Dialog mezi mořem. NAO: tekutá časomíra severoatlantické oscilace VÁCLAV CÍLEK
|
|
- Tomáš Pospíšil
- před 8 lety
- Počet zobrazení:
Transkript
1 Dialog mezi mořem a větrem NAO: tekutá časomíra severoatlantické oscilace VÁCLAV CÍLEK Kdo se nebude starat o věci vzdálené, bude záhy naříkat pro věci blízké Hovory Konfuciovy Zásadní posun ve vnímání globálního klimatického systému nastal jednak s novými pracemi o severoatlantické oscilaci, jednak tím, že W. Broecker nalezl srdce oceánického výměníku v systému antarktických proudů a propojil tak systém jižní a severoatlantické oscilace (viz Vesmír 74, 257 a 448, 1995/5 a 9) do jedné velké nervatury oceánu. Do NAO jsme vstoupili již v holocénu Dobře známý scénář epizody El Ni o (viz rámeček na této straně) byl v poslední době doplněn velmi důležitým modelem, který ukazuje, že Tichý oceán zpomaluje globální oteplování, a to možná až o polovinu předpovězené hodnoty. V teplejších obdobích (i ve skleníkovém světě) je jižní oscilace silnější, takže v tropickém Tichém oceánu se objevuje víc chladných vod vzestupného proudění. Mezi povrchem oceánu a atmosférou dojde k výměně tepla, které je díky vzdušné cirkulaci odváděno na sever i na jih, kde se snadněji vyzáří do prostoru a tím ochladí celý zemský systém a částečně eliminuje globální oteplování. 1. Globální systém termohalinní cirkulace. Jeho jádro, na obrázku znázorněné jako válec, tvoří systém cirkumantarktických proudů. Pravá větev (Atlantický výměník) směřuje napříč Atlantikem až k Islandu, kde se ochlazuje a proudí při mořském dně nazpátek. Jižně od mysu Dobré naděje vstupuje do systému proudů, které obepínají Antarktidu (cirkumatlantické proudy). Zde se mísí se studenými vodami sestupujícími z antarktického šelfu a tato směs přechází do Tichého oceánu, kde vytváří opačně orientovanou cirkulační celu (výměník Tichého a Indického oceánu). Podle W. S. Broeckera (1997). U klimatických změn je často obtížné hovořit o příčině a následku. Obojí je do sebe zakousnuto jako had Uroboros hryzající svůj ocas. Přesnější je představa neuronové sítě. Ta je obvykle znázorňována jako systém bodů spojených vztahy. Informace o tom, co se děje v jednom bodu, je společná celé síti, ale stav bodu ovlivňuje nejvíc své sousedy a dál vyznívá. Mechanizmus příčina-následek si obvykle představujeme mechanicky: něco se stane, pak je jakási pauza, pak následuje reakce. Chování klimatu i neuronových sítí je odlišné: něco málo se stane, ještě nedojde k průběhu celé příčiny a okolí již reaguje, zesiluje či zeslabuje původní signál. Mezitím pokračuje působení původní příčiny, na což okamžitě reagují okolní body a svou proměnou vtahují do hry širší okolí. To se buď přidá a přiloží ruku k dílu (pozitivní zpětná vazba), anebo je více ovlivněno ještě RNDr. Václav Cílek, Csc., (*1955) vystudoval geologii na Přírodovědecké fakultě Univerzity Karlovy v Praze. V Geologickém ústavu AV ČR se zabývá geologií kenozoika. Přednáší v Centru teoretických studií a v Institutu základů vzdělanosti. SYSTÉMY ENSO A NAO (opakování) Aby byl tento článek srozumitelný, je zapotřebí zopakovat byť jiným způsobem již některá dříve uvedená fakta (Vesmír 74, 257, 1995). V globálním měřítku existují dva velké systémy atmosférické cirkulace ENSO a NAO. ENSO znamená El Ni o-southern Oscillation a NAO North Atlantic Oscillation. Překládáme je jako jižní oscilace-el Ni o a severoatlantická oscilace. Oba systémy mají společný původ onen velký dialog mezi mořem a větrem. Podstatou jižní oscilace jsou rozdíly v atmosférickém tlaku zhruba nad Jižní Amerikou a Austrálií. Je-li rozdíl tlaku veliký, pak směrem od Jižní Ameriky vanou silné větry, které v podobě monzunu přinášejí vláhu do jihovýchodní Asie, Indie a k východnímu pobřeží Afriky. Pole se zazelenají a lidé mají co jíst. Je-li rozdíl tlaku malý, pak větry ztrácejí sílu a srážky padají buď nad pouštními oblastmi And, nebo zbytečně vyprší nad mořem. Monzun zeslábne a Indii odkázanou na vodu odpařenou v tropické části Tichého oceánu postihne sucho a hlad. Rozdíly v tlaku si představme jako houpačku čím je tlak v Jižní Americe vyšší, tím je v Austrálii nižší. Podobná houpačka existuje i v Atlantickém oceánu. Rozdíl atmosférického tlaku přímo závisí na teplotě oceánu. Za normální situace narážejí mořské větry na hradbu And, která je stáčí na sever. Silné pobřežní proudění odtlačuje povrchovou vrstvu teplé vody a umožňuje tak výstup živinami bohatých, hlubších chladných vod, kterým říkáme Peruánský nebo Humboldtův proud. Když jižní oscilace funguje, tak jsou všichni spokojeni rybáři u peruánských břehů chytí dostatek ančoviček a indičtí zemědělci přežijí další rok. Jenže právě správná funkce jižní oscilace vytváří past, které říkáme El Ni o. Silné větry pasátové cirkulace nejenom ženou mraky s vláhou napříč Tichým oceánem, ale také tlačí na mořskou hladinu. Postupně zvyšují hladinu oceánu u Austrálie až o cm. A když větry zeslábnou, tak se tato voda pochopitelně vrací nazpět k pobřeží Jižní Ameriky. A je to přitom ta nejteplejší povrchová voda, ohřátá tropickým sluncem. Příliv teplé vody blokuje výstup hlubokých studených proudů. Pobřežní vody se oteplí až o 11 C (v roce 1983), houpačka se ustálí v katastrofické středové poloze, rybáři nemají co lovit a v Indii vypukne hladomor. Vzorec celkové cirkulace nad Tichým oceánem se změní, teplé proudění se stáčí až ke Skalistým horám, kde panuje buď velmi teplé počasí, anebo vzdušná vlhkost vymrzne v podobě sněhové kalamity. l VESMÍR 77, červenec
2 2. Hydrologická bilance Atlantického oceánu. Všimněte si, jak obrovské povodí má Atlantický oceán (černě) na rozdíl od Tichého a Indického oceánu (šikmé šrafy). Pouště jsou značeny bíle. Číslo v levém sloupci označuje množství vody přinášené či odnášené větry přes americké kontinenty. Číslo v pravém sloupci označuje totéž pro Eurasii a Afriku. Prostřední číslo udává výslednou bilanci (např. pro horní řádku pokrývající severní Atlantik to je 0,07 0,25 = 0,18 milionu metrů krychlových za sekundu). Celkově se v Atlantiku nedostává asi 0,32 m 3 /s, což je o něco víc než přítok Amazonky. Pokud by Atlantik vytvářel uzavřenou pánev, jeho hladina by se neustále snižovala. Pochopitelně se tak neděje, protože voda ve světovém oceánu proudí. Dá se to říci i opačně nevyrovnaná hydrologická bilance Atlantiku způsobuje, že voda Tichým a Atlantickým oceánem proudit musí. Zároveň je patrné, že kdyby zeslábly větry, ztrácel by Atlantik méně vody a kompenzační proudění by bylo slabší (W. S. Broecker 1997). údaje v milionech m 3 /s vzdálenějšími body, pracujícími v jiném režimu (ty sice dobře vědí, co se děje, ale sledují své vlastní cíle), které akci zbrzdí (negativní zpětná vazba). Nejsou tu žádné pauzy, dělítko mezí akcí a reakcí se stírá. Spíš než příčinu a následek tady máme spouštěč změn a jejich proměnlivou intenzitu. Umíme si to představit, ale těžko vyjadřujeme svět neuronové sítě, protože i jazyk pracuje se slovy, s nespojitými kvanty informací. Vzhledem k počasí severní polokoule je velmi důležitá míra ovlivnění. Systém jižní oscilace-el Ni o odpovídá asi 15 % za rozptyl zimních teplot severní polokoule a jeho dopad je poměrně vysoký na západním pobřeží USA, ale nízký ve střední Evropě. Pomocí severoatlantické oscilace můžeme vysvětlit rozptyl asi 30 % zimních teplot severní polokoule a její dopad je ve střední Evropě značný. Patnáct a třicet procent (jsou to jen přibližná čísla závislá na definici podmínek) nedává dohromady ani polovinu ročních teplotních anomálií. 55 % tedy náleží buď náhodnému šumu, anebo (ale jen zčásti) nějakému neznámému klimatickému mechanizmu, např. systému zimní sibiřské tlakové výše. Znamená to, že i kdybychom přesně poznali a dokázali předpovědět funkci ENSO a NAO (zkratky jsou vysvětleny v rámečku na předchozí straně), stejně zůstane velký KRÁTKODOBÉ KLIMATICKÉ CYKLY Jeden z prvních pokusů vysvětlit krátkodobou cykličnost evropského klimatu provedl již počátkem století známý klimatolog E. Brückner, který předpokládal, že klima se mění přibližně každých 35 let a že tyto změny důležitým způsobem ovlivňují lidskou populaci a stojí i za sociálními fenomény dosahujícími rozměru stěhování národů. Z poněkud jiného úhlu se již od počátku století ke klimatické cykličnosti přibližovali astronomové. Astronom-amatér S. H. Schwabe publikoval již r podezření, že sluneční skvrny se objevují v periodě asi 10 let. Toto vcelku nenápadné pozorování proslavil Alexandr von Humboldt v knize Cosmos (1851). Od té doby pracuje jedna velká skupina badatelů na objasnění frekvence slunečních cyklů a druhá se na jejich základě snaží vysvětlit řadu pozemských dějů od vzniku velkých morových ran, kolísání demografických vzorců až po klimatické proměny. Tyto pokusy jsou někdy tak nekritické, že svého času se o některých nejasných událostech říkalo, že za to mohou skvrny na Slunci. V souboru asi 40 tisíc historických klimatických údajů posledního tisíciletí, které posbírali J. Svoboda a Z. Vašků, pozorujeme několik základních, nepříliš pravidelných cyklů. Základním cyklem je perioda 2 3 let. Zde je velmi obtížné jak mluvit o cyklu (je nepravidelný), tak používat slovo klimatický, protože klima je definováno jako dlouhodobý průměr všech stavů počasí. Dlouhodobostí se podle různých definic obvykle rozumí 7 30 let. U dvouletých či tříletých period bychom správněji měli hovořit o setrvalém sezonním chodu, ale pro přehlednost se i v zahraničním tisku používá výraz klimatická fluktuace, oscilace či změna. Tuto dvouletou či tříletou periodu můžeme nejsnadněji vysvětlit jako určitou setrvačnost klimatického chodu. Ta je hlavně způsobena dlouhodobým vývojem tzv. planetárních vln. Jde o dlouhé prstence zvýšené atmosférické cirkulace ve vyšší troposféře, které v podobě jakési nepravidelné vlny se zálivy sahajícími na sever i na jih obepínají celou planetu. Dalším, již oprávněně cyklickým fenoménem je perioda 5 6 let. Někdy jde o sedmiletý, či dokonce osmiletý cyklus, který nalézá svou lidovou formu v označení sedmileté sucho. Pětiletý až šestiletý cyklus (polovina 11letého slunečního cyklu?) velmi pravděpodobně závisí na povrchové cirkulaci v Atlantiku, ale jeho původní příčinou může být sluneční aktivita. Další důležitý cyklus, trvající přibližně let (podle výsledků frekvenční analýzy se poměrně často opakuje číslo 20 25), je totiž téměř identický s 22letým slunečním cyklem. Klimatický cyklus o délce trvání let můžeme s velkou pravděpodobností odvodit z hluboké oceánické cirkulace v Atlantiku. Kromě toho se při výpočtech frekvencí klimatických událostí často setkáváme s důležitým solárním 90letým cyklem. Ten velmi pravděpodobně souvisí, jak ukazuje I. Charvátová, s pohybem Slunce okolo těžiště (barycentra) sluneční soustavy. Slunce je ze své pozice vychylováno gravitačními silami velkých planet Saturna a Jupitera. Díky nim se vždy po 179 letech vrací z chaotické na uspořádanou dráhu. Amplituda těchto krátkodobých pohybů je přibližně stejně velká jako amplituda Milankovičových parametrů, o kterých se domníváme, že jsou hlavními příčinami dlouhodobých klimatických změn a že jsou odpovědné za příchod i ústup ledových dob. Problém je v tom, že neumíme odhadnout, jak bude vzájemné působení sluneční energie a oceánického proudění fungovat. Jestliže rozdíly teplot způsobené slunečními cykly nepřekročí nějaké neurčité rozmezí stability systému, anebo pokud bude setrvačnost oceánické cirkulace příliš velká, pak ke změnám buď vůbec nedojde, nebo nastoupí se zpožděním několika let. Poměrně běžně pozorujeme, jak v pevninském, tak v oceánském klimatickém záznamu, že z nejasných příčin dojde ke zdvojnásobení délky cyklu. Dá se říct, že dlouhodobé klimatické trendy můžeme s pravděpodobností přesahující 50 % odvodit z analýzy historických dat, ale otázka, jaké bude počasí v příštím roce, je za současného stavu poznání neřešitelná. Klimatické změny známé z minulosti neohrožují člověka jako druh, ale mění, anebo dokonce ničí civilizace či určité skupiny ve společnosti. K tomu, abychom mohli sestavit model chování celé globální atmosféry a hydrosféry v různých úrovních cirkulace, jsou i ty největší počítače příliš pomalé a jednoduché. Nicméně v posledních několika letech se začal prosazovat přístup, že hlavním krátkodobým mechanizmem evropského klimatu je jev nazývaný severoatlantická oscilace. 368 VESMÍR 77, červenec 1998 l
3 prostor pro náhodu a obvyklý klimatický chaos motýlího efektu. 3. Severní Atlantický oceán. Šipky označují transport vlhkosti během zim se zvýšenou intenzitou severoatlantické oscilace (horní schéma) a v době průměrné intenzity severoatlantické oscilace. Během zvýšené činnosti NAO jsou větry silnější, mají více vláhy a zasahují dál na sever i na východ (Hurrel 1995). Atlantická houpačka Rovněž severoatlantická oscilace je založena na rozdílu tlaků, a to tentokrát na pověstné azorské výši a islandské níži, o které často slýcháme v televizních předpovědích počasí. Smluvně se za krajní body houpačky považují meteorologické stanice Lisabon v Portugalsku a Stykkisholmur na Islandu. Z řady měření je dobře patrná šestiletá perioda změn atmosférických tlaků a směru větrů, která se projevuje zejména v zimním období, kdy je rozdíl teplot mezi severním Atlantikem a rovníkem největší. Rovněž složení izotopů uhlíku v jednotlivých přírůstkových lamelách korálů by mělo sledovat Suessův efekt tedy postupný pokles poměru 14 C a 12 C, který je od roku 1870 dobře detegovatelný díky spalování fosilních paliv. Ta totiž neobsahují žádný radiokarbon a tím ředí atmosférický zásobník radioaktivního izotopu 14 C průmyslovými emisemi. Místo toho koráli indikují náhlé, několikaleté izotopové pulzy, které je možné vysvětlit jen rozdíly mořské cirkulace. Izotopové složení vody z grónských ledovců vykazuje asi desetileté oscilace a krátkodobé cykly trvající něco mezi lety se postupně daří prokázat v tropických mořských sedimentech a jezerních sedimentech západní Evropy. Ukazuje se, že Atlantický oceán se proměňuje řádově v desetiletích. Během jednoho století se kdekoliv na severní polokouli vystřídají dvě či tři delší klimatické oscilace a mnoho kratších, ale jejich dopady jsou zmírňovány či zesilovány lokálními faktory. V Atlantickém oceánu se cirkulace odehrává přibližně ve třech patrech, která jsou na různých místech propojena výtahy místy výstupů či poklesů různě teplých a slaných vod. Jako první patro můžeme označit povrchovou, větrem podmíněnou cirkulaci, jež se odehrává do hloubek okolo 1000 m a jejímž typickým představitelem je Golfský proud. Druhé patro tvoří střední cirkulace, která byla dlouho považována za jednotvárnou, pomalou a nudnou, než se v posledních letech ukázalo, že právě zde dochází ke zkratům mezi povrchovým a hlubokým prouděním. Spodní patro pak vytváří oceánický výměník termohalinní cirkulace (Vesmír 74, 488, 1995/9), který propojuje atlantickou a tichomořskou cirkulaci a představuje tak hlavní globální rozvod původně sluneční energie zachycené oceánem. Tato nervatura oceánu se neustále proměňuje. Povrchové mořské proudy v průběhu roku slábnou, sílí, nebo dokonce mění směr. Zdviže do nižších pater zanikají nebo se obnovují v periodě trvající několik měsíců i několik desetiletí. Jsou roky, kdy Golfský proud proniká hluboko na sever, a roky, kdy se jeho tvar mění z trojúhelníku (s vyšším cípem na severu) na ovál. A podobně jsou i hluboké slané proudy syceny tu teplejší, tu chladnější vodou podle toho, kolik srážek odteče do moře řekami nebo se uvolní z ledovců. Pokud oceánografy, navyklé žít v údivu nad obrovitostí a složitostí globálních proudů, vůbec něco překvapuje, tak je to velmi dynamická homeostáze celého oceánického systému. I jinak velmi střízliví badatelé používají v soukromí výrazy jako div, zázrak, nepochopitelná záležitost. Může to být dáno i tím, že máme málo přímých detailních měření oceánické cirkulace. Definovat průběh nejznámějšího ze všech oceánských proudů toho Golfského není jednoduché a různé moderní práce v respektovaných časopisech jej zachycují a to nikoliv v detailech poněkud různým způsobem. Počátek Golfského proudu leží v tropickém Atlantiku, odkud teplé vody o kapacitě až 30 milionů m 3 /s proudí do Karibské oblasti, odtud Floridským průlivem podél pobřeží USA až k mysu Hatteras, načež se stáčí k Evropě zhruba pod úrovní Anglie a odtud zpět k jihu ke svému začátku. Golfský proud tak zdánlivě vytváří uzavřený ovál na povrchu Atlantiku. V jeho nejsevernějším bodu však směrem ke Skandinávii vytéká teplý Severoatlantický proud, který se na severu (zde se jeho pokračování říká Norský proud) ochlazuje a klesá do hlubších vrstev. Síla Golfského proudu se periodicky proměňuje v závislosti na síle větrů a rovněž jeho dráha severním Atlantikem osciluje až o stovky kilometrů. Klimatická slepice a klimatické vejce Nicméně, jak už je to v klimatologii obvyklé, neexistuje jednoduchý vztah mezi průběhem Golfského proudu a počasím v Evropě. Klimatický systém 4. Kolísání severoatlantické oscilace v letech , založené na základě rozdílů tlaků (prosinec březen) mezi Islandem a Lisabonem v Portugalsku. Silná linie představuje tlakový gradient zhlazený takovým způsobem, aby vypustil klimatické fluktuace s periodou kratší než 4 roky. Pro poslední dvě desetiletí je charakteristický velmi intenzivní chod NAO (Hurrel 1995). Podle Science 269, 678, l VESMÍR 77, červenec
4 5. Teplotní trendy pro mořskou hladinu severního Tichého oceánu (horní schéma), rovníkového Tichého oceánu (prostřední schéma) a obou dohromady (spodní schéma) v letech Na obrázku pozorujeme analogický chod systému ENSO (jižní oscilace-el Ni o), jaký jsme viděli u severoatlantické oscilace (Cane M. A. preprint for Science). má alespoň v tomto dělení tři části. Řídícím mechanizmem je množství slunečního záření, které závisí jednak na vnitřní dynamice Slunce (zejména 22letý cyklus), jednak na pozici Slunce a Země (180letý cyklus a delší Milankovičovy cykly). Druhou úrovní je ukládání tohoto tepla oceány a třetí úrovní je přenos oceánského, původně solárního tepla na pevninu. Pro klima střední Evropy je stejně důležitá teplota oceánu jako intenzita západních větrů, které k nám toto teplo (a vlhko) přinášejí. Na to se dá okamžitě namítnout, že síla větrů pochopitelně závisí na teplotě mořské hladiny, ale tím opět vstoupíme do světa kauzálních vztahů, na který jsme chtěli zapomenout. Otázku, zda dřív byla klimatická slepice, nebo klimatické vejce, řešit nebudeme. Základem nejenom severoatlantické oscilace, ale obou hlavních krátkodobých mechanizmů globálních změn je oceánský výměník, který je též známý jako termohalinní výměník nebo jako hluboký slaný proud. Oceánský výměník v zásadě teče v nejhlubším patře oceánu, ale zároveň přibírá vody ze středního patra a také v dlouhých úsecích vystupuje na povrch a opět sestupuje dolů. Oceánský výměník má dvě velké větve, z nichž jedna probíhá Atlantikem a určuje severoatlantickou oscilaci a druhá prochází Tichým oceánem a ovlivňuje jižní oscilaci. Srdcem výměníku je antarktická cirkulace. Antarktida je obklopena pásmem riftových hřbetů, které stáčejí hlubinné proudění do velkého oválu obepínajícího celý kontinent jako by se při dně kolem Antarktidy točil obrovský vír. Z tohoto víru vycházejí dvě větve, kterým W. Broecker říká atlantický výměník (Atlantic Conveyor) a protivýměník Tichého a Indického oceánu (Pacific and Indian Anticonveyor). Činnost výměníku si můžeme představit následujícím způsobem: V subtropické oblasti jižního Atlantiku dochází k obrovskému odparu. Odpařená voda je nahrazována studenou vodou proudící středním patrem směrem od Antarktidy. Tato voda se v rovníkové atlantické oblasti rychle otepluje, ale díky odparu získává větší hustotu. Ponořuje se do hloubek okolo 800 m a směřuje dál k Islandu. Vinou silných západních větrů, které unášejí mořskou vlhkost dál do Euroasie, ztrácí severní Atlantik asi 0,18 milionu m 3 /s. Tato chybějící voda musí pochopitelně odněkud přitéct a tím je dán základní směr středního a hlubokého proudění v Atlantiku směrem od Antarktidy. Tento proud však mezitím podešel rovník, smísil se s těžkými, slanými vodami ekvatoriálního pásma a je teplý. Na povrch vystupuje zejména v zimě, kdy od severu vanou silné polární větry (ne nepodobné těm, které odhrnují povrchové vody systému ENSO u peruánských břehů) v oblasti kolem Islandu. Severoatlantický proud je nejasného původu a i když bývá kreslen jako odnož Golfského proudu, tak se soudí, že jeho tepelná kapacita je odvozena hlavně od atlantického výměníku středního oceánského patra. V každém případě dojde k oteplení severní Evropy a podle intenzity větrného proudění zasáhne oceánické klima dál na východ, kde vyzní zhruba na severojižní linii procházející Oděsou či Krymem. Dál na východ, a zejména na jihovýchod od hradby hor mezi Kavkazem a Tibetem, již hlavní proměny klimatu určuje sezonní či víceletý posun intratropické zóny konvergence a ta závisí na síle větrů jižní oscilace. Ale vraťme se k Islandu. Antlantický výměník odevzdá teplo, voda ztratí určitou část objemu, ztěžkne a ponoří se. Putuje pak nazpátek podél dna Atlantiku, až konečně jižně od mysu Dobré naděje opět 6. V severním Atlantiku existují tři velká centra vertikálního mísení způsobeného tepelnou konvekcí Grónské moře, Sargasové moře a Labradorské moře. Intenzivní konvekce udržuje teplotní a hustotní homogenitu oceánu až do hloubek 1 3 km a tím umožňuje přenášení klimatického signálu zjednodušeně řečeno teploty atmosféry do větších hloubek. Zde dojde k proudění a klimatický signál získá díky oceánské vodě paměť, jakou by si nikdy v turbulentní atmosféře nedokázal udržet. Horní schéma zachycuje stav koncem 60. let při nízkém indexu NAO. Konvekční cela Labradorského moře téměř nefunguje, vody se nemísí, na povrchu se vytváří vrstva sladké vody. Zato v Grónském moři zasahuje konvekce až do hloubek přes 3500 m a Sargasové moře produkuje velké množství teplé slané vody, známé podle složení jako voda 18. V 90. letech při vysokém indexu NAO se mění proudění ve všech celách. V Labradorském moři se vertikální mísení prohlubuje až do nikdy nevídaných 2300 m a zachycuje horní část hlubokých atlantických vod (NADW). Zato se téměř zastavuje mísení vod v Grónském moři a produkce 18 vody v Sargasovém moři ustává (Dickson 1997). Podle Nature 386, 649, VESMÍR 77, červenec 1998 l
5 narazí na srdce výměníku na cirkumantarktické proudění. Tím se dostane do onoho velkého víru, který je navíc sycen sladkými, ale velmi chladnými vodami padajícími z antarktického šelfu. Tato směs pak podél dna Tichého a Indického oceánu vstupuje do protivýměníku a účastní se systému ENSO. Pro oba systémy ENSO i NAO je nesmírně důležitá funkce spojnic, které jsme pracovně označili jako zdviže mezi jednotlivými patry výměníku. Víme o nich zatím velmi málo. Severoatlatnická oscilace má tyto zdviže nejméně tři jsou to konvekční cely Sargasového, Labradorského a Grónského moře. Oceánické konvekční cely si představme jako víceméně ohraničené oblasti, ve kterých dochází k vertikálnímu mísení pomocí sestupujícího a vystupujícího proudění. Je zde homogenizována povrchová a hluboká voda, takže voda z povrchu může vstupovat do středního nebo spodního patra oceánického proudění a naopak. Konvekční cely jsou nestálé a vyvíjejí se desítky let nejenom že se v nich vertikální proudění může úplně zastavit, ale cely se také prohlubují či změlčují. 7. Proudění v severním Atlantiku (podle Rahmstorfa 1997). Tmavá plocha v Severním ledovém oceánu ukazuje rozsah zemního zalednění. Potrubí s různě teplou vodou Tím se dostáváme ke klíčovému mechanizmu NAO, jímž je přenos klimatické paměti. Atmosféra je příliš nestálá a turbulentní, nemá dlouhodobou paměť. Dnešní vítr si už nevzpomíná, co dělal včera, a jen starci mezi větry vysoké planetární vlny a tryskové proudy svrchní troposféry vědí cosi o minulém jaru. Oceán je pomalý. Trvá to desetiletí, než voda z Antarktidy doteče k Islandu a zase se vrátí k srdci výměníku. Cestou narazí na několik životních křižovatek konvekčních cel, které ji promísí a vtisknou jí poněkud jiné složení a odlišnou teplotu. Není nic vzdálenějšího představě oceánického proudění než jakýsi systém ocelových potrubí. Ale představme si pro názornost systém oceánských výměníků jako potrubí, ve kterém pomalu podél celé planety cirkuluje voda. Do tohoto potrubí je z konvekčních cel připouštěna voda jiné teploty, takže v potrubí se střídají úseky s teplejší vodou a úseky s chladnější vodou. Než vyteče všechna chladná či teplá voda, tak to trvá asi 6 let, ale kromě toho jsou šestileté balíčky vody uspořádány do většího balíku, obsahujícího vodu tak za 20 30, někdy i 50 let. Tato voda se cyklicky objevuje na povrchu oceánu a dlouhodobě mění jeho povrchovou teplotu. Tím se mění gradienty, směry větrů a celý ten výše popsaný klimatický příběh. Je-li rozdíl tlaků mezi Azorami a Islandem velký, pak NAO získává kladný index (0 je dlouhodobý průměr) a většina zim je mírných. Zeslábne-li gradient, pak je index NAO nízký či záporný a evropské zimní počasí je buď nepravidelné, anebo se začne víc uplatňovat sibiřská výše vysokého tlaku se svým suchým, ledovým prouděním. Poslední dvě desetiletí se pohybujeme v severoatlantické oscilaci s vysokým indexem. Převládají mírné zimy a celkové oteplování. Při zeslábnutí oceánické cirkulace je návrat do průměrných zim vnímán jako cosi extrémního, protože při vysokém indexu NAO jsou i klimatické kontrasty větší. Podobně jako na pevnině existuje systém meteorologických stanic, tak je zřejmě jen otázkou času, kdy bude vybudován systém podmořských stanic monitorujících v různých hloubkách intenzitu oceánské cirkulace. To by mělo společně se superpočítačovým modelem pracujícím nejen jako spřažený model oceán-pevnina, ale také ENSO-NAO umožnit dlouhodobou předpověď počasí, či dokonce klimatických změn v měřítku prvních několika let. Samotná oceánská cirkulace je příliš složitý systém, než abychom ji v rámci tohoto článku dále komplikovali otázkou skleníkového jevu. Nicméně analýza W. Broeckera ukazuje, že při dosažení úrovně 700 ppm oxidu uhličitého v atmosféře, tj 700 mikrogramů na litr vzduchu (1 ppm = 10 4 %), což je přibližně úroveň 22. století, dojde ke zhoršení, nebo dokonce kolapsu NAO. Modely ale také zároveň ukazují, že čím se koncentrace oxidu uhličitého budou zvyšovat pomaleji, tím je větší šance, že změny nebudou náhlé a katastrofické. Hlavně z toho důvodu vnímám omezování emisí jako potřebné a žádoucí. Skutečným vnitřním šokem je pro mne skutečnost, že život globálního ekosystému závisí na něčem tak křehkém a pofiderním, jako je proudění jedné kapaliny v poněkud jiné kapalině, jež se od sebe navzájem liší rozdíly teplot často jen 3 4 C a rozdíly slanosti sotva pár promile. A je mi velmi divné, že tento složitý teplotní stroj, na jehož stabilitu bych nevsadil ani svůj nulový čtrnáctý plat, nejenže funguje už tisíce let, ale vlastně pracuje téměř beze změn, protože nejvyšší průměrné teploty na území dnešní České republiky byly v holocénu sotva o 2 C vyšší a nejnižší teploty v rámci studených výkyvů stěží přesáhly 1,5 C od dlouhodobého normálu. A to je sice dost na člověka či společnost, ale málo na světový oceán. LITERATURA Hurrell J. W.: Decadal trends in the North-Atlantic Oscillation, Science 269, , 4. August 1995 Broecker W. S.: Thermohaline circulation, the Achilles heel of our climate, Science 278, , 28. November 1997 Dickson B.: From Labrador Sea to global change, Nature 386, , 17. April 1997 Rahmstorf S.: Risk of sea-change in Atlantic, Nature 388, , 28. August 1997 Taylor A. H.: North-south shifts of the Gulf Stream. Int. Journ. of Climatology 16, , 1996 Hogg N. G. a Johns W. E.: Western Boundary Currents. Review of Geophysics, , 1995 První, bezprostřední dojem nepotřeboval žádnou zvláštní vědomou aktivitu z mé strany: podívám se a vidím. Proto ho někteří lidé mylně považují za nejjistější: Na vlastní oči jsem to viděl! Naše vnímání je ovšem zařízeno na ty nejběžnější případy, kdy musí fungovat rychle a bez chyby. Proto si zkracuje cestu a vidí často i věci, které tam nejsou [...]. Chci-li se před takovými zkratovými soudy nějak pojistit, musím se do procesu poznávání vložit i svými rozumovými schopnostmi. Jan Sokol, Malá filosofie člověka Vyšehrad, l VESMÍR 77, červenec
Interakce oceán atmosféra
Interakce oceán atmosféra Klima oceánů a moří těsná souvislost mezi hydrosférou a atmosférou atmosférické pohybové systémy ovlivňují povrch oceánu vlněním, dodávkou vody ze srážek, změnou salinity oběh
Téma 3: Voda jako biotop mořské biotopy
KBE 343 Hydrobiologie pro terrestrické biology JEN SCHEMATA, BEZ FOTO! Téma 3: Voda jako biotop mořské biotopy Proč moře? Děje v moři a nad mořem rozhodují o klimatu pevnin Produkční procesy v moři ovlivňují
PŘÍČINY ZMĚNY KLIMATU
PŘÍČINY ZMĚNY KLIMATU 2010 Ing. Andrea Sikorová, Ph.D. 1 Příčiny změny klimatu V této kapitole se dozvíte: Jaké jsou změny astronomických faktorů. Jaké jsou změny pozemského původu. Jaké jsou změny příčinou
Příčiny - astronomické přitažlivá síla Měsíce a Slunce vliv zemské rotace
Pohyby mořské vody Příčiny - astronomické přitažlivá síla Měsíce a Slunce vliv zemské rotace 2 Příčiny - atmosférické nerovnoměrné ohřívání vody v různých zeměpisných šířkách gradienty tlaku větrné proudy
Spojte správně: planety. Oblačnost, srážky, vítr, tlak vzduchu. vlhkost vzduchu, teplota vzduchu Dusík, kyslík, CO2, vodní páry, ozon, vzácné plyny,
Spojte správně: Složení atmosféry Význam atmosféry Meteorologie Počasí Synoptická mapa Meteorologické prvky Zabraňuje přehřátí a zmrznutí planety Okamžitý stav atmosféry Oblačnost, srážky, vítr, tlak vzduchu.
Globální cirkulace atmosféry
Globální cirkulace atmosféry - neustálý pohyb vzduchových hmot vyvolaný: a) rozdíly v teplotě zemského povrchu b) rotací Země - proudění navíc ovlivněno rozložením pevnin a oceánů a tvarem reliéfu Ochlazený
Registrační číslo projektu: CZ.1.07/1.5.00/ Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost
Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost Projekt je realizován v rámci Operačního programu Vzdělávání pro konkurence
Možné dopady klimatické změny na dostupnost vodních zdrojů Jaroslav Rožnovský
Český hydrometeorologický ústav, pobočka Brno Kroftova 43, 616 67 Brno e-mail:roznovsky@chmi.cz http://www.chmi.cz telefon: 541 421 020, 724 185 617 Možné dopady klimatické změny na dostupnost vodních
5. hodnotící zpráva IPCC. Radim Tolasz Český hydrometeorologický ústav
5. hodnotící zpráva IPCC Radim Tolasz Český hydrometeorologický ústav Mění se klima? Zvyšuje se extremita klimatu? Nebo nám jenom globalizovaný svět zprostředkovává informace rychleji a možná i přesněji
REGIONÁLNÍ GEOGRAFIE AMERIKY. 3. přednáška Klima
REGIONÁLNÍ GEOGRAFIE AMERIKY 3. přednáška Klima Faktory ovlivňující klima (obecně): astronomické geografické: zeměpisná šířka a délka, vzdálenost od oceánu, reliéf všeobecná cirkulace atmosféry mořské
ATMOSFÉRA. Anotace: Materiál je určen k výuce zeměpisu v 6. ročníku základní školy. Seznamuje žáky s vlastnostmi a členěním atmosféry.
ATMOSFÉRA Anotace: Materiál je určen k výuce zeměpisu v 6. ročníku základní školy. Seznamuje žáky s vlastnostmi a členěním atmosféry. Atmosféra je to plynný obal Země společně s planetou Zemí se otáčí
Průvodka. CZ.1.07/1.5.00/ Zkvalitnění výuky prostřednictvím ICT. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT
Průvodka Číslo projektu Název projektu Číslo a název šablony klíčové aktivity CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce
Šablona č. 01. 09 ZEMĚPIS. Výstupní test ze zeměpisu
Šablona č. 01. 09 ZEMĚPIS Výstupní test ze zeměpisu Anotace: Výstupní test je vhodný pro závěrečné zhodnocení celoroční práce v zeměpise. Autor: Ing. Ivana Přikrylová Očekávaný výstup: Žáci píší formou
Atmosféra, znečištění vzduchu, hašení
Atmosféra, znečištění vzduchu, hašení Zemská atmosféra je vrstva plynů obklopující planetu Zemi, udržovaná na místě zemskou gravitací. Obsahuje přibližně 78 % dusíku a 21 % kyslíku, se stopovým množstvím
ATMOSFÉRA. Plynný obal Země
ATMOSFÉRA Plynný obal Země NEJDŮLEŽITĚJŠÍ PLYNY V ZEMSKÉ ATMOSFÉŘE PLYN MOLEKULA OBJEM V % Dusík N2 78,08 Kyslík O2 20,95 Argon Ar 0,93 Oxid uhličitý CO2 0,034 Neón Hélium Metan Vodík Oxid dusný Ozon Ne
REGIONÁLNÍ GEOGRAFIE ANGLOSASKÉ AMERIKY
REGIONÁLNÍ GEOGRAFIE ANGLOSASKÉ AMERIKY 3. přednáška Klima Faktory ovlivňující klima (obecně): astronomické geografické: zeměpisná šířka a délka, vzdálenost od oceánu, reliéf všeobecná cirkulace atmosféry
GLOBÁLNÍ OTEPLOVÁNÍ A JEHO DOPADY
GLOBÁLNÍ OTEPLOVÁNÍ A JEHO DOPADY 2010 Ing. Andrea Sikorová, Ph.D. 1 Globální oteplování a jeho dopady V této kapitole se dozvíte: Co je to globální oteplování. Jak ovlivňují skleníkové plyny globální
Podnebí a počasí všichni tyto pojmy známe
Podnebí a počasí všichni tyto pojmy známe Obsah: Podnebí Podnebné pásy Podnebí v České republice Počasí Předpověď počasí Co meteorologové sledují a používají Meteorologické přístroje Meteorologická stanice
J i h l a v a Základy ekologie
S třední škola stavební J i h l a v a Základy ekologie 11. Atmosféra Země - vlastnosti Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Tomáš Krásenský
ATMOSFÉRA. Podnebné pásy
ATMOSFÉRA Podnebné pásy PODNEBNÉ PÁSY podle teploty vzduchu rozlišujeme 3 základní podnebné pásy: Tropický podnebný pás (mezi obratníky) Mírný podnebný pás Polární podnebný pás (za polárními kruhy) PODNEBNÉ
ATMOSFÉRA. Proudění vzduchu v atmosféře
ATMOSFÉRA Proudění vzduchu v atmosféře Co je to vítr a jak proudí? vítr = Co je to vítr a jak proudí? vítr = proud vzduchu Co je to vítr a jak proudí? Kde je v místnosti nejteplejší vzduch? Co je to vítr
CO JE TO KLIMATOLOGIE
CO JE TO KLIMATOLOGIE 2010 Ing. Andrea Sikorová, Ph.D. 1 Co je to klimatologie V této kapitole se dozvíte: Co je to klimatologie. Co potřebují znát meteorologové pro předpověď počasí. Jaké jsou klimatické
EU V/2 1/Z27. Světový oceán
EU V/2 1/Z27 Světový oceán Výukový materiál (prezentace PPTX) lze využít v hodinách zeměpisu v 7. ročníku ZŠ. Tématický okruh: Světový oceán. Prezentace slouží jako výklad i motivace v podobě fotografií
Klimatická změna její příčiny, mechanismy a možné důsledky. Změna teploty kontinentů ve 20. století
Klimatická změna její příčiny, mechanismy a možné důsledky Změna teploty kontinentů ve 20. století Změny atmosféry, klimatu a biofyzikálních systémů ve 20. století Koncentrace CO 2 v atmosféře: 280 ppm
Změna klimatu dnes a zítra
Změna klimatu dnes a zítra a jakou roli v ní hraje člověk Radan HUTH Přírodovědecká fakulta Univerzity Karlovy Ústav fyziky atmosféry AV ČR, v.v.i. Ústav výzkumu globální změny AV ČR, v.v.i. O čem to bude?
HYDROSFÉRA = VODSTVO. Lenka Pošepná
HYDROSFÉRA = VODSTVO Lenka Pošepná Dělení vodstva 97,2% Ledovce 2,15% Povrchová a podpovrchová voda 0,635% Voda v atmosféře 0,001% Hydrologický cyklus OBĚH Pevnina výpar srážky pevnina OBĚH Oceán výpar
Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115
Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: CZ.1.07/1.5.00/34.0410 Číslo šablony: Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tématický celek:
Klimatická změna minulá, současná i budoucí: Příčiny a projevy
Klimatická změna minulá, současná i budoucí: Příčiny a projevy Radan HUTH Přírodovědecká fakulta Univerzity Karlovy Ústav fyziky atmosféry AV ČR, v.v.i. Ústav výzkumu globální změny AV ČR, v.v.i. O čem
J i h l a v a Základy ekologie
S třední škola stavební J i h l a v a Základy ekologie 16. Skleníkový jev a globální oteplování Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284
8a. Geodetické družice Aleš Bezděk
8a. Geodetické družice Aleš Bezděk Teoretická geodézie 4 FSV ČVUT 2017/2018 LS 1 Družice v minulosti určovali astronomové, plavci, geodeti,... polohu na Zemi pomocí hvězd v dnešní době: pomocí družic specializované
Co je to CO 2 liga? Víš, co je to CO 2??? Naučil/a jsi se něco nového???
Co je to CO 2 liga? Je to celorepubliková soutěž, která je učena pro týmy 3-10 studentů ve věku cca 13-18 let (ZŠ, SŠ). Zabývá se tématy: klimatické změny, vody, energie a bydlení, jídla, dopravy. Organizátorem
Koncentrace CO 2 v ovzduší / 1 ppmv
Žijeme v pětihorách Pojem pětihory označuje současné geologické období, kdy se přírodní transport látek ze zemské kůry stal menší než látkové toky provozované lidmi. Jde přitom o veškerou těžební činnost
Změny klimatu za posledních 100 let
Příloha A Změny klimatu za posledních 100 let Níže uvedené shrnutí změn klimatu za posledních 100 let bylo vypracováno na základě zpráv IPCC (2007) a WMO (2011). Podle vyhodnocení údajů za rok 2010 předními
Česká arktická vědecká infrastruktura Stanice Josefa Svobody
3 Česká arktická vědecká infrastruktura Stanice Josefa Svobody Centrum polární ekologie, Přírodovědecká fakulta, Jihočeská univerzita v Českých Budějovicích Zonální rozdělení úhrnů slunečního záření na
materiál č. šablony/č. sady/č. materiálu: Autor:
Masarykova základní škola Klatovy, tř. Národních mučedníků 185, 339 01 Klatovy; 376312154, fax 376326089 E-mail: skola@maszskt.investtel.cz; internet: www.maszskt.investtel.cz Kód přílohy vzdělávací VY_32_INOVACE_Z678HO_13_02_07
Jak se projevuje změna klimatu v Praze?
Jak se projevuje změna klimatu v Praze? Michal Žák (Pavel Zahradníček) Český hydrometeorologický ústav Katedra fyziky atmosféry Matematicko-fyzikální fakulta Univerzita Karlova Větší růst letních dnů
Zeměpisná olympiáda 2012
Zeměpisná olympiáda 2012 Kategorie A krajské kolo Název a adresa školy: Kraj: Jméno a příjmení: Třída: Práce bez atlasu autorské řešení 40 minut 1) S využitím všech pojmů spojte správně dvojice: 1. azimut
Možné dopady měnícího se klimatu na území České republiky
Český hydrometeorologický ústav, pobočka Brno Mendelova univerzita v Brně Možné dopady měnícího se klimatu na území České republiky Jaroslav Rožnovský Naše podnebí proč je takové Extrémy počasí v posledních
SAMOSTUDIUM, KONTROLA OTÁZEK
Materiál pro domácí VY_03_Z6E_22 přípravu žáků: Název programu: Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovativní metody v prvouce, vlastivědě a zeměpisu Registrační číslo
Jméno, příjmení: Test Shrnující Přírodní složky a oblasti Země
Třída: Jméno, příjmení: Test Shrnující Přírodní složky a oblasti Země 1) Zemské těleso je tvořeno vyber správnou variantu: a) kůrou, zrnem a jádrem b) kůrou, slupkou a pláštěm c) kůrou, pláštěm a jádrem
Klimatické podmínky výskytů sucha
Český hydrometeorologický ústav, pobočka Brno Kroftova 43, 616 67 Brno Klimatické podmínky výskytů sucha Jaroslav Rožnovský, Filip Chuchma PŘEDPOVĚĎ POČASÍ PRO KRAJ VYSOČINA na středu až pátek Situace:
Maturitní témata. Školní rok: 2018/2019. Předmětová komise: Předseda předmětové komise: Mgr. Ivana Krčová
Maturitní témata Školní rok: 2018/2019 Ředitel školy: PhDr. Karel Goš Předmětová komise: Zeměpis Předseda předmětové komise: Mgr. Ivana Krčová Předmět: Zeměpis VIII. A8 Mgr. Radomil Juřík VIII. B8 Mgr.
Meteorologické minimum
Meteorologické minimum Stabilitně a rychlostně členěné větrné růžice jako podklad pro zpracování rozptylových studií Bc. Hana Škáchová Oddělení modelování a expertíz Úsek ochrany čistoty ovzduší, ČHMÚ
2) Povětrnostní činitelé studují se v ovzduší atmosféře (je to..) Meteorologie je to věda... Počasí. Meteorologické prvky. Zjišťují se měřením.
Pracovní list č. 2 téma: Povětrnostní a klimatičtí činitelé část. 1 Obsah tématu: Obsah tématu: 1) Vlivy působící na rostlinu 2) Povětrnostní činitelé a pojmy související s povětrnostními činiteli 3) Světlo
CHEMICKÉ SLOŽENÍ ATMOSFÉRY (OVZDUŠÍ):
Celý slide přepsat jako zápis do sešitu. CHEMICKÉ SLOŽENÍ ATMOSFÉRY (OVZDUŠÍ): SLOŽENÍ VZDUCHU: VZDUCH JE SMĚS PLYNŮ: 1. DUSÍK (N2) JE HO NEJVÍCE, 78 % 2. KYSLÍK (O2) DRUHÝ NEJROZŠÍŘENĚJŠÍ PLYN, 21 % (K
extrémní projevy počasí
Zm extrémní projevy počasí Tomáš Halenka, Jaroslava Kalvová KMOP MFF UK Pozorované změny průměrných hodnot Co považujeme za extrémní jev (teplota vzduchu, srážky, vítr) Extrémní jevy v současnosti Extrémní
EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663
EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:
J i h l a v a Základy ekologie
S třední škola stavební J i h l a v a Základy ekologie 10. Voda jako podmínka života Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Tomáš Krásenský
Mgr. Zdena Seidlová OBECNÝ FYZICKÝ ZEMĚPIS - Atmosféra - Vítr Učební pomůcky:
OBECNÝ FYZICKÝ VY_03_Z6E_20 ZEMĚPIS - Materiál pro domácí přípravu žáků: Název programu: Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovativní metody v prvouce, vlastivědě a zeměpisu
EU PENÍZE ŠKOLÁM Operační program Vzdělávání pro konkurenceschopnost
ZÁKLADNÍ ŠKOLA OLOMOUC příspěvková organizace MOZARTOVA 48, 779 00 OLOMOUC tel.: 585 427 142, 775 116 442; fax: 585 422 713 e-mail: kundrum@centrum.cz; www.zs-mozartova.cz Projekt: ŠKOLA RADOSTI, ŠKOLA
ročník 7. č. 15 název
č. 15 název Krajinná sféra Země anotace V pracovních listech si žáci upevňují znalosti o světadílech a oceánech, charakterizují podnebné pásy a rozlišují půdní obal a biosféru. Testovou i zábavnou formou
Témata k nostrifikační zkoušce ze zeměpisu střední škola
Témata k nostrifikační zkoušce ze zeměpisu střední škola 1. Geografická charakteristika Afriky 2. Geografická charakteristika Austrálie a Oceánie 3. Geografická charakteristika Severní Ameriky 4. Geografická
Obnovitelné zdroje energie
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie 1.hodina doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. 1 Obsah Představení Časový plán
Globální oteplování. Vojtěch Dominik Orálek, Adam Sova
Globální oteplování 1 Vojtěch Dominik Orálek, Adam Sova Co to vlastně je? 2 Globální oteplování je především termín pro poslední oteplování, které započalo na začátku 20. Století a projevuje se nárůstem
Učební osnovy vyučovacího předmětu zeměpis se doplňují: 2. stupeň Ročník: šestý. Dílčí výstupy. Tematické okruhy průřezového tématu
- objasní postavení Slunce ve vesmíru a popíše planetární systém a tělesa sluneční soustavy - charakterizuje polohu, povrch, pohyby Měsíce, jednotlivé fáze Měsíce - aplikuje poznatky o vesmíru a o sluneční
Oxid uhličitý, biopaliva, společnost
Oxid uhličitý, biopaliva, společnost Oxid uhličitý Oxid uhličitý v atmosféře před průmyslovou revolucí cca 0,028 % Vlivem skleníkového efektu se lidstvo dlouhodobě a všestranně rozvíjelo v situaci, kdy
Slaná voda pro fyzika?
Slaná voda pro fyzika? JINDŘIŠKA SVOBODOVÁ Pedagogická fakulta Masarykovy univerzity, Brno V příspěvku se zabývám tzv. solárním jezírkem. Jde o zajímavý jev, který má i praktické využití, Uvádíme potřebné
Intertropická zóna konvergence = pás oblačnosti a srážek, který se spolu se sluníčkem posouvá mezi obratníky (na snímku léto S polokoule)
Intertropická zóna konvergence = pás oblačnosti a srážek, který se spolu se sluníčkem posouvá mezi obratníky (na snímku léto S polokoule) http://www.reportingclimatescience.com/wp-content/uploads/2016/05/itcz-across-pacific-ocean-800x600.jpg
Využití sluneční energie díky solárním kolektorům Apricus
Využití sluneční energie díky solárním kolektorům Apricus Základní princip solárního ohřevu Absorpce slunečního záření Sluneční energie, která dopadá na zemský povrch během slunečného dne, se dokáže vyšplhat
Maturitní témata. Školní rok: 2016/2017. Předmětová komise: Předseda předmětové komise: Mgr. Ivana Krčová
Maturitní témata Školní rok: 2016/2017 Ředitel školy: PhDr. Karel Goš Předmětová komise: Zeměpis Předseda předmětové komise: Mgr. Ivana Krčová Předmět: Zeměpis VIII. A 8 Mgr. Václav Krejčíř IV. A Mgr.
Globální oteplování máme věřit předpovědím?
Globální oteplování máme věřit předpovědím? prof. Ing. Emil Pelikán,CSc. Ústav informatiky AV ČR, v.v.i. Fakulta dopravní ČVUT v Praze pelikan@cs.cas.cz Obsah Úvod Klimatický systém Skleníkové plyny Změny
Geologie kvartéru. Jaroslav Kadlec. Geofyzikální ústav AVČR, v.v.i. Oddělení geomagnetizmu. tel
Geologie kvartéru Jaroslav Kadlec Geofyzikální ústav AVČR, v.v.i. Oddělení geomagnetizmu tel. 267 103 334 kadlec@ig.cas.cz http://www.ig.cas.cz/geomagnetika/kadlec Maximální rozšíření kontinentálního a
METODIKA PRO PŘEDPOVĚĎ EXTRÉMNÍCH TEPLOT NA LETECKÝCH METEOROLOGICKÝCH STANICÍCH AČR
Katedra vojenské geografie a meteorologie Univerzita obrany Kounicova 65 612 00 Brno METODIKA PRO PŘEDPOVĚĎ EXTRÉMNÍCH TEPLOT NA LETECKÝCH METEOROLOGICKÝCH STANICÍCH AČR 1 1. Obecná charakteristika Teplota
Sluneční dynamika. Michal Švanda Astronomický ústav AV ČR Astronomický ústav UK
Sluneční dynamika Michal Švanda Astronomický ústav AV ČR Astronomický ústav UK Slunce: dynamický systém Neměnnost Slunce Iluze Slunce je proměnná hvězda Sluneční proměny Díky vývoji Dynamika hmoty Magnetická
Environmentáln. lní geologie. Stavba planety Země. Ladislav Strnad Rozsah 2/0 ZS-Z Z a LS - Zk
Stavba planety Země Environmentáln lní geologie sylabus-4 LS Ladislav Strnad Rozsah 2/0 ZS-Z Z a LS - Zk PEVNÁ ZEMĚ - -HYDROSFÉRA ATMOSFÉRA - -BIOSFÉRA ENDOGENNÍ E X O G E N N Í Oceány a moře (97% veškeré
Pracovní list č. 3 téma: Povětrnostní a klimatičtí činitelé část 2
Pracovní list č. 3 téma: Povětrnostní a klimatičtí činitelé část 2 Obsah tématu: 1) Vzdušný obal země 2) Složení vzduchu 3) Tlak vzduchu 4) Vítr 5) Voda 1) VZDUŠNÝ OBAL ZEMĚ Vzdušný obal Země.. je směs
HYDROSFÉRA. Opakování
HYDROSFÉRA Opakování Co je HYDROSFÉRA? = VODNÍ obal Země Modrá planeta Proč bývá planeta Země takto označována? O čem to vypovídá? Funkce vody Vyjmenujte co nejvíce způsobů, jak člověk využíval vodu v
ZMĚNY METEOROLOGICKÝCH VELIČIN NA STANICI VIKÝŘOVICE BĚHEM ZATMĚNÍ SLUNCE V BŘEZNU 2015
ZMĚNY METEOROLOGICKÝCH VELIČIN NA STANICI VIKÝŘOVICE BĚHEM ZATMĚNÍ SLUNCE V BŘEZNU 2015 Mgr. Nezval Ondřej 20.3.2015 1. ÚVOD Zatmění Slunce je astronomický jev, který nastane, když Měsíc vstoupí mezi Zemi
Geologie kvartéru. Jaroslav Kadlec. Geofyzikální ústav AV ČR, v. v. i. Laboratoř geomagnetizmu. tel. 267 103 334 kadlec@ig.cas.cz
Geologie kvartéru Jaroslav Kadlec Geofyzikální ústav AV ČR, v. v. i. Laboratoř geomagnetizmu tel. 267 103 334 kadlec@ig.cas.cz http://www.ig.cas.cz/geomagnetika/kadlec Maximální rozšíření kontinentálního
BALÍČEK ČERNÝCH PETRŮ
KAPITOLA 21 BALÍČEK ČERNÝCH PETRŮ Pravděpodobně tou největší změnou, kterou kdy moderní přístroje v oceánech naměřily, je pokles salinity subpolárních moří v severním Atlantiku. Daniel Glick, National
Změna klimatu, její dopady a možná opatření k její eliminaci
Změna klimatu, její dopady a možná opatření k její eliminaci Ing. Martin Kloz, CSc. konference Globální a lokální přístupy k ochraně klimatu 8. 12. 2014 Strana 1 Skleníkový efekt a změna klimatu 1 Struktura
VY_32_INOVACE_06_III./17._PLANETY SLUNEČNÍ SOUSTAVY
VY_32_INOVACE_06_III./17._PLANETY SLUNEČNÍ SOUSTAVY Planety Terestrické planety Velké planety Planety sluneční soustavy a jejich rozdělení do skupin Podle fyzikálních vlastností se planety sluneční soustavy
WWW.METEOVIKYROVICE. WWW.METEOVIKYROVICE.WBS.CZ KLIMATICKÁ STUDIE. Měsíc květen v obci Vikýřovice v letech 2006-2009. Ondřej Nezval 3.6.
WWW.METEOVIKYROVICE. WWW.METEOVIKYROVICE.WBS.CZ KLIMATICKÁ STUDIE Měsíc květen v obci Vikýřovice v letech 2006-2009 Ondřej Nezval 3.6.2009 Studie porovnává jednotlivé zaznamenané měsíce květen v letech
28.Oceány a moře Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
Krajinná sféra a její zákl.části 28.Oceány a moře Oceány a moře Autor: Mgr. Irena Doležalová Datum (období) tvorby: únor 2012 červen 2013 Ročník: šestý Vzdělávací oblast: zeměpis Anotace: Žáci se seznámí
5. VĚTRY A GLOBÁLNÍ CIRKULACE ATMOSFÉRY
5. VĚTRY A GLOBÁLNÍ CIRKULACE ATMOSFÉRY 5.1 Atmosférický tlak - tlak p síla F rovnoměrně spojitě rozložená, působící kolmo na rovinnou plochu, dělená velikostí této plochy S, tedy p = F.S -1 [Pa = N.m
SKLENÍKOVÝ EFEKT 2010 Ing. Andrea Sikorová, Ph.D.
SKLENÍKOVÝ EFEKT 2010 Ing. Andrea Sikorová, Ph.D. 1 Skleníkový efekt V této kapitole se dozvíte: Co je to skleníkový efekt. Jaké jsou skleníkové plyny. Co je to tepelné záření. Budete schopni: Vysvětlit
Maturitní otázky do zeměpisu
Maturitní otázky do zeměpisu 1. Geografie jako věda Předmět a objekt geografie a jeho vývoj v průběhu staletí. Postavení geografie v systému věd. Význam geografie pro život současného člověka. Uplatnění
R E G I O N ÁL N Í Z E M ĚP I S
R E G I O N ÁL N Í Z E M ĚP I S VÝUKOVÁSLEPÁMAPA POLÁRNÍOBLASTI -ARKTIDA Mgr. Iva Svobodová Polární oblasti obecná charakteristika rozsáhlá území obklopující oba zemské póly přesněji vymezené polárním
PODNEBÍ ČR - PROMĚNLIVÉ, STŘÍDAVÉ- /ČR JE NA ROZHRANÍ 2 HLAV.VLIVŮ/
gr.j.mareš Podnebí EU-OP VK VY_32_INOVACE_656 PODNEBÍ ČR - PROMĚNLIVÉ, STŘÍDAVÉ- /ČR JE NA ROZHRANÍ 2 HLAV.VLIVŮ/ POČASÍ-AKTUÁLNÍ STAV OVZDUŠÍ NA URČITÉM MÍSTĚ PODNEBÍ-PRŮMĚR.STAV OVZDUŠÍ NA URČITÉM MÍSTĚ
4. VĚTRY A GLOBÁLNÍ CIRKULACE ATMOSFÉRY
4. VĚTRY A GLOBÁLNÍ CIRKULACE ATMOSFÉRY Atmosférický tlak - tlak p síla F rovnoměrně spojitě rozložená, působící kolmo na rovinnou plochu, dělená velikostí této plochy S, tedy p = F.S -1 [Pa = N.m -2 ]
Pozemský klimatický systém a jeho proměny
Pozemský klimatický systém a jeho proměny Jiří Mikšovský Katedra meteorologie, Matematicko-fyzikální fakulta Univerzity Karlovy Seminář Univerzity třetího věku, 23.11.2009 Přehled obsahu přednášky Co je
4 7 bodů. 5 4 body. Celkem 40 bodů
Celkem 40 bodů 4 7 bodů Doplňte chybějící pojmy do textu: Přírodní rekordy Jižní Ameriky Jižní Amerika se může pyšnit mnoha přírodními nej. Předně zde pramení Amazonka, řeka světa (7 062 km). Podél celého
molekulární struktura (vodíkové můstky, polarita) hustota viskozita teplo povrchové napětí adheze a koheze proudění
molekulární struktura (vodíkové můstky, polarita) hustota viskozita teplo povrchové napětí adheze a koheze proudění Proč se zabývat teplotou vody? řídí biologické děje (růst, přežívání, reprodukci, kompetici,...),
Globální změny klimatu v kostce a jejich vliv na hydrologický režim
Globální změny klimatu v kostce a jejich vliv na hydrologický režim Člověk působí na své okolí již od pradávna svou schopností přetvářet přírodu ke svému prospěchu nejen usnadnil svou existenci na Zemi
Hydrologie a pedologie
Hydrologie a pedologie Ing. Dana Pokorná, CSc. č.dv.136 1.patro pokornd@vscht.cz http://web.vscht.cz/pokornd/hp Předmět hydrologie a pedologie ORGANIZACE PŘEDMĚTU 2 hodiny přednáška + 1 hodina cvičení
Základní jednotky v astronomii
v01.00 Základní jednotky v astronomii Ing. Neliba Vlastimil AK Kladno 2005 Délka - l Slouží pro určení vzdáleností ve vesmíru Základní jednotkou je metr metr je definován jako délka, jež urazí světlo ve
Zeměpisná olympiáda 2012
Zeměpisná olympiáda 2012 Kategorie A krajské kolo Název a adresa školy: Kraj: Jméno a příjmení: Třída: Práce s atlasem 35 minut Datum:... 1) Na fyzické mapě Afriky najdi 40 j.š. a od západu k východu popiš
Zeměpis - 6. ročník (Standard)
Zeměpis - 6. ročník (Standard) Školní výstupy Učivo Vztahy má základní představu o vesmíru a sluneční soustavě získává základní poznatky o Slunci jako hvězdě, o jeho vlivu na planetu Zemi objasní mechanismus
Paříž a co dál? Dr. Alexander Ač Ústav výzkumu globální změny AV ČR, v.v.i.
Paříž a co dál? Dr. Alexander Ač Ústav výzkumu globální změny AV ČR, v.v.i. Paříž a co dál? Stručně k současným a očekávaným důsledkům oteplení o 2 C oproti předprůmyslovému období (MIMO ČR, ale s relevancí
Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost
Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost Projekt je realizován v rámci Operačního programu Vzdělávání pro konkurence
Zkrácený obsah učiva a hodinová dotace
Zkrácený obsah učiva a hodinová dotace Prima - 2 hod. týdně, 66 hod. ročně Planeta Země Vesmír Slunce a sluneční soustava Země jako vesmírné těleso Glóbus a mapa. Glóbus, měřítko globusu, poledníky a rovnoběžky,
PÍSEMNÝ TEST GEOGRAFICKÝCH ZNALOSTÍ
ZEMEPISNÁ ˇ OLYMPIÁDA PÍSEMNÝ TEST GEOGRAFICKÝCH ZNALOSTÍ Celkem 40 bodů Potřebné vybavení: psací potřeby 1 a. Zakroužkuj z nabídky tří pojmů vždy jeden správný pojem. 8 bodů 5 bodů Lidstvo obývá téměř
KYSLÍKOVÉ DEFICITY - PROJEV NESTABILITY RYBNIČNÍHO EKOSYSTÉMU? Ing. Ivana Beděrková Ing. Zdeňka Benedová doc. RNDr. Libor Pechar, CSc.
KYSLÍKOVÉ DEFICITY - PROJEV NESTABILITY RYBNIČNÍHO EKOSYSTÉMU? Ing. Ivana Beděrková Ing. Zdeňka Benedová doc. RNDr. Libor Pechar, CSc. Úvod do problematiky Fytoplankton=hlavní producent biomasy, na kterém
Výskyt extrémů počasí na našem území a odhad do budoucnosti
Český hydrometeorologický ústav, pobočka Brno Mendelova univerzita v Brně Výskyt extrémů počasí na našem území a odhad do budoucnosti Jaroslav Rožnovský Projekt EHP-CZ02-OV-1-035-01-2014 Resilience a adaptace
Čas na Zemi cv. č. 3
Čas na Zemi cv. č. 3 PedF, katedra geografie 1 Co je to čas? Čas je možné charakterizovat jako něco, co jde spojitě ve vesmíru za sebou v nevratném pořadí. To znamená, že i otočení Země kolem své osy a
Hodnocení úrovně koncentrace PM 10 na stanici Most a Kopisty v průběhu hydrologické rekultivace zbytkové jámy lomu Most Ležáky 1
Hodnocení úrovně koncentrace PM 1 na stanici Most a Kopisty v průběhu hydrologické rekultivace zbytkové jámy lomu Most Ležáky 1 Projekt č. TA12592 je řešen s finanční podporou TA ČR Znečištění ovzduší
Průběh průměrných ročních teplot vzduchu (ºC) v období na stanici Praha- Klementinum
Změna klimatu v ČR Trend změn na území ČR probíhá v kontextu se změnami klimatu v Evropě. Dvě hlavní klimatologické charakteristiky, které probíhajícím změnám klimatického systému Země nejvýrazněji podléhají
PÍSEMNÝ TEST GEOGRAFICKÝCH ZNALOSTÍ
ZEMEPISNÁ ˇ OLYMPIÁDA PÍSEMNÝ TEST GEOGRAFICKÝCH ZNALOSTÍ Celkem 40 bodů Potřebné vybavení: psací potřeby 1 a. Zakroužkuj z nabídky tří pojmů vždy jeden správný pojem. 8 bodů 5 bodů Lidstvo obývá téměř
Evropa jeden ze světadílů
Evropa jeden ze světadílů Povrch a poloha Evropy 5. třída ZŠ BŘEŢANY EVROPA Povrch naší planety Země je tvořen pevninou a vodstvem. Více než dvě třetiny povrchu Země jsou pokryty vodstvem. Vodstvo obklopující
CO JE TO GLOBÁLNÍ OTEPLOVÁNÍ
CO JE TO GLOBÁLNÍ OTEPLOVÁNÍ 2010 Ing. Andrea Sikorová, Ph.D. 1 Co je to globální oteplování V této kapitole se dozvíte: Co je to globální oteplování. Co je to změna klimatu. Co jsou to antropogenní změny.