyrábí hlavně ČKD Blansko - náš největší výrobce vodních turbín, dále fy. MAVEL,a.s. (ČKD Turbo Technics v Rájci Jestřebí) a fy. Strojírny Brno, a.s.. Horizontální Kaplanovy kašnové mikroturbíny typu 4 K 12 (Obrázek 6) se vyrábějí s regulovatelným rozvaděčem pro změny průtoku od 20 do 100 % nebo s pevným rozvaděčem 18

19 pro změny průtoku od 40 do 100 %. Jsou použitelné pro spády 1,5 až 6 m (popř. 8 m) a pro průtoky 0,6 až 1,3 (1,5) m 3 /s. Průměry oběžného kola se vyrábějí od 400 mm do 560 mm. Turbíny spojuje s asynchronním generátorem řemenový převod. Při vyšších spádech je možné i přímo spojit turbíny s generátorem. Je možná regulace z horní hladiny. Turbíny s regulovatelným rozváděcím kolem nevyžadují instalaci provozního uzávěru v přívodu vody k turbíně. Podobná turbína firmy MAVEL, a.s. (ČKD Turbo Technics) viz. Obrázek oběžné kolo 2. radiálaxiální ložisko 3. řemenový převod 4. regulace ob. kola 5. savka Obrázek 7: Kašnová Kaplanova turbína T3 firmy MAVEL, a.s. (ČKD Turbo Technics). turbína T 3 D = 300 mm, regulace rozváděče, turbína T 5,6 D = 560 mm, regulace rozváděče, popř. i O K turbína T 7,1 D = 710 mm, regulace rozváděče, popř. i O K Obrázek 8: Turbína 4 K 84 ve vertikálním uspořádání. Kašnové turbíny ve vertikálním uspořádání nabízí též několik výrobců. Vesměs jde o Kaplanovy turbíny, které jsou vhodné pro náhradu původních Francisových kašnových turbín s převodem palečným kolem. Jako příklad těchto turbín je uvedena kašnová Kaplanova 19

20 turbína 4 K 84 z ČKD Blansko - řez MVE (Obrázek 8). Jiné provedení kašnových turbín pochází od firmy EXMONT Brno. Turbíny KTE se vyrábějí pro rozsah spádů 2 až 8 m, rozsah průtoků 0,8 až 25 m 3 /s a výkony 12 až 1500 kw. Přitom průměr oběžného kola může být podle podmínek v lokalitě 1000, 1300, 1600 nebo 2000 mm. Tato plně regulovatelná turbína může být dodána i v jednodušším provedení - s pevnými nebo za klidu přestavitelnými lopatkami oběžného kola. Řez turbínou KTE 10 viz. Obrázek oběžné kolo 2. komora oběžného kola 3. kužel savky 4. savka 5. rozváděcí lopatky 6. víko turbíny 7. horní lopatkový kruh 8. opancéřování šachty 9. regulační objímka 10. nosný most 11. převodovka 12. řemenice Obrázek 9: Turbína KTE 10 firmy EXMONT Brno. Obrázek 10: Turbína KTK - R 850 firma E+ET Sanborn. Obrázek 10 je turbína KTK R 850 firmy E+ET Sanborn Velké Meziříčí. I tato firma nabízí celou typovou řadu kašnových Kaplanových turbín (průměr OK - oběžného kola 600, 850, 1300 mm, spády 2-10 m, průtok 0,3-7 m 3 /s, výkon 10 až 500 kw). 20

21 Přímoproudé turbíny Přímoproudé turbíny jsou pro použití z hlediska jejich cenové rentability a snížení investičních nákladů velmi zajímavé a tudíž oblíbené. Uplatňují se zejména u lokalit s menším spádem a relativně velkými průtoky. Jejich hydraulický profil má určité technicko - ekonomické přednosti a především umožňuje značné snížení stavebních nákladů na instalaci turbosoustrojí MVE. Osově symetrický hydraulický profil přímoproudého soustrojí využívá diagonální nebo axiální rozvaděč a axiální oběžné kolo. Výška soustrojí má příznivý vliv na stavební řešení elektrárny se zřetelem na založení stavby, řešení vývařiště a dispozici strojovny. Při instalaci přímoproudé turbíny je proto možné očekávat snížení stavebních nákladů o 25 až 30 %, odrážející se ve snížení celkových nákladů na výstavbu MVE o 15 až 20 %. Koncepce přímoproudé turbíny může mít několik variant (s obtékaným generátorem, šachtová, S - turbína, šikmé uspořádání...). ČKD Blansko vyrábí kromě kolenové přímoproudé horizontální Kaplanovy turbíny 4 SR 12 moderní typ 4 PB 10, viz. Obrázek 11. Jde o blokové uspořádání Kaplanovy turbíny s diagonálním rozvaděčem. Je-li rozvaděč natáčivý, turbína pracuje v rozsahu 20 až 100 % jmenovitého průtoku, při použití jednodušší konstrukce s pevným rozvaděčem v rozsahu 40 až 100 % průtoku. Hltnost je 2 až 10 m 3 /s, rozsah spádu 1,5 až 6 m. Výrobce dodává turbínu s průměry oběžného kola 1000, 1250 a 1500 mm. Výkon turbíny (20 až 2300 kw, podle dispozic v lokalitě), se přenáší na generátor kuželovým převodem. HYDROHROM z Horní Branné vyrábí zdařilé přímoproudé kolenové turbíny několika typů s průměry oběžného kola 500 mm až 2000 mm s hltnostmi (podle velikosti stroje a spádu) v rozmezí 0,50 až 20 m 3 /s. Jsou použitelné pro spády 1,5 až 8 m, Vyrábějí se buď plně regulovatelné, nebo s regulací pouze oběžného kola. Turbíny mají jednoduchou konstrukci a jsou provozně spolehlivé. Jejich provozní charakteristiky dosahují velmi solidní úrovně (TS Hydro prováděla měření tří typů turbín HYDROHROM na díle). Spojení s převážně asynchronním generátorem je řešeno řemenovým převodem, nebo převodovkou. 21

22 Obrázek 11: Přímoproudá turbína 4 PB 10 výrobce ČKD Blansko. Řez malou vodní elektrárnou s turbínou HYDROHROM o průměru oběžného kola 1600 mm viz. Obrázek 12. V provozu je u nás více než 300 turbín tohoto výrobce, především ve východních Čechách a na Slovensku. Tato turbína je svou dispozicí také vhodná pro uložení do původního objektu vodního díla při rekonstrukci, kde místo vertikální Francisovy turbíny je zabudována přímoproudá turbína HYDROHROM. Obrázek 12: řez MVE s technologií HYDROHROM. Podobné koncepci typu a uložení turbin se věnuje fy. MAVEL, a.s. (ČKD Turbo Technics), v Benešově u Prahy - je to velmi aktivní výrobce vodních turbín a technologie. 22

23 Firma nabízí typy turbín: TK 1050 A, TK 1050 D, TK 1290, TK 1580 A, 1580 B a TK 2000 v provedení A,B a C. Obrázek 13: Řešení MVE v koncepci s technologií MAVEL TK 1050, 1050 D TK 2000 B, 2000 C. Fy. MAVEL, a.s. (ČKD Turbo Technics) nabízí veškeré komponenty příslušenství vtokových objektů MVE včetně hydraulických čistících strojů - Obrázek 14 a jezových klapek ovládaných hydraulicky Obrázek 15, nebo pracujících automaticky v závislosti na hydrodynamickém tlaku vody. Obrázek 14: Hydraulický čistící stroj v koncepci s přímoproudou turbínou. 23

24 Obrázek 15: Automatické jezové klapky výrobce MAVEL,a.s. (ČKD Turbo Technics). Přímoproudé turbíny Kaplan nabízí také zatím méně známá firma ZIRMONT, spol. s.r.o. - Obrázek 16. Plášť turbíny s diagonálním rozváděcím kolem a komorou oběžného kola je řešen jako kompaktní celek se štítem pro uložení generátoru. Obrázek 16: Nejčastější řešení soustrojí firmy ZIRMONT, se sklonem osy spodní část stavby MVE 2. vrchní (nadzemní ) část stavby MVE 3. turbínový blok 4. asynchronní generátor 5. vstupní nátokový díl 6. savka 7. hydraulický agregát ovládání turbíny 8. elektrorozvaděč 9. snímač výšky hladiny 10. česle s čistícím zařízením 11. jeřábová dráha se zdvihacím zařízením 12. ventilátor 13. drážka pro uzavření přístupu vody k turbíně H.H.výška horní hladiny vody S.H.výška spodní hladiny 24

25 Spirální turbíny Pro střední a vyšší spády se uplatňují spirální turbíny Francis v horizontálním provedení. Turbína má tlakovou spirálu a regulovatelné rozváděcí lopatky, s čepy uloženými v samomazných pouzdrech. Na spirálu je napojena savka, tvarovaná z ocelového plechu. Před turbínu se umísťuje provozní uzávěr. Ke spojení turbíny s asynchronním, nebo synchronním generátorem se používá řemenový převod, nebo převodovka. Turbína bývá automaticky řízena hydraulickým regulačním agregátem, nebo také elektrohydraulickým regulátorem otáček pomocí tlakového oleje. Tyto turbíny v průměrech OK od 300 mm do 1000 mm nabízí fy. MAVEL Obrázek 17. Strojírny Brno, nabízejí zajímavé řešení turbíny Kaplan "MINI", která může být provedena jak ve spirální skříni, tak i v betonové kašně - Obrázek 18. Obrázek 17: MAVEL,a.s. (ČKD Turbo Technics), spirální Francisova turbína. Obrázek 18: Strojírny Brno, a.s., spirální Kaplanova vertikální turbína. 25

26 Nejvíce typů těchto turbín nabízí ČKD Blansko pro spády od 10 m do 120 m s průměry oběžných kol od 300 mm do 2000 mm, v provedení vertikálním i horizontálním. V předchozí kapitole jsou uvedeny příklady některých nejčastěji používaných turbín, které by měly vyhovět u většiny typických lokalit u nás. Neuvedli jsme např. turbíny Pelton, Reifenstein a turbíny čerpadlové, které jsou v našich hydrologických podmínkách méně časté. Z výrobců byly uvedeni pouze nejznámější, i když i ostatní nabízejí kvalitní výrobky Zabezpečení výstavby a provozu MVE Komplexní přehled o možnostech obnovy výstavby a rekonstrukce MVE získá zájemce u například u fy. TS HYDRO, spol. s.r.o. v Brně, nebo ve společnosti EkoWATT v Praze, kde jsou poskytovány odborné poradenské služby. Pomoc je převážně charakteru technického, i když jsou poskytovány také informace o legislativě, ekonomii a prakticky o všem co se týká realizace MVE. Organizování provozovatelů a zájemců o MVE a další služby zajišťuje Svaz podnikatelů pro využití energetických zdrojů. Sdružuje fyzické a právnické osoby provozující energetické zdroje, jakož i občany usilující o jejich výstavbu a rozvoj, dále pak soukromé podnikatele, kteří se vlastnicky podílejí na výstavbě a provozu podniků v oblasti energetiky. Posláním Svazu je také obhajoba oprávněných zájmů a požadavků členů. Kontakt: Svaz podnikatelů pro využití energetických zdrojů Na Mlejnku 2 / Praha 4 Tel.: (02) , FAX.: (02) Je také třeba aby instalované MVE u nás byly na vysoké technické úrovni, s maximální životností. Je proto nutné doporučit kvalifikovanou diagnostiku a měření. V tomto směru poskytuje pro MVE služby fy. TS HYDRO, spol. s.r.o., která ověřuje hydraulické vlastnosti vodních turbín měřením přímo na díle. Kontakt: TS HYDRO, spol. s.r.o. Pod sídlištěm Brno Tel.: (05) / 250, Obecný postup při realizaci MVE Zájemce o vybudování malé vodní elektrárny musí při jejím zřizování učinit následující kroky, které je možno rozdělit do tří základních oblastí: Předprojektová příprava V rámci předprojektové přípravy musí zájemce posoudit možnosti realizace MVE a připravit podklady nutné pro získání povolení k jejímu zřízení. V této etapě zájemce musí: - Vytipovat vhodnou volnou lokalitu a vyřešit otázku koupě či pronájmu. - Zaevidovat se jako zájemce o stavbu MVE na odboru životního prostředí příslušného okresního úřadu. - Ověřit hydrologické podmínky vytipované lokality. 26

27 - Ověřit si dle možností nutné podmínky, které bude v dané lokalitě na základě zvláštních předpisů pravděpodobně nutno splnit při realizaci (omezení vyplývající z předpisů týkajících se ochrany půdního fondu, ochrany lesa, ochrany životního prostředí, některá omezení vyplývající z vodního a stavebního zákona a pod.). - Opatřit si technicko-ekonomickou studii energetického využití lokality s návrhem technologického zařízení, s odhadem celkových investic a návratnosti stavby. - Získat povolení k nakládání s vodami u vodohospodářského orgánu a zajistit si podmínky pro získání stavebního povolení. V průběhu vodoprávního řízení jsou zájemci sděleny podmínky, které je nutno při výstavbě vodního díla splnit a zájemci je uděleno povolení k vybudování vodního díla s platností na dva roky. Současně s vodoprávním řízením probíhá i územní řízení Získání stavebního povolení Konečným cílem této etapy je získání stavebního povolení na příslušném stavebním úřadu. Zájemce o výstavbu MVE musí podniknout následující kroky: - Dohodnout možnost připojení MVE do sítě a dohodnout podmínky výkupu vyrobené elektřiny. - Zajistit si projektovou dokumentaci (je požadován pouze jednostupňový projekt). - Získat stavební povolení Realizace Ještě před vlastní realizací podnikatelského záměru je vhodné zadat výběrové řízení pro zvolení vhodné technologie. Zvláště potom u investic přes 5 mil. Kč. Nejenom že z množství nabízejících dodavatelů bude vybrán ten nejvhodnější a ekonomicky nejpřijatelnější, ale bude také splněna jedna z podmínek pro získání státní podpory (od ČEA, nebo Státního fondu životního prostředí). V této souvislosti bude také nutné zajistit vypracování energetického auditu. V této fázi přistupuje investor k vlastní realizaci stavby. V souvislostech s řešením této legislativy, vznikne zájemci o stavbu MVE řada překážek, které musí v předrealizační době řešit Překážky netechnického charakteru při realizaci MVE Překážky netechnického charakteru je možno rozdělit dle své povahy do čtyř oblastí: - Překážky legislativní. - Překážky související se zvláštní povahou území nebo úseků vodních toků. - Překážky související s vlastnictvím jednotlivých objektů. - Překážky ekonomické Překážky legislativní V současné době nejsou legislativní překážky příliš významné. Komplikujícím faktorem mohou být připravované novely příslušných předpisů. Novela stavebního zákona je v platnosti od a novela vodního zákona bude přijata co nejdříve. V současné době se rovněž uvádí v platnost nový energetický zákon, ke kterému zatím neexistují prováděcí předpisy a připravuje se jeho výklad. 27

28 Okresní úřady téměř bez větších problémů povolují výstavbu MVE v lokalitách, kde již existuje, nebo v dřívější době existovalo vodohospodářské dílo. Zcela nové lokality jsou povolovány méně často, pouze po splnění náročných technických a legislativních podmínek Překážky související se zvláštním charakterem lokality Tyto překážky rovněž mají význam spíše výjimečný. Jedná se zejména o skutečnosti vyplývající ze zvláštních předpisů, které platí v chráněných územích, předpisů týkajících se ochrany zemědělského půdního fondu a ochrany lesů. V některých oblastech jsou omezujícím faktorem povinnosti vyplývající ze Zákona o rybářství. Jedná se zejména o předepsanou rozteč prutů na česlích vtokového objektu, nutnost výstavby rybochodů v pstruhovém pásmu a instalace zařízení na odpuzování ryb. V chráněných územích nejsou nové stavby obvykle povolovány. Nutnost posuzovat MVE z hlediska dopadu na životní prostředí se dnes stává podmínkou. Úpravy toků zasahujících zásadně do krajiny prakticky nepřipadá v úvahu Překážky majetko-právní V poslední době došlo ve větší míře ke změně majitelů jednotlivých lokalit v souvislosti s proběhlou privatizací a restitucí. - Privatizace je převedení majetku státu na jiné právnické nebo fyzické osoby. - Restituce je navrácení majetku původním vlastníkům, kterým bylo po roce 1948 odňato vlastnické právo. Přesuny majetku související s privatizací byly ukončeny v roce 1998, větší přesuny majetku související s restitucemi již byly provedeny. V menší míře budou přesuny majetku probíhat i nadále. Přesuny majetku související s privatizací se týkají vodních elektráren, které byly dříve v majetku jednotlivých rozvodných energetických podniků a v současné době byly prostřednictvím Fondu národního majetku převedeny do vlastnictví soukromých podnikatelů. Struktura změn vlastnictví jednotlivých vodních elektráren je přibližně následující: - Elektrárny ve vlastnictví ČEZ, a. s. - velké vodní elektrárny a některé MVE na hlavních tocích. - Elektrárny ve vlastnictví jednotlivých rozvodných podniků, které nebyly privatizovány. - Elektrárny, které přešly v privatizaci do vlastnictví jiných majitelů a dále elektrárny, které změnily majitele z důvodu restituce - převážně provozovány fyzickými osobami, nebo menšími firmami (s.r.o.) Překážky ekonomické Z netechnických překážek ovlivňujících výstavbu MVE mají největší význam. Za současných podmínek je v České republice velmi obtížné realizovat projekty MVE s optimální dobou návratností investic pod 10 let. Příčiny tohoto stavu jsou zejména: - Obecný nedostatek finančních prostředků. - Vysoká úroková míra. - Neochota bank poskytovat dlouhodobé úvěry (alespoň na 10 let). - Nízké výkupní ceny elektrické energie. - Stále se zvyšující cenová hladina technologií, stavebních částí a služeb pro MVE. 28

29 3.5. Investice a ekonomie výstavby a provozu MVE Pro investiční výstavbu v oblasti MVE, které budou realizovány, platí příslušné předpisy a vyhlášky pro přípravu a realizaci investic a pro reprodukci základních prostředků. Skladba investičních nákladů je pak zřejmá z jednotlivých položek rozpočtu projektové dokumentace. Pro individuální zájemce lze zhruba rozdělit pořizovací náklady obnovy, rekonstrukce, nebo nové výstavby MVE na: náklady na pořízení přípravných akcí, projektové dokumentace a na investiční náklady realizace. Náklady na pořízení díla se dále člení na část: s t a v e b n í - vzdouvací zařízení - přiváděcí část - stavební část (objekt) elektrárny - odpadní část - stavební část pro provedení elektro připojení t e c h n o l o g i c k o u - strojní část (uzávěry, turbína převodovka, technolog. příslušenství) - elektro část (generátor, rozvaděč, el. vývody, připojení) - automatika (hladinová regulace, řídící systém, zabezpeč. systém) Výše investičních nákladů, které výrazně ovlivňují rozhodnutí o ekonomické výhodnosti akce, závisí na způsobu pořízení tohoto energetického zdroje. Přitom rekonstrukce, obnova a modernizace MVE, jsou téměř vždy levnější, než nová výstavba MVE. U nové výstavby se poměr nákladů stavební a technologické části pohybuje velmi zhruba 2:1. U rekonstrukcí může být tento poměr a tedy i absolutní výše investic příznivější. Při tom je třeba mít na paměti, že se od sebe jednotlivé případy obvykle značně liší. Při nové výstavbě je velmi náročné vybudování vzdouvacího zařízení a přivaděče vody (jez, vtok, náhon, přiváděcí potrubí) a odpad vody do říčního koryta. Náklady na vybudování vzdouvacího zařízení jsou příliš vysoké a mnohdy rozhodující pro hospodárnost celé investice. Proto je výhodnější, pokud je to možné, zaměřit se na uvedení do provozu MVE, které byly v minulosti z různých důvodů zrušeny nebo odstaveny. Při nové výstavbě rozhoduje o nákladech volba velikosti instalovaného zdroje, která je dána optimálním využitím hydroenergetického potenciálu v dané lokalitě. Dále rozhoduje dispoziční řešení, které je třeba volit s ohledem na minimalizaci nákladů. Z ekonomického důvodu se u MVE uvažuje výhradně bezobslužný provoz, což vyžaduje určitý stupeň úrovně plně automatického zařízení. Rozsah automatiky a tím i její cena přitom závisí na provozovateli, jakou má možnost kontrolovat provoz MVE osobně. Plnoautomatické zařízení je sice investičně dražší, ale u poloautomatického provozu dochází k častějším výpadkům výroby, což má vliv na počet provozních hodin a tím i hospodárnost provozu. Také provedení elektročásti, které může zajistit provoz paralelní s veřejným rozvodem (asynchronní provedení), nebo v provedení se soustrojím schopným samostatného chodu do vyčleněné sítě (synchronní provedení), má vliv na investiční náklady, když rozdíl může být až o 30 % vyšší, v neprospěch synchronního provedení. Výše investičních nákladů je tedy ovlivněna technickou náročností a velikostí instalace, dále stavebními a dispozičními podmínkami MVE a také rozsahem zabezpečení automatického provozu. 29

Hydroenergetika (malé vodní elektrárny)

Hydroenergetika (malé vodní elektrárny) Hydroenergetika (malé vodní elektrárny) Hydroenergetický potenciál ve světě evaporizace vody (¼ solární energie) maximální potenciál: roční srážky 10 17 kg prum výška kontinetálního povrchu nad mořem =

Více

Malé vodní elektrárny - proč, kde a jak? ALTERNATIVNÍ ENERGIE 6/2001 Libor Šamánek, Česká asociace pro obnovitelné energie, o.p.s.

Malé vodní elektrárny - proč, kde a jak? ALTERNATIVNÍ ENERGIE 6/2001 Libor Šamánek, Česká asociace pro obnovitelné energie, o.p.s. Malé vodní elektrárny - proč, kde a jak? ALTERNATIVNÍ ENERGIE 6/2001 Libor Šamánek, Česká asociace pro obnovitelné energie, o.p.s. Brno Česká republika je svou geografickou polohou (leží na rozvodí tří

Více

21.6.2011. Projekt realizovaný na SPŠ Nové Město nad Metují

21.6.2011. Projekt realizovaný na SPŠ Nové Město nad Metují Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 03 - TP ing. Jan Šritr ing. Jan Šritr 2 1 Vodní

Více

Elektroenergetika 1. Vodní elektrárny

Elektroenergetika 1. Vodní elektrárny Vodní elektrárny Využití vodního toku Využití potenciální (polohové a tlakové) a čátečně i kinetické energie vodního toku Využití hydroenergetického potenciálu vodních toků má výhody oproti jiným zdrojům

Více

Elektrárny. Malé vodní elektrárny ve vodárenských provozech

Elektrárny. Malé vodní elektrárny ve vodárenských provozech Elektrárny Malé vodní elektrárny ve vodárenských provozech Malé vodní elektrárny Výhody MVE jednoduchost, spolehlivost, dlouhá životnost nízké provozní náklady plně automatizované rozptýlenost - omezení

Více

SYSTÉMY A VYBAVENÍ VĚTRNÝCH ELEKTRÁREN

SYSTÉMY A VYBAVENÍ VĚTRNÝCH ELEKTRÁREN SYSTÉMY A VYBAVENÍ VĚTRNÝCH ELEKTRÁREN Jak již bylo v předchozích kapitolách zmíněno, větrné elektrárny je možné dělit dle různých hledisek a kritérií. Jedním z kritérií je například konstrukce větrného

Více

ALTERNATIVNÍ ZDROJE ENERGIE

ALTERNATIVNÍ ZDROJE ENERGIE ALTERNATIVNÍ ZDROJE ENERGIE Využití energie slunce Na zemský povrch dopadá průměrně 0,2 kw/m 2 V ČR dopadne na 1 m 2 přibližně 1000 kwh energie ročně Je několik možností, jak přeměnit energii slunečního

Více

EGE, spol. s r.o. je tradiční český výrobce speciálních zařízení pro energetický průmysl, zejména zapouzdřených vodičů, zhášecích tlumivek a

EGE, spol. s r.o. je tradiční český výrobce speciálních zařízení pro energetický průmysl, zejména zapouzdřených vodičů, zhášecích tlumivek a EGE, spol. s r.o. je tradiční český výrobce speciálních zařízení pro energetický průmysl, zejména zapouzdřených vodičů, zhášecích tlumivek a stožárových konstrukcí. EGE ke všem svým výrobkům zajišťuje

Více

Solární teplo pro rodinný dům - otázky / odpovědi

Solární teplo pro rodinný dům - otázky / odpovědi 1/24 Solární teplo pro rodinný dům - otázky / odpovědi Tomáš Matuška Československá společnost pro sluneční energii (ČSSE) Novotného lávka 5, 116 68 Praha 1 Česká republika info@solarnispolecnost.cz 2/24

Více

Ústav zemědělské, potravinářské a environmentální techniky. Ing. Zdeněk Konrád Energie vody. druhy, zařízení, využití

Ústav zemědělské, potravinářské a environmentální techniky. Ing. Zdeněk Konrád Energie vody. druhy, zařízení, využití Ústav zemědělské, potravinářské a environmentální techniky Ing. Zdeněk Konrád 17.4.2008 Energie vody druhy, zařízení, využití Kapitola 1 strana 2 Voda jako zdroj mechanické energie atmosférické srážky

Více

Vydal: nám. Přemysla Otakara II. 87/25, 370 01 České Budějovice Autor textů: Ing. Josef Šťastný Fotografie poskytli: Ing. Otakar Chlouba, Ing.

Vydal: nám. Přemysla Otakara II. 87/25, 370 01 České Budějovice Autor textů: Ing. Josef Šťastný Fotografie poskytli: Ing. Otakar Chlouba, Ing. Vydal: nám. Přemysla Otakara II. 87/25, 370 01 České Budějovice Autor textů: Ing. Josef Šťastný Fotografie poskytli: Ing. Otakar Chlouba, Ing. Martin Halama a Ing. Edvard Sequens ze Sdružení Calla, OÖ

Více

10. Energeticky úsporné stavby

10. Energeticky úsporné stavby 10. Energeticky úsporné stavby Klíčová slova: Nízkoenergetický dům, pasivní dům, nulový dům, aktivní dům, solární panely, fotovoltaické články, tepelné ztráty objektu, součinitel prostupu tepla. Anotace

Více

Přehrada Křižanovice na Chrudimce v ř. km 37,150

Přehrada Křižanovice na Chrudimce v ř. km 37,150 Přehrada Křižanovice na Chrudimce v ř. km 37,150 Stručná historie výstavby vodního díla Řeka Chrudimka má při své celkové délce téměř 109 kilometrů výškový rozdíl pramene a ústí 470 m, tj, 4,7, a průtoky

Více

KATALOG OPATŘENÍ a KATALOG DOBRÉ RRAXE

KATALOG OPATŘENÍ a KATALOG DOBRÉ RRAXE a KATALOG DOBRÉ RRAXE Výstup je vytvořen v rámci projektu ENERGYREGION (pro využití místních zdrojů a energetickou efektivnost v regionech) zaměřujícího se na vytváření strategií a konceptů využívání obnovitelných

Více

Rotační výsledkem je otáčivý pohyb (elektrické nebo spalovací #5, vodní nebo větrné

Rotační výsledkem je otáčivý pohyb (elektrické nebo spalovací #5, vodní nebo větrné zapis_energeticke_stroje_vodni08/2012 STR Ga 1 z 5 Energetické stroje Rozdělení energetických strojů: #1 mění pohyb na #2 dynamo, alternátor, čerpadlo, kompresor #3 mění energii na #4 27. Vodní elektrárna

Více

JAK FUNGUJE SLUNEČNÍ ZAŘÍZENÍ PRO OHŘEV UŽITKOVÉ VODY A PRO PŘITÁPĚNÍ?

JAK FUNGUJE SLUNEČNÍ ZAŘÍZENÍ PRO OHŘEV UŽITKOVÉ VODY A PRO PŘITÁPĚNÍ? Sluneční zařízení Energie slunce patří mezi obnovitelné zdroje energie (OZE) a můžeme ji využívat různými způsoby a pro rozdílné účely. Jedním ze způsobů využití energie slunce je výroba tepla na ohřev

Více

znění pozdějších předpisů. Výkupní ceny elektřiny dodané do sítě v Kč/MWh Zelené bonusy v Kč/MWh Datum uvedení do provozu

znění pozdějších předpisů. Výkupní ceny elektřiny dodané do sítě v Kč/MWh Zelené bonusy v Kč/MWh Datum uvedení do provozu Návrh cenového rozhodnutí Energetického regulačního úřadu ke dni 26. října 2010, kterým se stanovuje podpora pro výrobu elektřiny z obnovitelných zdrojů energie, kombinované výroby elektřiny a tepla a

Více

energie, kombinované výroby elektřiny a tepla a druhotných energetických zdrojů.

energie, kombinované výroby elektřiny a tepla a druhotných energetických zdrojů. Cenové rozhodnutí Energetického regulačního úřadu č. /2011 ze dne listopadu 2011, kterým se stanovuje podpora pro výrobu elektřiny z obnovitelných zdrojů energie, kombinované výroby elektřiny a tepla a

Více

energie, kombinované výroby elektřiny a tepla a druhotných energetických zdrojů.

energie, kombinované výroby elektřiny a tepla a druhotných energetických zdrojů. Cenové rozhodnutí Energetického regulačního úřadu č. 7/2011 ze dne 23. listopadu 2011, kterým se stanovuje podpora pro výrobu elektřiny z obnovitelných zdrojů energie, kombinované výroby elektřiny a tepla

Více

VYUŽITÍ ENERGIE VODNÍHO SPÁDU

VYUŽITÍ ENERGIE VODNÍHO SPÁDU INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 VYUŽITÍ ENERGIE VODNÍHO SPÁDU

Více

pevné, přivádí-li vodu do oběžného kola na celém obvodě, nazývá se rozváděcí kolo,

pevné, přivádí-li vodu do oběžného kola na celém obvodě, nazývá se rozváděcí kolo, 1 VODNÍ TURBÍNY Zařízení měnící energii vody v energii pohybovou a následně v mechanickou práci. Hlavními částmi turbín jsou : rozváděcí ústrojí oběžné kolo. pevné, přivádí-li vodu do oběžného kola na

Více

Alternativní energie KGJ Green Machines a.s. Kogenerace pro všechny. Buďte nezávislý a už žádné účty.

Alternativní energie KGJ Green Machines a.s. Kogenerace pro všechny. Buďte nezávislý a už žádné účty. Alternativní energie KGJ Green Machines a.s. Kogenerace pro všechny. Buďte nezávislý a už žádné účty.. Green Mikro- kogenerační jednotky na Zemní plyn Bioplyn a LPG a Spirálové větrné turbíny Green s alternativními

Více

znění pozdějších předpisů. 3 ) Vyhláška č. 475/2005 Sb., kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů, ve

znění pozdějších předpisů. 3 ) Vyhláška č. 475/2005 Sb., kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů, ve Cenové rozhodnutí Energetického regulačního úřadu č. 4/2009 ze dne 3. listopadu 2009, kterým se stanovuje podpora pro výrobu elektřiny z obnovitelných zdrojů energie, kombinované výroby elektřiny a tepla

Více

Cenové rozhodnutí Energetického regulačního úřadu č. 8/2006 ze dne 21. listopadu 2006,

Cenové rozhodnutí Energetického regulačního úřadu č. 8/2006 ze dne 21. listopadu 2006, Cenové rozhodnutí Energetického regulačního úřadu č. 8/2006 ze dne 21. listopadu 2006, kterým se stanovuje podpora pro výrobu elektřiny z obnovitelných zdrojů energie, kombinované výroby elektřiny a tepla

Více

znění pozdějších předpisů. 3 ) Vyhláška č. 475/2005 Sb., kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů, ve

znění pozdějších předpisů. 3 ) Vyhláška č. 475/2005 Sb., kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů, ve Cenové rozhodnutí Energetického regulačního úřadu č. 8/2008 ze dne 18. listopadu 2008, kterým se stanovuje podpora pro výrobu elektřiny z obnovitelných zdrojů energie, kombinované výroby elektřiny a tepla

Více

znění pozdějších předpisů. 3 ) Vyhláška č. 475/2005 Sb., kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů, ve

znění pozdějších předpisů. 3 ) Vyhláška č. 475/2005 Sb., kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů, ve Cenové rozhodnutí Energetického regulačního úřadu č. 4/2009 ze dne 3. listopadu 2009, kterým se stanovuje podpora pro výrobu elektřiny z obnovitelných zdrojů energie, kombinované výroby elektřiny a tepla

Více

Obnovitelné zdroje energie

Obnovitelné zdroje energie ČVUT v Praze Fakulta stavební Katedra technických zařízení budov TBA1 Vytápění Zdroje tepla - obnovitelné zdroje 1 Obnovitelné zdroje energie Zákon 406/2000 Sb o hospodaření energií OZE=nefosilní přírodní

Více

Slunce # Energie budoucnosti

Slunce # Energie budoucnosti Možnosti využití sluneční energie Slunce # Energie budoucnosti www.nelumbo.cz 1 Globální klimatická změna hrozí Země se ohřívá a to nejrychleji od doby ledové.# Prognózy: další růst teploty o 1,4 až 5,8

Více

Víte, jak funguje malá vodní elektrárna?

Víte, jak funguje malá vodní elektrárna? Víte, jak funguje malá vodní elektrárna? Malými vodními elektrárnami rozumíme vodní elektrárny o výkonu menším než 10 MW. Používají se k výrobě elektřiny pro osobní potřebu, pro průmyslové účely i k dodávkám

Více

č. 475/2005 Sb. VYHLÁŠKA kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů Ve znění: Předpis č.

č. 475/2005 Sb. VYHLÁŠKA kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů Ve znění: Předpis č. č. 475/2005 Sb. VYHLÁŠKA ze dne 30. listopadu 2005, kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů Ve znění: Předpis č. K datu Poznámka 364/2007 Sb. (k 1.1.2008)

Více

475/2005 Sb. VYHLÁŠKA ze dne 30. listopadu 2005, kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů

475/2005 Sb. VYHLÁŠKA ze dne 30. listopadu 2005, kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů 475/2005 Sb. VYHLÁŠKA ze dne 30. listopadu 2005, kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů Změna: 364/2007 Sb. Změna: 409/2009 Sb. Změna: 300/2010 Sb. Změna:

Více

Obnovitelné zdroje energie Budovy a energie

Obnovitelné zdroje energie Budovy a energie ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie Budovy a energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. 1 Energie větru 2 1 Energie

Více

Obnovitelné zdroje energie

Obnovitelné zdroje energie ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. 1 Energie větru 2 1 Energie větru Slunce

Více

Podpora výroby elektřiny z OZE a KVET v roce Rostislav Krejcar

Podpora výroby elektřiny z OZE a KVET v roce Rostislav Krejcar Podpora výroby elektřiny z OZE a KVET v roce 2012 Rostislav Krejcar Obsah prezentace Obnovitelné zdroje energie (OZE) Legislativa vývoj novely zákona č. 180/2005 Sb. Platná sekundární legislativa k zákonu

Více

Malá vodní elektrárna

Malá vodní elektrárna Středoškolská technika 2016 Setkání a prezentace prací středoškolských studentů na ČVUT Malá vodní elektrárna Tomáš Bubeníček Vyšší odborný škola a střední průmyslová škola stavební Praha Dušní 17 Praha

Více

Fotovoltaika z pohledu ERÚ

Fotovoltaika z pohledu ERÚ Fotovoltaika z pohledu ERÚ Stanislav Trávníček 22. 4. 2010 Liberální institut Podpora výroby elektřiny z OZE Povinnost podporovat výrobu elektřiny z obnovitelných zdrojů stanovila směrnice 2001/77/ES V

Více

Příručka. Obnovitelné zdroje energie

Příručka. Obnovitelné zdroje energie Příručka Obnovitelné zdroje energie str. 1 OBSAH 1 2 1.1 Co jsou to obnovitelné zdroje energie 2 1.2 Všeobecné výhody a nevýhody obnovitelných zdrojů energie 2 1.3 Co může jednotlivce, podnikatelský subjekt

Více

Tepelná čerpadla. levné teplo z přírody. Tepelná čerpadla

Tepelná čerpadla. levné teplo z přírody. Tepelná čerpadla Tepelná čerpadla levné teplo z přírody Tepelná čerpadla 1 Tepelná čerpadla Levné, čisté a bezstarostné teplo pro rodinné domy i průmyslové objekty. Přinášíme vám kompletní řešení vytápění. Tepelné čerpadlo

Více

Technické systémy pro pasivní domy. Tomáš Matuška Energetické systémy budov, UCEEB Ústav techniky prostředí, Fakulta strojní ČVUT v Praze

Technické systémy pro pasivní domy. Tomáš Matuška Energetické systémy budov, UCEEB Ústav techniky prostředí, Fakulta strojní ČVUT v Praze Technické systémy pro pasivní domy Tomáš Matuška Energetické systémy budov, UCEEB Ústav techniky prostředí, Fakulta strojní ČVUT v Praze PASIVNÍ DŮM - VYTÁPĚNÍ snížení potřeby tepla na vytápění na minimum

Více

Hlavní zásady pro používání tepelných čerpadel

Hlavní zásady pro používání tepelných čerpadel Co je třeba vědět o tepelném čerpadle ALTERNATIVNÍ ENERGIE 2/2002 Co je vlastně tepelné čerpadlo a jaký komfort můžeme očekávat Tepelné čerpadlo se využívá jako zdroj tepla pro vytápění, ohřev teplé užitkové

Více

Podpora využívání obnovitelných zdrojů energie v ČR. Juraj Krivošík / Tomáš Chadim SEVEn, Středisko pro efektivní využívání energie, o.p.s.

Podpora využívání obnovitelných zdrojů energie v ČR. Juraj Krivošík / Tomáš Chadim SEVEn, Středisko pro efektivní využívání energie, o.p.s. Podpora využívání obnovitelných zdrojů energie v ČR Juraj Krivošík / Tomáš Chadim SEVEn, Středisko pro efektivní využívání energie, o.p.s. OZE v ČR: Základní fakta 6000 Spotřeba OZE: 4,7 % celkové spotřeby

Více

Projekt osvětlení Téryho chaty elektřinou ze slunce

Projekt osvětlení Téryho chaty elektřinou ze slunce Projekt osvětlení Téryho chaty elektřinou ze slunce Fotovoltaický systém pro Téryho chatu Energetická část projektu pro osvětlení Téryho chaty v ostrovním provozu tzn. bez připojení k rozvodné síti ( Technické

Více

Obnovitelné zdroje energie. Masarykova základní škola Zásada Česká republika

Obnovitelné zdroje energie. Masarykova základní škola Zásada Česká republika Obnovitelné zdroje energie Masarykova základní škola Zásada Česká republika Větrná energie Veronika Čabová Lucie Machová Větrná energie využití v minulosti Původně nebyla převáděna na elektřinu, ale sloužila

Více

Obnovitelné zdroje energie a dotační tituly z pohledu DEVELOPERA

Obnovitelné zdroje energie a dotační tituly z pohledu DEVELOPERA Efektivní financování úspor energie www.energy-benefit.cz Obnovitelné zdroje energie a dotační tituly z pohledu DEVELOPERA kavárna Foodoo, Danube House, 4. listopadu 2008 Ing. Libor Novák Efektivní financování

Více

znění pozdějších předpisů. 3 ) Vyhláška č. 475/2005 Sb., kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů, ve

znění pozdějších předpisů. 3 ) Vyhláška č. 475/2005 Sb., kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů, ve Cenové rozhodnutí Energetického regulačního úřadu č. 7/2007 ze dne 20. listopadu 2007, kterým se stanovuje podpora pro výrobu elektřiny z obnovitelných zdrojů energie, kombinované výroby elektřiny a tepla

Více

Solární energie v ČR a v EU

Solární energie v ČR a v EU Solární energie v ČR a v EU v ČR a EU 1 Elektřina ze slunečního záření jako součást OZE OZE v podmínkách České republiky: Vodní energie Větrná energie Energie slunečního záření Energie biomasy a bioplynu

Více

Nezávislost na dodavatelích tepla možnosti, příklady. Tomáš Matuška Ústav techniky prostředí Fakulta strojní, ČVUT v Praze

Nezávislost na dodavatelích tepla možnosti, příklady. Tomáš Matuška Ústav techniky prostředí Fakulta strojní, ČVUT v Praze Nezávislost na dodavatelích tepla možnosti, příklady Tomáš Matuška Ústav techniky prostředí Fakulta strojní, ČVUT v Praze Volně dostupné zdroje tepla sluneční energie základ v podstatě veškerého přírodního

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 SOLÁRNÍ SYSTÉMY MILAN KLIMEŠ TENTO

Více

www.elvac.eu Energie pro budoucnost, MSV 2015 Měření a řízení energetických toků nutný předpoklad pro hospodárnost Jan Grossmann

www.elvac.eu Energie pro budoucnost, MSV 2015 Měření a řízení energetických toků nutný předpoklad pro hospodárnost Jan Grossmann www.elvac.eu Energie pro budoucnost, MSV 2015 Měření a řízení energetických toků nutný předpoklad pro hospodárnost Jan Grossmann Měření a řízení energetických toků (1) V každém objektu nebo komplexu budov

Více

Osnova kurzu. Výroba elektrické energie. Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 3

Osnova kurzu. Výroba elektrické energie. Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 3 Osnova kurzu 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 1 Základy teorie elektrických obvodů 2 Základy teorie elektrických

Více

Vliv zdrojů elektrické energie na životní prostředí

Vliv zdrojů elektrické energie na životní prostředí Klimatické změny odpovědnost generací Hotel Dorint Praha Don Giovanni 11.4.2007 Vliv zdrojů elektrické energie na životní prostředí Tomáš Sýkora ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická

Více

OBNOVITELNÉ ZDROJE ENERGIE SYSTÉMY ŘEŠENÍ TECHNOLOGIE. Tepelná čerpadla Akumulace Servis. Fotovoltaika

OBNOVITELNÉ ZDROJE ENERGIE SYSTÉMY ŘEŠENÍ TECHNOLOGIE. Tepelná čerpadla Akumulace Servis. Fotovoltaika OBNOVITELNÉ ZDROJE ENERGIE SYSTÉMY ŘEŠENÍ TECHNOLOGIE Fotovoltaika Tepelná čerpadla Akumulace Servis FOTOVOLTAIKA BEZ DOTACE cesta k čistému prostředí Hlavní předností tohoto druhu elektráren je, že veškerá

Více

Popis výukového materiálu

Popis výukového materiálu Popis výukového materiálu Číslo šablony III/2 Číslo materiálu VY_32_INOVACE_ SZ_20.7. Autor: Ing. Luboš Veselý Datum vytvoření: 13. 02. 2013 Předmět, ročník Tematický celek Téma Druh učebního materiálu

Více

Zpracovala: Jana Fojtíková

Zpracovala: Jana Fojtíková Větrné elektrárny Zpracovala: Jana Fojtíková email: Jana-Fojtikova@seznam.cz Obsah: Co je to vítr, jak vzniká? Historie využívání větrné energie. Co je to větrná elektrárna? Schéma větrné elektrárny. Princip

Více

Energetické zdroje budoucnosti

Energetické zdroje budoucnosti Energetické zdroje budoucnosti Energie a společnost Jakýkoliv živý organismus potřebuje dodávku energie (potrava) Lidská společnost dále potřebuje značné množství energie k zabezpečení svých aktivit Doprava

Více

8. Vodní dílo STANOVICE

8. Vodní dílo STANOVICE 8. Vodní dílo STANOVICE POLOHA Tok Lomnický potok říční km 3,2 hydrologické pořadí 1-13-02-030 Obec Stanovice Okres Karlovy Vary Kraj Karlovarský Vodní dílo (VD) je součástí vodohospodářské soustavy Stanovice

Více

Digitální učební materiál

Digitální učební materiál Evidenční číslo materiálu: 503 Digitální učební materiál Autor: Mgr. Pavel Kleibl Datum: 21. 3. 2012 Ročník: 9. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Energie Téma:

Více

solární systémy Copyright (c) 2009 Strojírny Bohdalice, a.s.. All rights reserved. STISKNI ENTER

solární systémy Copyright (c) 2009 Strojírny Bohdalice, a.s.. All rights reserved. STISKNI ENTER solární systémy Copyright (c) 2009 Strojírny Bohdalice, a.s.. All rights reserved. TERMICKÉ SOLÁRNÍ SYSTÉMY k ohřevu vody pro hygienu (sprchování, koupel, mytí rukou) K ČEMU k ohřevu pro technologické

Více

MAS Opavsko směřuje k energetické nezávislosti

MAS Opavsko směřuje k energetické nezávislosti MAS Opavsko směřuje k energetické nezávislosti Ing. Jiří Krist předseda sdružení MAS Opavsko Bc. Petr Chroust - manažer MAS Opavsko www.masopavsko.cz Energetická koncepce území MAS Opavsko Podklad pro

Více

Rozvoj OZE jako součást energetické strategie ČR a výhled plnění mezinárodních závazků

Rozvoj OZE jako součást energetické strategie ČR a výhled plnění mezinárodních závazků Rozvoj OZE jako součást energetické strategie ČR a výhled plnění mezinárodních závazků Roman Portužák ředitel odboru elektroenergetiky Obsah. OZE jako součást energetické strategie ČR 2. Podpora OZE 3.

Více

Akční plán energetiky Zlínského kraje

Akční plán energetiky Zlínského kraje Akční plán energetiky Zlínského kraje Ing. Miroslava Knotková Zlínský kraj 19/12/2013 Vyhodnocení akčního plánu 2010-2014 Priorita 1 : Podpora efektivního využití energie v majetku ZK 1. Podpora přísnějších

Více

Efektivní využití OZE v budovách. Tomáš Matuška RP2 Energetické systémy budov Univerzitní centrum energeticky efektivních budov ČVUT v Praze

Efektivní využití OZE v budovách. Tomáš Matuška RP2 Energetické systémy budov Univerzitní centrum energeticky efektivních budov ČVUT v Praze Efektivní využití OZE v budovách Tomáš Matuška RP2 Energetické systémy budov Univerzitní centrum energeticky efektivních budov ČVUT v Praze OBNOVITELNÉ ZDROJE TEPLA sluneční energie základ v podstatě veškerého

Více

Malé vodní elektrárny PLZEŇSKO

Malé vodní elektrárny PLZEŇSKO Malé vodní elektrárny PLZEŇSKO Darová Řeka Berounka, největší vodní tok na Plzeňsku, byla využívána už ve středověku k pohonu mlýnů a pil. Řeka má poměrně malý spád, ale po větší část roku dost velký průtok

Více

lní vývoj v ČR Biomasa aktuáln pevnými palivy 2010 Ing. Jan Koloničný, ný, Ph.D. Mgr. Veronika Hase 3.11. 4.11.2010 v Hotelu Skalní mlýn

lní vývoj v ČR Biomasa aktuáln pevnými palivy 2010 Ing. Jan Koloničný, ný, Ph.D. Mgr. Veronika Hase 3.11. 4.11.2010 v Hotelu Skalní mlýn Biomasa aktuáln lní vývoj v ČR Ing. Jan Koloničný, ný, Ph.D. Mgr. Veronika Hase Seminář: Technologické trendy při vytápění pevnými palivy 2010 3.11. 4.11.2010 v Hotelu Skalní mlýn Výroba elektřiny z biomasy

Více

Termodynamické panely = úspora energie

Termodynamické panely = úspora energie Termodynamické panely = úspora energie EnergyPanel se zabývá vývojem a výrobou termodynamických a solárních systémů. Tvoří součást skupiny podniků Macral s podnikatelskou působností více než 20-ti let.

Více

DLOUHÉ STRÁNĚ PŘEČERPÁVACÍ VODNÍ ELEKTRÁRNA

DLOUHÉ STRÁNĚ PŘEČERPÁVACÍ VODNÍ ELEKTRÁRNA DLOUHÉ STRÁNĚ PŘEČERPÁVACÍ VODNÍ ELEKTRÁRNA Obr. 1: Letecký pohled na nádrže 3 Obsah POLOHA... 5 HISTORIE... 5 NÁDRŽE... 6 ELEKTRÁRNA... 7 DODAVATELÉ... 9 NÁKLADY A OPRAVY... 9 MÉ FOTO Z NÁVŠTĚVY VODNÍ

Více

Předběžný návrh řešení systému vytápění pomocí: tepelného čerpadla Vaillant geotherm VWS ( provedení země/voda) Nabídka

Předběžný návrh řešení systému vytápění pomocí: tepelného čerpadla Vaillant geotherm VWS ( provedení země/voda) Nabídka Předběžný návrh řešení systému vytápění pomocí: tepelného čerpadla Vaillant geotherm VWS ( provedení země/voda) Nabídka 002136247893 Investor : Hrstka Rd Podsedice Tel: Email: Montážní firma: Tomáš Mach

Více

Článek FVE Varnsdorf. Fotovoltaické demonstrační zařízení Varnsdorf

Článek FVE Varnsdorf. Fotovoltaické demonstrační zařízení Varnsdorf Článek FVE Varnsdorf Fotovoltaické demonstrační zařízení Varnsdorf Před několika lety se rozhodla společnost ViaRegia o.s. zaměřit se na propagaci obnovitelných zdrojů energie (dále jen OZE) a úspor energií

Více

Dřevostavby komplexně Energetická náročnost budov a nové energetické standardy

Dřevostavby komplexně Energetická náročnost budov a nové energetické standardy Dřevostavby komplexně Energetická náročnost budov a nové energetické standardy Ing. arch. Tereza Vojancová Technický poradce tech.poradce@uralita.com 602 439 813 www.ursa.cz OBSAH 1 ÚVOD 2 ENERGETICKY

Více

TRONIC CONTROL. Nad Safinou I č.p.449 252 42 Vestec u Prahy tel./fax: 266 710 254-5 602 250 629 e-mail: info@tronic.cz http//www.tronic.

TRONIC CONTROL. Nad Safinou I č.p.449 252 42 Vestec u Prahy tel./fax: 266 710 254-5 602 250 629 e-mail: info@tronic.cz http//www.tronic. TRONIC CONTROL Nad Safinou I č.p.449 252 42 Vestec u Prahy tel./fax: 266 710 254-5 602 250 629 e-mail: info@tronic.cz http//www.tronic.cz Firemní program Výrobní oblast vývoj a výroba řídicích systémů

Více

A) Všeobecná ustanovení:

A) Všeobecná ustanovení: N Á V R H Cenové rozhodnutí Energetického regulačního úřadu č. X/2018, ze dne Y. srpna 2018, kterým se stanovuje podpora pro podporované zdroje energie Energetický regulační úřad podle 2c zákona č. 265/1991

Více

ČVUT v Praze Fakulta stavební Katedra technických zařízení budov. Vytápění prostorů. Základní pojmy

ČVUT v Praze Fakulta stavební Katedra technických zařízení budov. Vytápění prostorů. Základní pojmy ČVUT v Praze Fakulta stavební Katedra technických zařízení budov Vytápění prostorů Základní pojmy Energonositel UHLÍ, PLYN, ELEKTŘINA, SLUNEČNÍ ZÁŘENÍ hmota nebo jev, které mohou být použity k výrobě mechanické

Více

Nabídka služeb a energií v oblasti hospodárného využívání. Seminář Lednice

Nabídka služeb a energií v oblasti hospodárného využívání. Seminář Lednice Nabídka služeb a energií v oblasti hospodárného využívání Seminář Lednice Proč společnost E.ON podporuje energeticky úsporná opatření? Cílem E.ONu je nabízet zákazníkovi komplexní řešení, nejen dodávku

Více

Fórum pro udržitelné podnikání, konference dne 20.3.2013

Fórum pro udržitelné podnikání, konference dne 20.3.2013 Presentation Title Fórum pro udržitelné podnikání, konference dne 20.3.2013 Příspěvek pro odpolední diskusi na téma Udržitelnost v oblasti zdrojů energetika Ing. Josef Votruba, konzultant ENVIROS, s.r.o.

Více

NÍZKOENERGETICKÉ BYDLENÍ Snížení energetické náročnosti. Komfortní bydlení - nový standard

NÍZKOENERGETICKÉ BYDLENÍ Snížení energetické náročnosti. Komfortní bydlení - nový standard NÍZKOENERGETICKÉ BYDLENÍ Snížení energetické náročnosti Snížení energetické závislosti Naše domy mají tak malé ztráty tepla. Využívají energii ze slunce, teplo vydávané domácími spotřebiči a samotnými

Více

Technologie solárních panelů. M. Simandl (i4wifi a.s.)

Technologie solárních panelů. M. Simandl (i4wifi a.s.) Technologie solárních panelů M. Simandl (i4wifi a.s.) Co je to solární panel? Sběrač energie ze slunce Termální ohřívá se tekutina (Přímý) zisk tepla Fotovoltaický (PV) přímá přeměna na el. energii Přímé

Více

EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO

EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO Projektování nízkoenergetických a pasivních staveb konkrétní návrhy budov RD Martin Doležal, TÜV SÜD Czech Investice do Vaší budoucnosti Projekt

Více

Tomáš Matuška Ústav techniky prostředí, Fakulta strojní RP2 Energetické systémy budov, UCEEB ČVUT v Praze 1/39

Tomáš Matuška Ústav techniky prostředí, Fakulta strojní RP2 Energetické systémy budov, UCEEB ČVUT v Praze 1/39 Zdroje tepla pro pasivní domy Tomáš Matuška Ústav techniky prostředí, Fakulta strojní RP2 Energetické systémy budov, UCEEB ČVUT v Praze 1/39 Pasivní domy (ČSN 73 0540-2) PHPP: měrná potřeba primární energie

Více

Energetický regulační V Ě S T N Í K ENERGETICKÝ REGULAČNÍ ÚŘAD

Energetický regulační V Ě S T N Í K ENERGETICKÝ REGULAČNÍ ÚŘAD Energetický regulační V Ě S T N Í K ENERGETICKÝ REGULAČNÍ ÚŘAD ROČNÍK 18 V JIHLAVĚ 26. 9. 2018 ČÁSTKA 6/2018 OBSAH: str. 1. Cenové rozhodnutí Energetického regulačního úřadu č. 3/2018 ze dne 25. září 2018,

Více

Účel vodního díla. Kategorie vodního díla. Základní technické parametry vodního díla

Účel vodního díla. Kategorie vodního díla. Základní technické parametry vodního díla Přehrada Seč na Chrudimce v ř.km 50,722 Stručná historie výstavby vodního díla Řeka Chrudimka má při své celkové délce téměř 109 kilometrů výškový rozdíl pramene a ústí 470 m, tj, 4,7, a průtoky před výstavbou

Více

PROSUN KOGENERAČNÍ JEDNOTKY ESS. alternative energy systems s.r.o.

PROSUN KOGENERAČNÍ JEDNOTKY ESS. alternative energy systems s.r.o. PROSUN alternative energy systems s.r.o. Přes 17let zkušeností v oboru tepelné a elektrické energie nyní využíváme v oblasti instalace solárních systémů, plynových kondenzačních kotelen, tepelných čerpadel

Více

PŘÍRODNÍ ZDROJE OBNOVITELNÉ ZDROJE ENERGIE. Ilona Jančářová. Přírodní zdroj element celku, poskytovaného přírodou, který je považován za užitečný

PŘÍRODNÍ ZDROJE OBNOVITELNÉ ZDROJE ENERGIE. Ilona Jančářová. Přírodní zdroj element celku, poskytovaného přírodou, který je považován za užitečný OBNOVITELNÉ ZDROJE ENERGIE Ilona Jančářová Právnická fakulta MU Brno PŘÍRODNÍ ZDROJE Přírodní zdroj element celku, poskytovaného přírodou, který je považován za užitečný Přírodní zdroje - obnovitelné -

Více

Úplné znění. 4 Podpora elektřiny z obnovitelných zdrojů

Úplné znění. 4 Podpora elektřiny z obnovitelných zdrojů Úplné znění 4 Podpora elektřiny z obnovitelných zdrojů (1) Pro účely stanovení podpory elektřiny z obnovitelných zdrojů podle tohoto zákona se za elektřinu z obnovitelných zdrojů považuje elektřina vyrobená

Více

STUDIE PROVEDITELNOSTI. Využití odpadního tepla z BPS Věžná pro vytápění v areálu ZD a části obce

STUDIE PROVEDITELNOSTI. Využití odpadního tepla z BPS Věžná pro vytápění v areálu ZD a části obce STUDIE PROVEDITELNOSTI Využití odpadního tepla z BPS Věžná pro vytápění v areálu ZD a části obce BŘEZEN 2013 1 Identifikační údaje 1.1 Zadavatel Název organizace Obec Věžná Adresa Věžná 1 Statutární zástupce

Více

Energetika se zabývá získáváním, přeměnou a distribucí všech forem energie. Energii nevytváříme, pouze transformujeme z jedné formy na druhou.

Energetika se zabývá získáváním, přeměnou a distribucí všech forem energie. Energii nevytváříme, pouze transformujeme z jedné formy na druhou. VŠB TU Ostrava Energetika se zabývá získáváním, přeměnou a distribucí všech forem energie. Energii nevytváříme, pouze transformujeme z jedné formy na druhou. VŠB TU Ostrava 2 VŠB TU Ostrava 3 Dle zdroje:

Více

21 HYDROENERGETICKÉ VYUŽITÍ VELMI MALÝCH SPÁDŮ V ZÁVISLOSTI NA EKONOMICKÉ EFEKTIVITĚ

21 HYDROENERGETICKÉ VYUŽITÍ VELMI MALÝCH SPÁDŮ V ZÁVISLOSTI NA EKONOMICKÉ EFEKTIVITĚ 21 HYDROENERGETICKÉ VYUŽITÍ VELMI MALÝCH SPÁDŮ V ZÁVISLOSTI NA EKONOMICKÉ EFEKTIVITĚ Stanislav Hes ČVUT v Praze Fakulta elektrotechnická Katedra elektroenergetiky 1. Úvod do problematiky V dnešní době

Více

CENTRÁLNÍ ZÁSOBOVÁNÍ TEPLEM VE ZLÍNĚ

CENTRÁLNÍ ZÁSOBOVÁNÍ TEPLEM VE ZLÍNĚ e-mail: teplozlin@volny.cz www.teplozlin.cz CENTRÁLNÍ ZÁSOBOVÁNÍ TEPLEM VE ZLÍNĚ CZT ve Zlíně má dlouholetou tradici. Zdroj tepla původně jako energetický zdroj Baťových závodů, dnes Alpiq Generation (CZ)

Více

EU peníze středním školám digitální učební materiál

EU peníze středním školám digitální učební materiál EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky

Více

Cape Verde Kapverdská republika

Cape Verde Kapverdská republika Cape Verde Kapverdská republika 1975 získání nezávislosti 1990 vyhlášení pluralismu 2006 parlamentní volby Vyhrává vládní strana - Africká strana za nezávislost Kapverd (PAICV) Jejím hlavním cílem je přiblížení

Více

FOTOVOLTAICKÉ SYSTÉMY S VÝCHODO-ZÁPADNÍ ORIENTACÍ A POUZE JEDNÍM MPP TRACKEREM

FOTOVOLTAICKÉ SYSTÉMY S VÝCHODO-ZÁPADNÍ ORIENTACÍ A POUZE JEDNÍM MPP TRACKEREM FOTOVOLTAICKÉ SYSTÉMY S VÝCHODO-ZÁPADNÍ ORIENTACÍ A POUZE JEDNÍM MPP TRACKEREM V minulosti panovala určitá neochota instalovat fotovoltaické (FV) systémy orientované východo-západním směrem. Postupem času

Více

Tepelná čerpadla vzduch voda Bazénová tepelná čerpadla Solární vakuové kolektory Klimatizace s invertorem TEPELNÁ ČERPADLA SOLÁRNÍ KOLEKTORY

Tepelná čerpadla vzduch voda Bazénová tepelná čerpadla Solární vakuové kolektory Klimatizace s invertorem TEPELNÁ ČERPADLA SOLÁRNÍ KOLEKTORY Tepelná čerpadla vzduch voda Bazénová tepelná čerpadla Solární vakuové kolektory Klimatizace s invertorem TEPELNÁ ČERPDL SOLÁRNÍ KOLEKTORY 5 I WWBC Tepelná čerpadla vzduch voda NORDLINE Tepelné čerpadlo

Více

ETL-Ekotherm a.s. TECHNOLOGICKÁ ZAŘÍZENÍ PRO KOTELNY A PŘEDÁVACÍ STANICE TEPELNÁ ČERPADLA VÝSTAVBA SOLÁRNÍCH FOTOVOLTAICKÝCH ELEKTRÁREN

ETL-Ekotherm a.s. TECHNOLOGICKÁ ZAŘÍZENÍ PRO KOTELNY A PŘEDÁVACÍ STANICE TEPELNÁ ČERPADLA VÝSTAVBA SOLÁRNÍCH FOTOVOLTAICKÝCH ELEKTRÁREN ETL-Ekotherm a.s. TECHNOLOGICKÁ ZAŘÍZENÍ PRO KOTELNY A PŘEDÁVACÍ STANICE TEPELNÁ ČERPADLA VÝSTAVBA SOLÁRNÍCH FOTOVOLTAICKÝCH ELEKTRÁREN Profil společnosti Historie, reference Vážení obchodní přátelé, společnost

Více

Program Ministerstva životního prostředí ZELENÁ ÚSPORÁM

Program Ministerstva životního prostředí ZELENÁ ÚSPORÁM Program Ministerstva životního prostředí ZELENÁ ÚSPORÁM Zelená úsporám je název nového Programu, který vyhlásilo Ministerstvo životního prostředí ČR. Cílem programu je podpořit vybraná opatření úspor energie

Více

PROGRAM "TEPLO SLUNCEM"

PROGRAM TEPLO SLUNCEM PROGRAM "TEPLO SLUNCEM" Obsah 1 Jak můžeme využít energii slunečního záření?... Varianty řešení...5 3 Kritéria pro výběr projektů... Přínosy...7.1. Přínosy energetické...7. Přínosy environmentální...8

Více

Využívejte energii, kterou máme všichni zdarma - slunce Vám fakturu nepošle

Využívejte energii, kterou máme všichni zdarma - slunce Vám fakturu nepošle Co nám může solární systém přinést: Chceme ohřívat vodu Systém je určen pro 4 osoby Kolik spotřebujeme vody za den (dle normy) 160 L Výkon, který je pro nás optimální 1,7 kw = 7 panelů na střeše (11,55

Více

Energetický audit a energetická náročnost budov, legislativa, seznámení s předmětem

Energetický audit a energetická náročnost budov, legislativa, seznámení s předmětem České vysoké učení technické v Fakulta stavební Katedra technických zařízení budov Energetický audit a energetická náročnost budov, legislativa, seznámení s předmětem prof.ing.karel 1 Energetický audit

Více

2. Vodní dílo HORKA. MĚSTSKÝ ÚŘAD OSTROV Starosta města. Příl. č.1k části B4.10 Krizového plánu určené obce Ostrov č. j.: 9-17/BR/09 Počet listů: 3

2. Vodní dílo HORKA. MĚSTSKÝ ÚŘAD OSTROV Starosta města. Příl. č.1k části B4.10 Krizového plánu určené obce Ostrov č. j.: 9-17/BR/09 Počet listů: 3 2. Vodní dílo HORKA POLOHA Tok Libocký potok říční km 10,4 hydrologické pořadí 1-13-01-080 Obec Krajková, Habartov, Nový Kostel Okres Cheb, Sokolov Kraj Karlovarský Vodní dílo (VD) je vybudováno jako samostatné

Více

Střešní fotovoltaický systém

Střešní fotovoltaický systém Střešní fotovoltaický systém Elektrická energie Vašeho stávajícího dodavatele je a bude jen dražší, staňte se nezávislí a pořiďte si vlastní fotovoltaickou elektrárnu již dnes. Fotovoltaická elektrárna

Více

RENARDS Aktuální dotační možnosti v oblasti obnovitelné energie, akumulace a elektromobility

RENARDS Aktuální dotační možnosti v oblasti obnovitelné energie, akumulace a elektromobility Aktuální dotační možnosti v oblasti obnovitelné energie, akumulace a elektromobility 15. 9. 2016 Dotační programy s podporou Fotovoltaiky Fotovoltaika jako součást komplexního projektu PODNIKATELÉ OP Podnikání

Více

Možnosti využití solárních zařízení pro přípravu teplé vody v bytových domech

Možnosti využití solárních zařízení pro přípravu teplé vody v bytových domech Možnosti využití solárních zařízení pro přípravu teplé vody v bytových domech Ceny energie Vývoj ceny energie pro domácnosti 2,50 Kč 2,00 Kč cena Kč/ kwh 1,50 Kč 1,00 Kč 0,50 Kč 0,00 Kč 1995 1996 1997

Více