lní DNA (16,5 kbp) 1983: sekvence bakteriofága T7 (40 kbp)
|
|
- Petra Havlíčková
- před 8 lety
- Počet zobrazení:
Transkript
1 Sekvenování genomů Human Genome Project: historie, výsledky a důsledkyd MUDr. Jan Pláten teník, PhD. (Prosinec 2014) Počátky sekvenování 1965: přečtena sekvence trna kvasinky (80 bp) 1977: vynalezeny Sangerova a Maxam & Gilbertova metoda sekvenování 1981: sekvence lidské mitochondriáln lní DNA (16,5 kbp) 1983: sekvence bakteriofága T7 (40 kbp) 1984: Virus Epsteina a Barrové (170 kbp) 1
2 Homo sapiens : 1990: diskuse o sekvenování lidského genomu nebezpečné - nesmyslné - nemožné : 1990: Založen HUMAN GENOME PROJECT Mezinárodn rodní spolupráce ce: HUGO (Human Genome Organisation) Cíle: genetická mapa lidského genomu fyzická mapa: : marker každých 100 kbp sekvenování modelových organismů (E. coli, S. cerevisiae,, C. elegans,, Drosophila, myš) objevit všechny lidské geny (předpokl tisíc) sekvenování celého lidského genomu (4000 Mbp) ) do r Další genomy červenec 1995: Haemophilus influenzae (1,8 Mbp)... První genom nezávisle žijícího ho organismu říjen 1996: Saccharomyces cerevisiae (12 Mbp)... První Eukaryota prosinec 1998: Caenorhabditis elegans (100 Mbp)... První Metazoa 2
3 květen 1998: Craig Venter zakládá soukromou biotechnologickou společnost CELERA GENOMICS, Inc. a vyhlašuje záměr sekvenovat celý lidský genom za 3 roky a 300 mil. USD metodou whole-genome shotgun V té době výsledek práce HGP: sekvenováno cca 4 % lidského genomu. březen 2000: Celera Genomics & akademi emičtí spolupracovníci ci publikují draft genomu Drosophila melanogaster (cca 2/3 z 180 Mbp)... whole-genome shotgun lze použít t i pro velké genomy Lidský genom: : závod z mezi Human Genome Project a Celera Genomics 3
4 International Human Genome Sequencing Consortium (Human Genome Project, HGP) Otevřeno eno spolupráci z každé země na světě 20 laboratoří z USA, Velké Británie nie, Japonska, Francie, Německa a Číny Asi 2800 lidí, vedoucí: : Francis Collins, NIH Financování z veřejných ejných zdrojů (celkové náklady 3 miliardy USD) Metoda: clone-by by-clone Výsledky: Bermudská pravidla každá sekvence do 24 hodin na Internet, přístup zdarma, stálá aktualizace. Clone-by by-clone genomová DNA fragmenty cca bp klonování v BAC (bacterial( artificial chromosome) určen ení pozice klonů v genomu na základě fyzického mapování (STS - sequence tagged site, fingerprint - štěpení restriktázami zami) digesce každého klonu na krátk tké fragmenty cca 500 bp sekvenování sestavení celé sekvence každého klonu pomocí počíta tače 4
5 Celera Genomics, Inc. Soukromá biotechnologická společnost nost, Rockville, Maryland, USA. Prezident Craig Venter. Investice do automatizace a počíta tačového zpracování dat, pár desítek zaměstnanc stnanců Metoda: whole-genome shotgun + ale také využit ití zveřejn ejněnýchných dat z HGP. Výsledky: hrubá data zpřístupn stupněnana na www stránk nkách firmy, další aktualizace a anotace ale výlučně pro komerční účely. Whole-genome shotgun genomová DNA fragmenty 2, 10, 50 kbp klonování v plasmidech E.coli sekvenování sofistikované počíta tačové metody k sestavení celé sekvence 5
6 Únor 2001: International Human Genome Sequencing Consortium publikuje draft lidského genomu v časopisu Nature Draft: 90 % euchromatinu (2,95 Gbp, celý genom 3,2 Gbp). 25 % definitivní. Celera Genomics, Inc. publikuje svou sekvenci lidského genomu v časopisu Science Sekvence euchromatinu (2,91 Gbp) Pokrok v sekvenování 1985: 500 bp /laboratoř a den Stále Sangerova dideoxynukleotidová metoda,, ale - místo gelu kapilárn rní elektroforesa - místo radioaktivity fluorescence - úplná automatizace a robotizace - computer power 2000: bp /den (Celera) 1000 bp/sec. (HGP) 6
7 Sekvenování genomů pokračuje uje... Lidský genom nyn nyní: Definitivní verze publikována let od objevu DNA double helix. rubripes: draft genomu v srpnu 2002 Fugu rubripes Myš: Celera Genomics: draft v červnu 2001 Mouse Genome Sequencing Consortium: Nature, prosinec 2002 potkan: draft v březnu 2004 impanz: září 2005 Laboratorní potkan Šimpanz: a mnoho dald alších genomů: mal malárie (původce Plasmodium falciparum a přenašeč Anopheles gambiae), zebrafish, rýže, pes, kráva va, ovce, prase, kuře, včela,, mamut ad. Veřejn ejně přístupné databáze DNA/RNA sekvencí GenBank, National Center for Biotechnology Information (NCBI), Bethesda, Maryland, USA EMBL-Bank, EMBL's European Bioinformatics Institute, Hinxton, UK DNA Data Bank of Japan, National Institute of Genetics, Mishima, Japan obsah všech tří databází překročil párů basí (100 Gb)... z genů/genomů různých organismů 7
8 Výzkum v postgenomové éře Nové přístupy ke studiu genů a proteinů: GENOMIKA... analýza celého genomu a exprese PROTEOMIKA... genomu a jeho... analýza celého proteomu, tj. všech proteinů tkáně nebo organismu BIOINFORMATIKA zpracování, analýza a interpretace velkých souborů dat (NK a AMK sekvencí,, gene arrays, 3D struktury proteinů atd. Experimenty in silico Rychlý vývoj nových technologií: Př. DNA Microarray mo tisíců genů najednou možnost studovat expresi DNA Microarray ( ( DNA chip ) 8
9 Single Nucleotide Polymorphism (SNP) A G A G T T C T G C T C G A G G G T T C T G C G CG SNP se vyskytuje cca 1x na 1000 bp v sekvencích ch dvou nepříbuzných lidských bytostí (0,1 % genomu) Asi 10 miliónů SNP s výskytem >1% Kódující/nekódující Strukturu proteinu mění/nemm /nemění International HapMap Project Další mezinárodn rodní spolupráce Sekvenování DNA od 270 lidí ze čtyř různých populací (USA, Nigerie, Japonsko, Čína) S cílem c najít Všechny významné lidské SNP (asi ) Jejich stabilní kombinace (haplotypy( haplotypy) Jeden tag SNP typický pro každý haplotyp Data veřejn ejně přístupná k další šímu výzkumu a využit ití 9
10 Lidská genetická variabilita Dva nepříbuzn buzní lidé mají 99,5% genomu identické Single Nucleotide Polymorphism: 0,1% 0 Copy number variation (inser( inserce,, delece ce, duplikace kace): 0,4% 0 Variace počtu tandemových repetic ( DNA fingerprinting ) Unikátn tní individuáln lní inserce transpozonů Epigenetika (metylace) Sekvenátory druhé generace Např.. firma Illumina Co., XII/2008: Genome Analyzer (Illumina Inc.) udělá za 3 dny to, co by ABI 3730xl (použitý Celera Genomics) ) trvalo 60 let Náklady na sekvenování jednoho lidského genomu: $.První sekvenované individuální lidské genomy: 2007: Craig Venter, James Watson oba genomy zpřístupn stupněny ny na internetu 10
11 a třett etí generace Graf: Nature 458, (2009). Získáno z Next-Generation Sequencing Současn asné možnosti nosti, např. Illumina HiSeq 2500: Celý lidský genom,, 30x coverage,, 1 vzorek za 27 hodin, náklady n <5000 USD Přichází doba, kdy se sekvenování stává součást stí lékařské péče 11
12 (for Illumina technology, Wikimedia Commons) Archon X Prize for Genomics $ Vyhláš ášena v roce Pro první tým který osekvenuje 100 lidských genomů za dobu 30 dní nebo kratší v určit ité požadovan adované kvalitě a s náklady n ne více v než $1 000 na jeden genom. 12
13 Archon X Prize for Genomics $ Vyhláš ášena v roce Pro první tým který osekvenuje 100 lidských genomů za dobu 30 dní nebo kratší v určit ité požadovan adované kvalitě a s náklady n ne více v než $1 000 na jeden genom. Cena zrušena Outpaced by innovation Sekvenování lidského genomu: Výsledky 13
14 Lidský genom Obr.: Bolzer et al. 2005, PLoS Biol. 3(5): e157 DOI: /journal.pbio Haploidní genom: : 3 miliardy párůp bazí rozdělen lené do 23 chromosomů 1 metr DNA při p i max. roztažen ení 750 Mb (1 CD) 2 milióny normostran A4 (50 úhozů/řádek, 30 řádků/strana) DNA v buněč ěčném jádře Jádro typické lidské buňky má 5-8 µm v průměru a obsahuje 2 m DNA odpovídá tenisovému míčku, do kterého se podařilo úhledně poskládat 20 km tenké nitě. 14
15 Klasifikace eukaryotické genomové DNA: podle sbalenosti : euchromatin heterochromatin (cca 10%, nesekvenován!) podle opakování: vysoce repetitivní středn edně repetitivní nerepetitivní podle funkce: strukturní (centromery, telomery) kódující proteinov ové sekvence přepisované do nekóduj dující RNA (introny( introny, rrna, trna, mirna etc.) transpozony regulační sekvence junk? Experimenty s denaturací & reasociací DNA: Rychlá reasociace (10-15%): 15%): - vysoce repetitivní DNA Středn edně rychlá reasociace (25-40%): - středn edně repetitivní DNA Pomalá reasociace (50-60%): - nerepetitivní (unikátn tní) ) DNA Obr: Lodish,, H. et al.: Molecular Cell Biology (3rd( ed.), W.H.Freeman,, New York
16 Klasifikace eukaryotické genomové DNA: Vysoce repetitivní (simple-sequence sequence DNA): Veškerý heterochromatin (centromery, telomery, 8% genomu, stále nesekvenován) Minisatelity (3% z euchromatinu) Středn edně repetitivní: Tandemově zmnožen ené geny kódující rrna, trna a histony (více stejných kopií genů za sebou, za účelem většív produktivity transkripce, př. p. geny pro rrna u eukaryot >100 kopií) Transpozony Nerepetitivní: Proteinové geny Geny pro nekóduj dující RNA Regulační sekvence Eukaryotický GEN Obr: Murray, R.K. et al.: Harperova biochemie,, Appleton & Lange 1993, v češtině nakl.. H&H H
17 Rozmíst stění genů v genomu není rovnoměrn rné Velké rozdíly mezi chromosomy: chromosom 1: proteinových genů chromosom Y: 72 proteinových genů oblasti bohaté na geny ( města ) - více C a G oblasti chudé na geny ( pouště ) - více A a T CpG ostrůvky - bariérara mezi městy a pouštěmi mi... regulace genové aktivity Solitárn rní gen: v celém genomu v jediné kopii (asi polovina genů) Tandemově duplikované geny pro histony a rrna Genová rodina: skupina genů evolučně pocházej zející z jediného genu, vznik duplikací a postupnou ou diverzifikací sekvence a funkce Pseudogen: gen který zmutoval natolik že už nemůž ůže být přepisován ( molekulární fosilie ) Zpracovaný ( processed ) pseudogen: pseudogen vzniklý zpětným přepisem mrna a integrací do genomu 17
18 Počet genů v lidském m genomu Kódující geny: Krátk tké nekóduj dující geny: (do 200 bp,, pro rrna, mirna, ncrna, snrna, snorna ) Dlouhé nekóduj dující geny: (nad 200 bp,, různr zné nekóduj dující RNA) Pseudogeny: : Celkem genové transkripty: : Ensembl release 78, Dec ( 18
19 Proteinové geny v lidském genomu cca Asi 25% genomu přepisovp episováno do pre- mrna, z toho ale jen 5% jsou exony Lidský EXOM: cca 1.5 % genomu Počet genů neodpovídá komplexitě organismu?! Sacch. cerevisiae genů C. elegans genů Drosophila genů Arabidopsis thaliana genů Srovnání genomu člověka/myši s genomy nižší ších organismů (C.elegans,, Drosophila): menší hustota genů, delší introny Obr: Lodish,, H. et al.: Molecular Cell Biology (5th ed.), W.H.Freeman,, New York
20 Jak se hledají geny v genomech: Bakterie, kvasinky: open reading frames (ORFs( ORFs) Vyšší organismy: hybridizace/srovnání s cdna nebo EST (expressed sequence tag = část cdna) podobnost se známými geny hledání rozpoznávac vacíchch sekvencí pro místa sestřihu podobnost s genomy jiných organismů Srovnání genomu člověka/myši s genomy nižší ších organismů (C.elegans,, Drosophila): expanse genů /nové geny se vztahem k: srážen ení krve získaná (specifická) imunita nervový systém intra- a intercelulárn rní komunikace kontrola genové exprese programová buněč ěčná smrt (apoptosa) 20
21 jen asi 7 % proteinových domén zcela nových u obratlovců,, ale expanse proteinových rodin složit itější architektura proteinů, nové kombinace domén a více domén/ / protein více proteinů z jednoho genu - alternativní sestřih až v 95 % Susumu Ohno,, 1972 Vzhledem k rychlosti vzniku mutací nemůž ůže e lidský haploidní genom obsahovat více v jak asi genů. Většina DNA je tedy navíc junk! 21
22 Mobilní DNA elementy (transpozony( transpozony) Autonomní DNA sekvence, které se samy množí, představují 44 % genomu DNA transpozony Retrotranspozony Virové Nevirové Dlouhé (LINEs) Krátké (SINEs) Transpozony: Obr: Lodish,, H. et al.: Molecular Cell Biology (5th ed.), W.H.Freeman,, New York
23 DNA transpozony 2-3 kb (nebo kratší), kódují transposasu, cut & paste v genomu bez přepisu do RNA Obr: Lodish,, H. et al.: Molecular Cell Biology (5th ed.), W.H.Freeman,, New York Mobilní (parazitické) elementy v savčím genomu: DNA transpozony 2-33 kb (nebo( kratší ší), kódují transposasu,, cut & paste v genomu bez přepisu do RNA Virové retrotranspozony 6-11 kb (nebo( kratší ší), retroviry bez genu pro proteinový obal (env( env) LINEs (long-interspersed repeats), 6-88 kb, př.. L1, kódují 2 proteiny ( 1 je reversní transkriptasa) SINEs (short-interspersed repeats), bp, př. Alu, nekóduj dují nic, množen ení závisí na LINEs, původ: : z malých nekóduj dujícíchch buněč ěčných RNA 23
24 Census parazitických elementů v lidském genomu: LINEs: x 21 % genomu SINEs: x 13 % genomu Retrovirus-like: x 8 % genomu DNA transposony: x 3 % genomu V drtivé většině ale mutované/nekompletn /nekompletní kopie, jen maláčást (<0,05%)( je aktivní: LINEs: : L1 SINEs: : Alu, <100 SVA Retrovirus us-like: :? (HERV-K opravdu vyhynul?) DNA transpozony: : 0 V genomu myši aktivních transposonů mnohem více (...proč?) Význam transpozonů v lidském genomu Transpozice v germináln lních buňkách nastává relativně vzácn cně (cca 1x na 20 živě narozených, většinou v Alu) I tak významný zdroj lidské genetické variability Může e vést v k inaktivaci genu, dokumentováno no jako vzácn cná příčina vrozených chorob V somatických buňkách můžm ůže e být příčinou p mosaicismu úloha L1 v neurogenesi? 24
25 Transpozony usnadňuj ují rekombinaci.hnací síla evoluce! Obr: Lodish,, H. et al.: Molecular Cell Biology (5th ed.), W.H.Freeman,, New York Neklasifikovaná spacer DNA: nerepetitivní,, nekóduj dující, >1/2 genomu zřejmě rovněž mrtvé transpozony,, které už mutovaly natolik že e nejsou rozpoznány ny Projekt ENCODE,, 2012: žádná junk DNA! Až 80% genomu mám biologickou funkci Až 75% genomu je aspoň někdy a někde n přepisováno do RNA Přesto že e evolučně konzervováno no není více jak 20% genomu.?????... 25
26 Sekvenování lidského genomu: Důsledky Přínos sekvenování genomů Usnadnění výzkumu molekulárn rní podstaty chorob Studium evoluce a migrace lidského druhu Co vlastně genom kóduje ( nature vs. nurture ) ) a jaký ý je genetický podklad rozdílů mezi lidmi Genomická medicína farmakogenomika,, personalizovaná medicína na. 26
27 Genomová medicína 1) Diagnostika na úrovni genů Vzácn cné monogenní choroby Posun do časnější životní fáze Možnost diagnózy dříve d než se nemoc objeví Novorozenecký screening Prenatáln lní diagnostika z fetáln lní DNA v cirkulaci matky Prekoncepční testování rodičů čů, preimplantační testy u IVF Genetická analýza nádorn dorů umožň žňuje racionáln lní volbu cílenc lené biologické léčby U komplexních, polygenně podmíněných ných chorob (srdeční choroby, cukrovka) zatím obtížné Genomová medicína 2) Farmakogenomika Cílená biologická léčba nádorn dorů na základz kladě jejich genetické analýzy Př.: protilátka tka proti HER-2 2 jen u nádorn dorů prsu které tento protein exprimují Predikce účinnosti a případných p padných nežádouc doucích ch účinků léku na základz kladě markerů v genomu pacienta Př.: léčba l chronické hepatitidy C, HIV, možná i dávkování warfarinu personalizovaná medicína 27
28 Genomová medicína 3) Microorganismy: Patogenní: Rychlá diagnostika infekčního onemocnění na základě sekvenování patogenu významné zejména u nových epidemií (SARS, MRSA ) Nepatogenní - Lidský Mikrobiom Např.. bakterie lidského střeva metabolická aktivita srovnatelná s játry, j individuáln lně rozdíln lné spektrum, vztah k střevn evním m zánětům, z ateroskleróze, obezitě Personal Genomics cs: : 23andME Vzorek sliny zaslaný DHL, genotypizace cca SNPs DNA relatives Ancestry: Ancestry Composition Paternal (Y chromosome haplogroup) Maternal (mitochondrial DNA haplogroup) Per cent Neanderthal DNA Health 28
29 Personal Genomics cs: : 23andME Vzorek sliny zaslaný DHL, genotypizace cca SNPs DNA relatives Ancestry Health: Disease risk: 122 (31 high confidence) Drug response: 25 (12 high confidence) Inherited conditions: : 53 (all( high confidence) Traits: : 61 (13 high confidence) Proč analýza SNP neříká víc? Informace o běžb ěžných SNP nestačí třeba najít t individuáln lní (vzácn cné) ) polymorfismy SNP nejsou hlavní příčinou lidské genetické variability duplikace/delece delece a inserce transpozonů významnější Situace kdy o znaku rozhoduje jeden gen asi relativně vzácn cná častěji je fenotyp výsledek souhry mnoha genů O fenotypu rozhoduje exprese genů Polymorfismy v regulační nekóduj dující DNA Epigenetika (metylace DNA atd.) též lze dědit! d dit! 29
30 Etické, legislativní a sociáln lní otázky Gene privacy: kdo má právo znát něčí genetickou informaci a jak jí smí použít, obava z diskriminace zaměstnavatelem stnavatelem, zdravotní pojišťovnou ovnou... Gene testing Gene therapy Designer babies Behavioral genetics: vztah genů k lidskému chování, možný vývoj ke genetickému determinismu a ztrátě odpovědnosti dnosti za vlastní chování GMO Gene patenting Reference: Alberts,, B. et al.: Essential Cell Biology, Garland Publishing, Inc., New York Lodish,, H. et al.: Molecular Cell Biology, W.H.Freeman,, New York 1995, 2004 ( Darnell( Darnell ). Nature 2001: 409 (6822, ); pp Science 2001: 291 (5507, ); pp Trends in Genetics 2007: 23, pp Nature 2009: 458, FEBS Letters 2011: 585; pp Lecture by dr. M. Lebl (Illumina Co.), 1.LF UK, Science Translational Medicine 2013: 5, 189sr4. PNAS 2014: 111, pp genomics.energy.govgov ensembl.org hapmap.ncbi.nlm.nih.gov illumina.com http(s):// Fig. Human and DNA Shadow : Courtesy of U.S. Department of Energy's Joint Genome Institute, Walnut Creek, CA, 30
Sekvenování genomů. Human Genome Project: historie, výsledky a důsledky. MUDr. Jan Pláteník, PhD. Počátky sekvenování
Sekvenování genomů Human Genome Project: historie, výsledky a důsledky MUDr. Jan Pláteník, PhD. (prosinec 2006) Počátky sekvenování 1965: přečtena sekvence trna kvasinky (80 bp) 1977: vynalezena Sangerova
(Prosinec 2010) sekvence trna kvasinky (80 bp) Gilbertova metoda lní DNA (16,5 kbp) 1983: sekvence bakteriofága T7 (40 kbp)
Sekvenování genomů Human Genome Project: historie, výsledky a důsledkyd MUDr. Jan Pláten teník, PhD. (Prosinec 2010) Počátky sekvenování 1965: přečtena sekvence trna kvasinky (80 bp) 1977: vynalezena Sangerova
HumanGenome Project: historie, výsledky a důsledky. MUDr. Jan Pláteník, PhD. Počátky sekvenování
Sekvenování genomů HumanGenome Project: historie, výsledky a důsledky MUDr. Jan Pláteník, PhD. (Prosinec 2018) Počátky sekvenování 1965: přečtena sekvence trna kvasinky (80 bp) 1977: vynalezeny Sangerova
Osekvenované genomy. Pan troglodydes, 2005. Neandrtálec, 2010
GENOMOVÉ PROJEKTY Osekvenované genomy Haemophilus influenze, 1995 první osekvenovaná bakterie Saccharomyces cerevisiae, 1996 první osekvenovaný eukaryotický organimus Caenorhabditis elegans, 1998 první
O původu života na Zemi Václav Pačes
O původu života na Zemi Václav Pačes Ústav molekulární genetiky Akademie věd ČR centrální dogma replikace transkripce DNA RNA protein reverzní transkripce translace informace funkce Exon 1 Intron (413
Struktura a organizace genomů
CG020 Genomika Přednáška 8 Struktura a organizace genomů Markéta Pernisová Funkční genomika a proteomika rostlin, Mendelovo centrum genomiky a proteomiky rostlin, Středoevropský technologický institut
Bioinformatika a výpočetní biologie KFC/BIN. I. Přehled
Bioinformatika a výpočetní biologie KFC/BIN I. Přehled RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Definice bioinformatiky (Molecular) bio informatics: bioinformatics is conceptualising biology
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Genomové projekty SEKVENOVANÉ ROSTLINNÉ GENOMY GROUP GENUS BAC MAP WGS EST Asterids tomato tobacco potato Rosids Arabidopsis
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Referenční lidský genom. Rozdíly v genomové DNA v lidské populaci. Odchylky od referenčního genomu. Referenční lidský genom.
Referenční lidský genom Rozdíly v genomové DNA v lidské populaci Zdroj DNA: 60% sekvencí pochází ze sekvenování DNA od jednoho dárce (sekvenování a sestavování BAC klonů) některá místa genomu se nepodařilo
Centrum aplikované genomiky, Ústav dědičných metabolických poruch, 1.LFUK
ové technologie v analýze D A, R A a proteinů Stanislav Kmoch Centrum aplikované genomiky, Ústav dědičných metabolických poruch, 1.LFUK Motto : "The optimal health results from ensuring that the right
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Transpozony - mobilní genetické elementy
Transpozony - mobilní genetické elementy Tvoří pravidelnou součást genomu prokaryot i eukaryot (až 50% genomu) Navozují mutace genů (inzerční inaktivace, polární mutace, změny exprese genů) Jsou zodpovědné
Struktura a analýza rostlinných genomů Jan Šafář
Struktura a analýza rostlinných genomů Jan Šafář Ústav experimentální botaniky AV ČR, v.v.i Centrum regionu Haná pro biotechnologický a zemědělský výzkum Proč rostliny? Proč genom? Norman E. Borlaug Zelená
Využití DNA markerů ve studiu fylogeneze rostlin
Mendelova genetika v příkladech Využití DNA markerů ve studiu fylogeneze rostlin Ing. Petra VESELÁ Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno Tento projekt je spolufinancován
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Genomika (KBB/GENOM) Poziční klonování Ing. Hana Šimková, CSc. Cíl přednášky - seznámení s metodou pozičního klonování genů
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Sylabus témat ke zkoušce z lékařské biologie a genetiky. Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně
Sylabus témat ke zkoušce z lékařské biologie a genetiky Buněčná podstata reprodukce a dědičnosti Struktura a funkce prokaryot Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně
Nukleové kyseliny Replikace Transkripce translace
Nukleové kyseliny Replikace Transkripce translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti buněk skladovat,
Molekulární genetika II zimní semestr 4. výukový týden ( )
Ústav biologie a lékařské genetiky 1.LF UK a VFN, Praha Molekulární genetika II zimní semestr 4. výukový týden (27.10. 31.10.2008) prenatální DNA diagnostika presymptomatická Potvrzení diagnózy Diagnostika
Atestace z lékařské genetiky inovované otázky pro rok A) Molekulární genetika
Atestace z lékařské genetiky inovované otázky pro rok 2017 A) Molekulární genetika 1. Struktura lidského genu, nomenklatura genů, databáze týkající se klinického dopadu variace v jednotlivých genech. 2.
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Genotypování: Využití ve šlechtění a určení identity odrůd
Molekulární přístupy ve šlechtění rostlin Aplikovaná genomika Genotypování: Využití ve šlechtění a určení identity odrůd Miroslav Valárik 14.2. 2017 Šlěchtění rostlin: Cílený výběr a manipulace s genomy
Některé vlastnosti DNA důležité pro analýzu
Některé vlastnosti DNA důležité pro analýzu Spiralizace Denaturace Záporný náboj Syntéza Ligace Rekombinace Mutabilita Despiralizace Reasociace Štěpení Metody používané k analýze DNA Southern blotting
Struktura, vlastnosti a funkce nukleových kyselin, DNA v jádře, chromatin.
Struktura, vlastnosti a funkce nukleových kyselin, DNA v jádře, chromatin. Nukleové base - purinové a pyrimidinové Ribonukleosidy - base + ribosa Deoxyribonukleosidy base + 2 - deoxyribosa Nukleotidy,
NGS analýza dat. kroužek, Alena Musilová
NGS analýza dat kroužek, 16.12.2016 Alena Musilová Typy NGS experimentů Název Materiál Cílí na..? Cíl experimentu? amplikon DNA malý počet vybraných genů hledání variant exom DNA všechny geny hledání
Počítačové vyhledávání genů a funkčních oblastí na DNA
Počítačové vyhledávání genů a funkčních oblastí na DNA Hodnota genomových sekvencí záleží na kvalitě anotace Anotace Charakterizace genomových vlastností s použitím výpočetních a experimentálních metod
Genetické mapování. v přírodních populacích i v laboratoři
Genetické mapování v přírodních populacích i v laboratoři Funkční genetika Cílem je propojit konkrétní mutace/geny s fenotypem Vzniklý v laboratoři pomocí mutageneze či vyskytující se v přírodě. Forward
EKONOMICKÉ ASPEKTY GENETICKÝCH VYŠETŘENÍ. I. Šubrt Společnost lékařské genetiky ČLS JEP
EKONOMICKÉ ASPEKTY GENETICKÝCH VYŠETŘENÍ I. Šubrt Společnost lékařské genetiky ČLS JEP Lékařská genetika Lékařský obor zabývající se diagnostikou a managementem dědičných onemocnění Genetická prevence
6. Kde v DNA nalézáme rozdíly, zodpovědné za obrovskou diverzitu života?
6. Kde v DNA nalézáme rozdíly, zodpovědné za obrovskou diverzitu života? Pamatujete na to, co se objevilo v pracích Charlese Darwina a Alfreda Wallace ohledně vývoje druhů? Aby mohl mechanismus přírodního
RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA
RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA 1. Genotyp a jeho variabilita, mutace a rekombinace Specifická imunitní odpověď Prevence a časná diagnostika vrozených vad 2. Genotyp a prostředí Regulace buněčného
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
P1 AA BB CC DD ee ff gg hh x P2 aa bb cc dd EE FF GG HH Aa Bb Cc Dd Ee Ff Gg Hh
Heteroze jev, kdy v F1 po křížení geneticky rozdílných genotypů lze pozorovat zvětšení a mohutnost orgánů, zvýšení výnosu, životnosti, ranosti, odolnosti ve srovnání s lepším rodičem = heterózní efekt
Od sekvencí k chromozómům: výzkum repetitivní DNA rostlin v Laboratoři molekulární cytogenetiky BC AVČR
ENBIK 2014 Od sekvencí k chromozómům: výzkum repetitivní DNA rostlin v Laboratoři molekulární cytogenetiky BC AVČR Jiří Macas Biologické centrum AVČR Ústav molekulární biologie rostlin České Budějovice
Genetické metody v zoologii
Genetické metody v zoologii M. Macholán J. Bryja M. Vyskočilová Sylabus 1. Analýza fenotypu (signální fenotypy, epigenetické znaky, kvantitativní znaky, analýza landmarků) MM 2. Cytogenetika (analýza karyotypu,
Mgr. et Mgr. Lenka Falková. Laboratoř agrogenomiky. Ústav morfologie, fyziologie a genetiky zvířat Mendelova univerzita
Mgr. et Mgr. Lenka Falková Laboratoř agrogenomiky Ústav morfologie, fyziologie a genetiky zvířat Mendelova univerzita 9. 9. 2015 Šlechtění Užitek hospodářská zvířata X zájmová zvířata Zemědělství X chovatelství
Na rozdíl od genomiky se funkční genomika zaměřuje na dynamické procesy, jako je transkripce, translace, interakce protein - protein.
FUNKČNÍ GENOMIKA Co to je: Oblast molekulární biologie která se snaží o zpřístupnění a využití ohromného množství dat z genomových projektů. Snaží se popsat geny, a proteiny, jejich funkce a interakce.
Evoluční genetika 2/1 Zk/Z
Evoluční genetika 2/1 Zk/Z Radka Reifová, Pavel Munclinger, Zuzana Musilová Prezentace a materiály k přednášce http://web.natur.cuni.cz/zoologie/biodiversity/ Evoluční genetika Obor vzniklý propojením
Klonování DNA a fyzikální mapování genomu
Klonování DNA a fyzikální mapování genomu. Terminologie Klonování je proces tvorby klonů Klon je soubor identických buněk (příp. organismů) odvozených ze společného předka dělením (např. jedna bakteriální
Výuka genetiky na Přírodovědecké fakultě UK v Praze
Výuka genetiky na Přírodovědecké fakultě UK v Praze Studium biologie na PřF UK v Praze Bakalářské studijní programy / obory Biologie Biologie ( duhový bakalář ) Ekologická a evoluční biologie ( zelený
Evoluční genetika 2/1 Zk/Z
Evoluční genetika 2/1 Zk/Z Radka Reifová, Pavel Munclinger, Zuzana Musilová Prezentace a materiály k přednášce http://web.natur.cuni.cz/zoologie/biodiversity/ Evoluční genetika Obor vzniklý propojením
REKOMBINACE Přestavby DNA
REKOMBINACE Přestavby DNA variace v kombinacích genů v genomu adaptace evoluce 1. Obecná rekombinace ( General recombination ) Genetická výměna mezi jakýmkoli párem homologních DNA sekvencí - často lokalizovaných
Chromosomy a karyotyp člověka
Chromosomy a karyotyp člověka Chromosom - 1 a více - u eukaryotických buněk uložen v jádře karyotyp - soubor všech chromosomů v jádře jedné buňky - tvořen z vláknem chromatinem = DNA + histony - malé bazické
Bioinformatika. Jiří Vondrášek Ústav organické chemie a biochemie Jan Pačes Ústav molekulární genetiky
Bioinformatika pro PrfUK 2006 Jiří Vondrášek Ústav organické chemie a biochemie vondrasek@uochb.cas.cz Jan Pačes Ústav molekulární genetiky hpaces@img.cas.cz http://bio.img.cas.cz/prfuk2006 syllabus Úterý,
Těsně před infarktem. Jak předpovědět infarkt pomocí informatických metod. Jan Kalina, Marie Tomečková
Těsně před infarktem Jak předpovědět infarkt pomocí informatických metod Jan Kalina, Marie Tomečková Program, osnova sdělení 13,30 Úvod 13,35 Stručně o ateroskleróze 14,15 Měření genových expresí 14,00
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Genomika (KBB/GENOM) Sekvenování genomů Ing. Hana Šimková, CSc. Cíl přednášky - seznámení se strategiemi celogenomového sekvenování,
Co se o sobě dovídáme z naší genetické informace
Genomika a bioinformatika Co se o sobě dovídáme z naší genetické informace Jan Pačes, Mgr, Ph.D Ústav molekulární genetiky AVČR, CZECH FOBIA (Free and Open Bioinformatics Association) hpaces@img.cas.cz
GENETIKA A MOLEKULÁRNĚ GENETICKÁ DIAGNOSTIKA DUCHENNEOVY MUSKULÁRNÍ DYSTROFIE
GENETIKA A MOLEKULÁRNĚ GENETICKÁ DIAGNOSTIKA DUCHENNEOVY MUSKULÁRNÍ DYSTROFIE POHLED Z LABORATOŘE Petra Hedvičákov ková ÚBLG FN Motol Odd. lékal kařské molekulárn rní genetiky MZO 00064203 23.-24.5.2008
Možné účinky XENOBIOTIK
Možné účinky XENOBIOTIK přímý toxický účinek -látka působí pouhou svou přítomností na kritickém místě v organismu biochemický účinek - látka interaguje s cílovou molekulou (receptorem), ovlivní nějaký
Potřebné genetické testy pro výzkum a jejich dostupnost, spolupráce s neurology Taťána Maříková. Parent projekt. Praha 19.2.2009
Potřebné genetické testy pro výzkum a jejich dostupnost, spolupráce s neurology Taťána Maříková Parent projekt Praha 19.2.2009 Diagnostika MD její vývoj 1981-1986: zdokonalování diferenciální diagnostiky
AUG STOP AAAA S S. eukaryontní gen v genomové DNA. promotor exon 1 exon 2 exon 3 exon 4. kódující oblast. introny
eukaryontní gen v genomové DNA promotor exon 1 exon 2 exon 3 exon 4 kódující oblast introny primární transkript (hnrna, pre-mrna) postranskripční úpravy (vznik maturované mrna) syntéza čepičky AUG vyštěpení
Sekvenování nové generace. Radka Reifová
Sekvenování nové generace Radka Reifová Prezentace ke stažení www.natur.cuni.cz/zoologie/biodiversity v záložce Přednášky 1. Přehled sekvenačních metod nové generace 2. Využití sekvenačních metod nové
FUNKČNÍ VARIANTA GENU ANXA11 SNIŽUJE RIZIKO ONEMOCNĚNÍ
FUNKČNÍ VARIANTA GENU ANXA11 SNIŽUJE RIZIKO ONEMOCNĚNÍ SARKOIDÓZOU: POTVRZENÍ VÝSLEDKŮ CELOGENOMOVÉ ASOCIAČNÍ STUDIE. Sťahelová A. 1, Mrázek F. 1, Kriegová E. 1, Hutyrová B. 2, Kubištová Z. 1, Kolek V.
5. Sekvenování, přečtení genetické informace, éra genomiky.
5. Sekvenování, přečtení genetické informace, éra genomiky. Minulá přednáška nastínila zrod molekulární biologie a představila některé možnosti, jak pracovat s DNA - jak ji analyzovat na základě velikosti
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Mária Čudejková 2. Transkripce genu a její regulace Transkripce genetické informace z DNA na RNA Transkripce dvou genů zachycená na snímku z elektronového mikroskopu.
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
1. Definice a historie oboru molekulární medicína. 3. Základní laboratorní techniky v molekulární medicíně
Obsah Předmluvy 1. Definice a historie oboru molekulární medicína 1.1. Historie molekulární medicíny 2. Základní principy molekulární biologie 2.1. Historie molekulární biologie 2.2. DNA a chromozomy 2.3.
Evoluční genetika 2/1 Zk/Z
Evoluční genetika 2/1 Zk/Z Radka Reifová, Pavel Munclinger, Zuzana Musilová Prezentace a materiály k přednášce http://web.natur.cuni.cz/zoologie/biodiversity/ Evoluční genetika Obor vzniklý propojením
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Genomika (KBB/GENOM) Úvod do studia genomiky Ing. Hana Šimková, CSc. Cíl přednášky - seznámení studentů s náplní vědního oboru
Využití rekombinantní DNA při studiu mikroorganismů
Využití rekombinantní DNA při studiu mikroorganismů doc. RNDr. Milan Bartoš, Ph.D. bartosm@vfu.cz Přírodovědecká fakulta MU, 2014 1 2 Obsah přednášky 1) Celogenomové metody sekvenování 2) Sekvenování H.
25.2.2014. Genomika. Obor genetiky, který se snaží. stanovit úplnou genetickou informaci. organismu a interpretovat ji v. termínech životních pochodů.
Genomika Obor genetiky, který se snaží stanovit úplnou genetickou informaci organismu a interpretovat ji v termínech životních pochodů. 1 Strukturní genomika stanovení sledu nukleotidů genomu organismu,
Bioinformatika a výpočetní biologie KFC/BIN. I. Přehled
Bioinformatika a výpočetní biologie KFC/BIN I. Přehled RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci KFC/BIN - Podmínky Seminární práce: http://rosalind.info/ - alespoň 10 vyřešených problémů
Moderní metody analýzy genomu
LÉKAŘSKÁ FAKULTA MASARYKOVY UNIVERSITY Interní hematoonkologická klinika LF MU a FN Brno Centrum molekulární biologie a genové terapie Moderní metody analýzy genomu Aplikace 25.11. 2011 Boris Tichý Aplikace
Genové terapie po 20 letech = více otázek než odpovědí
Genové terapie po 20 letech = více otázek než odpovědí Jiří Heřmánek Genzyme 25.11.2008 Disclosure statement Ač vzděláním biochemik, nejsem odborník na genové terapie, tzn. považujte mne prosím za poučeného
Pohled genetika na racionální vyšetřování v preventivní kardiologii
Pohled genetika na racionální vyšetřování v preventivní kardiologii Tomáš Freiberger Genetická laboratoř, Centrum kardiovaskulární a transplantační chirurgie Brno, ČR Osnova Genetické faktory vzniku KV
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 7. Interakce DNA/RNA - protein Ivo Frébort Interakce DNA/RNA - proteiny v buňce Základní dogma molekulární biologie Replikace DNA v E. coli DNA polymerasa a
Genové knihovny a analýza genomu
Genové knihovny a analýza genomu Klonování genů Problém: genom organismů je komplexní a je proto obtížné v něm najít a klonovat specifický gen Klonování genů Po restrikčním štěpení genomové DNA pocházející
2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:
Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících
Metody studia historie populací. Metody studia historie populací
1) Metody studia genetické rozmanitosti komplexní fenotypové znaky, molekulární znaky. 2) Mechanizmy evoluce mutace, přírodní výběr, genový posun a genový tok 3) Anageneze x kladogeneze - co je vlastně
Molekulární biotechnologie č.8. Produkce heterologního proteinu v eukaryontních buňkách
Molekulární biotechnologie č.8 Produkce heterologního proteinu v eukaryontních buňkách Eukaryontní buňky se využívají v případě, když Eukaryontní proteiny syntetizované v baktériích postrádají biologickou
Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA).
Typy nukleových kyselin Existují dva typy nukleových kyselin (NA, z anglických slov nucleic acid): deoxyribonukleová (DNA); ribonukleová (RNA). DNA je lokalizována v buněčném jádře, RNA v cytoplasmě a
Bioinformatika je nová disciplína na rozhraní počítačových věd, informačních technologií a biologie. Bioinformatika zahrnuje studium biologických dat
Bioinformatika je nová disciplína na rozhraní počítačových věd, informačních technologií a biologie. Bioinformatika zahrnuje studium biologických dat a jejich praktické uchovávání, vyhledávání a modelování.
Molekulárn. rní. biologie Struktura DNA a RNA
Molekulárn rní základy dědičnosti Ústřední dogma molekulárn rní biologie Struktura DNA a RNA Ústřední dogma molekulárn rní genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace
Metody studia historie populací. Metody studia historie populací. 1) Metody studiagenetickérozmanitosti komplexní fenotypové znaky, molekulární znaky.
1) Metody studiagenetickérozmanitosti komplexní fenotypové znaky, molekulární znaky. 2)Mechanizmy evoluce mutace, p írodnívýb r, genový posun a genový tok 3) Anagenezex kladogeneze-co je vlastn druh 4)Dva
Výzkumné centrum genomiky a proteomiky. Ústav experimentální medicíny AV ČR, v.v.i.
Výzkumné centrum genomiky a proteomiky Ústav experimentální medicíny AV ČR, v.v.i. Systém pro sekvenování Systém pro čipovou analýzu Systém pro proteinovou analýzu Automatický sběrač buněk Systém pro sekvenování
7. Regulace genové exprese, diferenciace buněk a epigenetika
7. Regulace genové exprese, diferenciace buněk a epigenetika Aby mohl mnohobuněčný organismus efektivně fungovat, je třeba, aby se jednotlivé buňky specializovaly na určité funkce. Nový jedinec přitom
Mgr. Veronika Peňásová vpenasova@fnbrno.cz Laboratoř molekulární diagnostiky, OLG FN Brno Klinika dětské onkologie, FN Brno
Retinoblastom Mgr. Veronika Peňásová vpenasova@fnbrno.cz Laboratoř molekulární diagnostiky, OLG FN Brno Klinika dětské onkologie, FN Brno Retinoblastom (RBL) zhoubný nádor oka, pocházející z primitivních
Technologie "omics " a jejich využití jako prostředku personalizované medicíny u kriticky nemocných. Miroslav Průcha
Technologie "omics " a jejich využití jako prostředku personalizované medicíny u kriticky nemocných Miroslav Průcha Historie Současnost Genomika a epigenomika Transkriptomika Proteinomika Metabolomika
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Využití molekulárních markerů v systematice a populační biologii rostlin. 10. Další metody
Využití molekulárních markerů v systematice a populační biologii rostlin 10. Další metody Další molekulární markery trflp ISSRs (retro)transpozony kombinace a modifikace různých metod real-time PCR trflp
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. OBVSB/Obecná virologie Tento projekt je spolufinancován Evropským
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354
I n v e s t i c e d o r o z v o j e v z d ě l á v á n í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Nukleové kyseliny Replikace Transkripce translace
Nukleové kyseliny Replikace Transkripce translace Figure 4-3 Molecular Biology of the Cell ( Garland Science 2008) Figure 4-4 Molecular Biology of the Cell ( Garland Science 2008) Figure 4-5 Molecular
Molecular Ecology J. Bryja, M. Macholán MU, P. Munclinger - UK
MODULARIZACE VÝUKY EVOLUČNÍ A EKOLOGICKÉ BIOLOGIE CZ.1.07/2.2.00/15.0204 Molecular Ecology J. Bryja, M. Macholán MU, P. Munclinger - UK Co je molekulární ekologie? Uměle vytvořený obor vymezený technickým
Uspořádání genomu v jádře buňky a jeho možná funkce. Stanislav Kozubek Biofyzikální ústav AV ČR, v.v.i.
Uspořádání genomu v jádře buňky a jeho možná funkce Stanislav Kozubek Biofyzikální ústav AV ČR, v.v.i. DNA, nukleosomy, chromatin, chromosom a genom Chromosom Genom v jádře Buňka Chromatinové vlákno Nukleosomy
Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor)
RNAi Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor) Místo silné pigmentace se objevily rostliny variegované a dokonce bílé Jorgensen pojmenoval tento fenomén
NUKLEOVÉ KYSELINY. Základ života
NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním
Ondřej Scheinost Nemocnice České Budějovice, a.s.
Ondřej Scheinost Nemocnice České Budějovice, a.s. Nové technologie přelomové období principy technologií klinická použitelnost chips (arrays) sekvenační technologie Důležitost genetických informací i další
Studium genetické predispozice ke vzniku karcinomu prsu
Univerzita Karlova v Praze 1. lékařská fakulta Studium genetické predispozice ke vzniku karcinomu prsu Petra Kleiblová Ústav biochemie a experimentální onkologie, 1. LF UK - skupina molekulární biologie
Úvod do nonhla-dq genetiky celiakie
Úvod do nonhla-dq genetiky celiakie František Mrázek HLA laboratoř, Ústav Imunologie LF UP a FN Olomouc Celiakie - časté chronické zánětlivé onemocnění tenkého střeva s autoimunitní a systémovou složkou
Bakteriální transpozony
Bakteriální transpozony Transpozon = sekvence DNA schopná transpozice, tj. přemístění z jednoho místa v genomu do jiného místa Transpozice = proces přemístění transpozonu Transponáza (transpozáza) = enzym
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy 1/75 Genetika = věda o dědičnosti Studuje biologickou informaci. Organizmy uchovávají,
Molekulárně biologické metody princip, popis, výstupy
& Molekulárně biologické metody princip, popis, výstupy Klára Labská Evropský program pro mikrobiologii ve veřejném zdravotnictví (EUPHEM), ECDC, Stockholm NRL pro herpetické viry,centrum epidemiologie
Masivně paralelní sekvenování v diagnostice závažných časných epilepsií. DNA laboratoř KDN 2.LF a FN v Motole
Masivně paralelní sekvenování v diagnostice závažných časných epilepsií DNA laboratoř KDN 2.LF a FN v Motole Financial disclosure (konflikt zájmů) Projekt je v současné době finančně zabezpečen pouze z
Nové přístupy v modifikaci funkce genů: CRISPR/Cas9 systém
Nové přístupy v modifikaci funkce genů: CRISPR/Cas9 systém Lesk a bída GM plodin Lesk a bída GM plodin Problémy konstrukce GM plodin: 1) nízká efektivita 2) náhodnost integrace transgenu 3) legislativa
Exprese genetické informace
Exprese genetické informace Stavební kameny nukleových kyselin Nukleotidy = báze + cukr + fosfát BÁZE FOSFÁT Nukleosid = báze + cukr CUKR Báze Cyklické sloučeniny obsahující dusík puriny nebo pyrimidiny
Klinická genetika pro mediky
Klinická genetika pro mediky Úvodní přednáška Proč klinická genetika? 1. Úloha genomu ve vzniku nemocí: 0.6% VCHA, 8% Mendel DO, 90% Multifakt, 1.4% jiný než genetický problém 2. Využití poznatků genetiky
Vrozené vývojové vady, genetika
UNIVERZITA KARLOVA V PRAZE Fakulta tělesné výchovy a sportu Vrozené vývojové vady, genetika studijní opora pro kombinovanou formu studia Aplikovaná tělesná výchova a sport Doc.MUDr. Eva Kohlíková, CSc.