6. Kde v DNA nalézáme rozdíly, zodpovědné za obrovskou diverzitu života?
|
|
- Libor Němec
- před 8 lety
- Počet zobrazení:
Transkript
1 6. Kde v DNA nalézáme rozdíly, zodpovědné za obrovskou diverzitu života? Pamatujete na to, co se objevilo v pracích Charlese Darwina a Alfreda Wallace ohledně vývoje druhů? Aby mohl mechanismus přírodního výběru fungovat, je třeba, aby v přírodě existovala variabilita, různorodost mezi jedinci, aby měl přírodní výběr z čeho vybírat. Různorodost vlastností je dána různorodostí genetické informace (samozřejmě vnější podmínky mohou tuto různorodost dále zvyšovat). Zdrojem této variability v DNA, jak jsme se již dozvěděli dříve, jsou mutace, které pozměňují DNA a tvoří tak nové varianty. Takto vzniklá variabilita je pak dále promíchávána procesem pohlavního rozmnožování (rekombinace DNA + spojení dvou genomů) a/nebo horizontálním přenosem genů. Tato přednáška se věnuje právě variabilitě DNA. K čemu se může hodit znalost variability na úrovni DNA? Například pomocí ní můžeme zpětné vystopovat molekulární evoluci a poskládat tak vývojový strom života, přesněji určit příbuzenské vztahy mezi druhy nebo rozlišit druhy/kmeny jiným způsobem nerozlišitelné. Můžeme zjistit stupeň biodiverzity - horké ekologické téma. Je možné se ptát, který gen a jaká jeho forma vede k určité vlastnosti (například predispozice k nemocím, výnos obilí apod.). A nebo také můžeme určovat příbuznost jedinců (otcovství) nebo identifikovat pachatele. Kde v DNA nalézáme variabilitu a jaký význam má? Když srovnáme dvě DNA, můžeme nalézt nejrůznější rozdíly, záleží na tom, jaké DNA srovnáváme a co hledáme. Podívejme se nejdříve na to z hlediska realizace dědičné informace, tj. jakým způsobem může mutace ovlivnit realizaci genetické informace. Z hlediska genu záleží na tom, kde se nalézá záměna, kde se objevila mutace. Mutace může být v regulační oblasti genu, což se může projevit změnou aktivity genu, tj. kdy, kde nebo jak moc se produkuje protein, který je tímto genem kódován. Tyto změny jsou například nesmírně důležité z hlediska vývojové biologie (více v dalších přednáškách). Přímo na fungování proteinu budou mít vliv mutace, které se objeví v kódující sekvenci, tj. zasáhnou jednotlivé kodóny. Protože je genetický kód degenerovaný (je více možností kodónů pro jednu aminokyselinu), je možné, že změna jednoho nukleotidu se neprojeví změnou aminokyseliny (tichá mutace). Taková změna v DNA zpravidla nemá žádný dopad a proto se jedná většinou o polymorfismus. Pokud změna nukleotidu v kódující sekvenci zároveň změní smysl kodónu, tj. ve výsledném proteinu bude zařazena jiná aminokyselina, bude záležet na tom, jaký dopad taková změna má. Pokud bude aminokyselina zaměněna jinou s podobnými vlastnostmi, nemusí to mít nijak závažný dopad na fungování proteinu. I v takovýchto případech se často jedná o polymorfismus bez nějakého velkého funkčního efektu. Pokud ovšem dojde k radikální změně (aminokyselina s úplně jinými vlastnostmi), může to pozměnit výrazně fungování proteinu nebo takový protein nemusí fungovat vůbec. Taková mutace buď bude z populace vyřazena (poškozuje nositele) nebo se může stát objektem přírodního výběru v pozitivním smyslu a ovlivní evoluci (může se třeba stát důležitým krokem v procesu speciace). Kodóny jsou tvořeny třemi nukleotidy a pokud dojde k vmezeření nebo k odstranění jedné či dvou bazí, posune se celý čtecí rámec (tzv. frameshift mutace), což znamená změnu celé proteinové sekvence za tímto bodem - ve většině případů je takový protein nefunkční. Tyto příklady se týkaly přímo kódující sekvence. Ta je u většiny složitějších organismů přerušena introny. Protože jsou introny vyštěpovány pryč, změna jejich sekvence nemá ve většině případů příliš zásadní dopad, může se ovšem stát, že zasáhne místo v intronu, důležité pro správný sestřih pre-mrna a pak může proces sestřihu ovlivnit. To se může projevit nesprávným vystřižením intronu - poškozující mutace, nebo může vést k nové variantě při alternativním sestřihu a poskládání nové varianty výsledného proteinu. Nebo se mutace/záměna objeví mimo genovou oblast a pak nemusí mít žádný funkční význam (zpravidla opět polymorfismus), ale i mezigenové oblasti mohou být důležité, například pro strukturu a chování chromozomu apod.
2 Jak detekovat variabilitu v DNA? Možností je opět mnoho a cílem není je všechny představit. Podívejme se tedy na nějaké konkrétní příklady, jak variabilitu v DNA zjistit a co nám to může říci. Například pro molekulární fylogenetiku se často využívá genový lokus pro ribozomální RNA (rrna), který nekóduje protein, ale pouze RNA (centrální dogma se zastaví na úrovni RNA), která je součástí ribozómů (ty se skládají u všech organismů z proteinů a RNA molekul). Struktura ribozómů je nesmírně důležitá pro veškeré živé organismy a proto si je evoluce "nedovolí" příliš měnit - geny pro ribozomální RNA jsou tudíž velmi podobné u všech organismů. Eukaryotická rrna se přepisuje jako jedna delší RNA, která v sobě obsahuje úseky pro 3 molekuly rrna - 18S rrna, 5.8S rrna a 28S rrna, které jsou odděleny sekvencemi ITS-1 a ITS-2 (internal transcribed spacer). ITS se vyštěpí a na ribozom se použijí pouze ty tři rrna. Ty jsou evolučně velmi konzervované, čili se v nich najde jen minimálně záměn i při srovnání sekvencí dvou vzdálených druhů. To umožňuje navrhnout primery do těchto sekvencí, které budou fungovat pro spoustu různých druhů. Pomocí těchto primerů je možné namnožit metodou PCR sekvenci těchto ribozomálních genů a srovnávat ji mezi blízce nebo vzdáleně příbuznými druhy. Protože ITS sekvence nejsou důležité pro strukturu ribozómů (jsou z rrna vyštěpeny), hromadí se v nich během evoluce změny. Takže při srovnání i velmi blízce si příbuzných druhů v nich změny najdeme, ale přilehlé sekvence konzervovaných rrna nám umožní jednou sadou primerů namnožit tyto sekvence z různých druhů. Porovnáním různých sekvencí ITS (vytvořením tzv. alignmentu - srovnání sekvencí pod sebe na základě jejich podobnosti) můžeme spočítat počet rozdílů mezi nimi a na základě toho vytvořit vývojový strom - jak moc si jsou druhy příbuzné a jak se postupně během evoluce odštěpovaly. To samé můžeme udělat i
3 porovnáním sekvencí jednotlivých rrna, ale tam najdeme rozdíly pouze u evolučně vzdálenějších druhů, proto nám to umožňuje tvořit rozsáhlejší evoluční stromy, pro blízce příbuzné druhy se tato analýza nehodí. Příklad srovnání sekvencí pod sebe na základě jejich podobnosti (stejné nukleotidy jako v horní sekvenci jsou nahrazeny pomlčkou, pouze nukleotidy, ve kterých se sekvence liší od té horní, tzv. referenční sekvence, jsou zobrazeny). Tento tzv. alignment, vytváří speciální počítačové programy, patřící mezi bioinformatické nástroje:
4 Srovnání rrna a vmezeřené ITS sekvence nám tedy umožňuje analyzovat variabilitu mezi vzdáleně a blízce příbuznými druhy. Ale jak analyzovat variabilitu mezi jedinci jednoho druhu, kteří mají DNA příliš podobnou? Například DNA dvou lidí se liší pouze asi 0,1%, tj. na každých 1000 nukleotidů lidské DNA najdeme průměrně 1 nukleotid, ve kterém se dva jedinci budou lišit. A v každém případě se nebudou lišit v sekvenci rrna. Naštěstí se různě po genomu vyskytují tzv. mikrosatelity, což jsou sekvence DNA, ve kterých se opakuje jeden, dva, tři nebo i čtyři nukleotidy dokola, třeba 20x, jako v této dvounukleotidové repetici: CACACACACACACACACACACACACACACACACACACACA Takovýchto mikrosatelitů je po genomech nejrůznějších organismů mnoho. A protože DNA polymeráza při kopírování DNA snadno v takové sekvencii uklouzne (DNA polymerase slippage): dochází relativně často k přidání (jako na obrázku a) nebo ubrání (jako na obrázku b) jednotky (např. CA). Proto se velmi často jedinci jednoho druhu liší v počtu jednotek v jednotlivých mikrosatelitních sekvencí.
5 Toho se dá využít pro detekci variability v rámci populace jednoho druhu, nebo k identifikaci konkrétního jedince (při srovnání více mikrosatelitních lokusů - kriminalisté např. srovnávají sekvence 13 různých mikrosatelitů, protože je prakticky nemožné, aby se dva lidi na této planetě shodovali v počtu opakování jednotek všech 13 lokusů - až na jednovaječná dvojčata, samozřejmě). Shrneme-li si tedy možnosti detekce variability, vyjde nám, že nejdříve namnožíme konkrétní úsek DNA, kde variabilitu očekáváme, pomocí PCR a pak buď detekujeme bodové mutace pomocí sekvenování, nebo určíme rozdíly v počtu opakovaných jednotek mikrosatelitů pomocí elektroforézy:
6 A podle toho, co chceme mezi sebou porovnávat, využijeme více polymorfní lokusy (mikrosatelity, nebo ITS) nebo naopak velmi konzervované geny: Výše uvedené příklady slouží k tvorbě fylogenetických stromů, určování příbuznosti organismů, případně analýze biodiverzity. Jsou založeny na analýze několika vybraných sekvencí DNA, které vykazují potřebnou variabilitu. Ovšem vraťme se k původní otázce přírodního výběru, který potřebuje genetickou variabilitu, aby měl z čeho vybírat. Najít polymorfismy v DNA, které jsou zodpovědné za různorodost v určitých vlastnostech, a které jsou tím pádem objektem přírodního výběru, není rozhodně jednoduchá záležitost. Obrázek níže například zobrazuje kus genetické informace člověka, přičemž oranžovou barvou je zvýrazněna kódující sekvence, ostatní jsou sekvence intronů. Zeleně jsou zvýrazněny pozice, ve kterých se DNA různých lidí liší - zobrazená sekvence představuje její jednu konkrétní podobu, DNA jiného člověka by se v některých těchto
7 pozicích lišila (vykazovala by některé jiné zelené nukleotidy - tzv. jednonukleotidové polymorfismy neboli SNP - Single Nucleotide Polymorhism): A je otázkou, které z těchto SNP mají nějaký funkční význam, které z nich ovlivňují vlastnosti organismu takovým způsobem, že by se mohly stát objektem přírodního výběru. Pravděpodobně mnoho těch, které jsou mimo kódující oblast nebude mít zásadní dopad, ale možná některé z těch, které se nachází v kódující sekvenci (oranžově na obrázku) mohou měnit smysl kodónu a tak aminokyselinu ve vznikajícím proteinu (viz. mutace výše), což může ve svém důsledku ovlivnit to, jakým způsobem protein funguje a celkově vlastnost, na které se fungování proteinu podílí. Ovšem zjistit tento funkční vztah mezi nějakým SNP a určitou vlastností je velice obtížné. Nové metody sekvenování genomů a genomické přístupy ovšem mohou v tomto přinést v blízké budoucnosti velké pokroky. Například čipy firmy Illumina dokážou najednou analyzovat milióny polymorfismů ve vzorku lidské DNA a porovnávat tak DNA různých jedinců s různými vlastnostmi. Pokud bude porovnáno dostatečné množství jedinců s určitou vlastností, bude možné s určitou pravděpodobností určit, které SNP se častěji vyskytují u jedinců s touto vlastností. Tak možná budeme časem schopni určit, které nukleotidy nás geneticky předurčují k určitým schopnostem, talentu, nebo nás činí náchylnějšími k některým nemocem.
Genetický polymorfismus
Genetický polymorfismus Za geneticky polymorfní je považován znak s nejméně dvěma geneticky podmíněnými variantami v jedné populaci, které se nachází v takových frekvencích, že i zřídkavá má frekvenci
VíceVyužití DNA markerů ve studiu fylogeneze rostlin
Mendelova genetika v příkladech Využití DNA markerů ve studiu fylogeneze rostlin Ing. Petra VESELÁ Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno Tento projekt je spolufinancován
VíceMgr. et Mgr. Lenka Falková. Laboratoř agrogenomiky. Ústav morfologie, fyziologie a genetiky zvířat Mendelova univerzita
Mgr. et Mgr. Lenka Falková Laboratoř agrogenomiky Ústav morfologie, fyziologie a genetiky zvířat Mendelova univerzita 9. 9. 2015 Šlechtění Užitek hospodářská zvířata X zájmová zvířata Zemědělství X chovatelství
VíceMetody studia historie populací. Metody studia historie populací
1) Metody studia genetické rozmanitosti komplexní fenotypové znaky, molekulární znaky. 2) Mechanizmy evoluce mutace, přírodní výběr, genový posun a genový tok 3) Anageneze x kladogeneze - co je vlastně
VíceMOLEKULÁRNÍ TAXONOMIE - 4
MOLEKULÁRNÍ TAXONOMIE - 4 V této přednášce si představíme metody, které získávají molekulární znaky bez použití sekvenace. Všechny tyto metody je teoreticky možné sekvenací nahradit. Oproti sekvenaci celých
VíceCentrum aplikované genomiky, Ústav dědičných metabolických poruch, 1.LFUK
ové technologie v analýze D A, R A a proteinů Stanislav Kmoch Centrum aplikované genomiky, Ústav dědičných metabolických poruch, 1.LFUK Motto : "The optimal health results from ensuring that the right
VíceTEST: GENETIKA, MOLEKULÁRNÍ BIOLOGIE
TEST: GENETIKA, MOLEKULÁRNÍ BIOLOGIE 1) Důležitým biogenním prvkem, obsaženým v nukleových kyselinách nebo ATP a nezbytným při tvorbě plodů je a) draslík b) dusík c) vápník d) fosfor 2) Sousedící nukleotidy
VíceANOTACE vytvořených/inovovaných materiálů
ANOTACE vytvořených/inovovaných materiálů Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Formát Druh učebního materiálu Druh interaktivity CZ.1.07/1.5.00/34.0722 III/2 Inovace a
VíceAUG STOP AAAA S S. eukaryontní gen v genomové DNA. promotor exon 1 exon 2 exon 3 exon 4. kódující oblast. introny
eukaryontní gen v genomové DNA promotor exon 1 exon 2 exon 3 exon 4 kódující oblast introny primární transkript (hnrna, pre-mrna) postranskripční úpravy (vznik maturované mrna) syntéza čepičky AUG vyštěpení
VíceDigitální učební materiál
Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tematická Odborná biologie, část biologie Společná pro
VícePopulační genetika II
Populační genetika II 4. Mechanismy měnící frekvence alel v populaci Genetický draft (genetické svezení se) Genetický draft = zvýšení frekvence alely díky genetické vazbě s výhodnou mutací. Selekční vymetení
VíceInovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. OBVSB/Obecná virologie Tento projekt je spolufinancován Evropským
VíceExprese genetické informace
Exprese genetické informace Stavební kameny nukleových kyselin Nukleotidy = báze + cukr + fosfát BÁZE FOSFÁT Nukleosid = báze + cukr CUKR Báze Cyklické sloučeniny obsahující dusík puriny nebo pyrimidiny
VíceMendelova zemědělská a lesnická univerzita v Brně Agronomická fakulta Ústav morfologie, fyziologie a genetiky zvířat
Mendelova zemědělská a lesnická univerzita v Brně Agronomická fakulta Ústav morfologie, fyziologie a genetiky zvířat Genetické markery ve studiu genetické diverzity v populacích hospodářských zvířat Bakalářská
VíceMolekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA
Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA
VíceInovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354
I n v e s t i c e d o r o z v o j e v z d ě l á v á n í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
VíceGenetický polymorfismus jako nástroj identifikace osob v kriminalistické a soudnělékařské. doc. RNDr. Ivan Mazura, CSc.
Genetický polymorfismus jako nástroj identifikace osob v kriminalistické a soudnělékařské praxi doc. RNDr. Ivan Mazura, CSc. Historie forenzní genetiky 1985-1986 Alec Jeffreys a satelitní DNA 1980 Ray
VícePCR IN DETECTION OF FUNGAL CONTAMINATIONS IN POWDERED PEPPER
PCR IN DETECTION OF FUNGAL CONTAMINATIONS IN POWDERED PEPPER Trojan V., Hanáček P., Havel L. Department of Plant Biology, Faculty of Agronomy, Mendel University of Agriculture and Forestry in Brno, Zemedelska
VíceVyužití molekulárních markerů v systematice a populační biologii rostlin. 12. Shrnutí,
Využití molekulárních markerů v systematice a populační biologii rostlin 12. Shrnutí, Přehled molekulárních markerů 1. proteiny isozymy 2. DNA markery RFLP (Restriction Fragment Length Polymorphism) založené
VíceDeriváty karboxylových kyselin, aminokyseliny, estery
Deriváty karboxylových kyselin, aminokyseliny, estery Zpracovala: Ing. Štěpánka Janstová 29.1.2012 Určeno pro 9. ročník ZŠ V/II,EU-OPVK,42/CH9/Ja Přehled a využití derivátů organických kyselin, jejich
VíceGenetická diverzita masného skotu v ČR
Genetická diverzita masného skotu v ČR Mgr. Jan Říha Výzkumný ústav pro chov skotu, s.r.o. Ing. Irena Vrtková 26. listopadu 2009 Genetická diverzita skotu pojem diverzity Genom skotu 30 chromozomu, genetická
VíceInovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)
VíceTěsně před infarktem. Jak předpovědět infarkt pomocí informatických metod. Jan Kalina, Marie Tomečková
Těsně před infarktem Jak předpovědět infarkt pomocí informatických metod Jan Kalina, Marie Tomečková Program, osnova sdělení 13,30 Úvod 13,35 Stručně o ateroskleróze 14,15 Měření genových expresí 14,00
Více2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:
Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících
VíceGenetické mapování. v přírodních populacích i v laboratoři
Genetické mapování v přírodních populacích i v laboratoři Funkční genetika Cílem je propojit konkrétní mutace/geny s fenotypem Vzniklý v laboratoři pomocí mutageneze či vyskytující se v přírodě. Forward
VíceMolekulárn. rní. biologie Struktura DNA a RNA
Molekulárn rní základy dědičnosti Ústřední dogma molekulárn rní biologie Struktura DNA a RNA Ústřední dogma molekulárn rní genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace
VíceMetody studia historie populací. Metody studia historie populací. 1) Metody studiagenetickérozmanitosti komplexní fenotypové znaky, molekulární znaky.
1) Metody studiagenetickérozmanitosti komplexní fenotypové znaky, molekulární znaky. 2)Mechanizmy evoluce mutace, p írodnívýb r, genový posun a genový tok 3) Anagenezex kladogeneze-co je vlastn druh 4)Dva
Více4. Centrální dogma, rozluštění genetického kódu a zrod molekulární biologie.
4. Centrální dogma, rozluštění genetického kódu a zrod molekulární biologie. Od genu k proteinu - centrální dogma biologie Geny jsou zakódovány v DNA - Jakým způsobem? - Jak se projevují? Již v roce 1902
Více"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy 1/75 Genetika = věda o dědičnosti Studuje biologickou informaci. Organizmy uchovávají,
VíceInovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Více"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Molekulární základy genetiky
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Molekulární základy genetiky 1/76 GENY Označení GEN se používá ve dvou základních významech: 1. Jako synonymum pro vlohu
Více1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním
1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním školám Genetika - shrnutí TL2 1. Doplň: heterozygot,
VíceDědičnost pohlaví Genetické principy základních způsobů rozmnožování
Dědičnost pohlaví Vznik pohlaví (pohlavnost), tj. komplexu znaků, vlastností a funkcí, které vymezují exteriérové i funkční diference mezi příslušníky téhož druhu, je výsledkem velmi komplikované série
VíceMolekulární genetika II zimní semestr 4. výukový týden ( )
Ústav biologie a lékařské genetiky 1.LF UK a VFN, Praha Molekulární genetika II zimní semestr 4. výukový týden (27.10. 31.10.2008) prenatální DNA diagnostika presymptomatická Potvrzení diagnózy Diagnostika
VíceZesouladení ( sjednocení ) poznatků genetiky a evolucionistických teorií
Obecná genetika Zesouladení ( sjednocení ) poznatků genetiky a evolucionistických teorií Ing. Roman Longauer, CSc. Ústav zakládání a pěstění lesů, LDF MENDELU Brno Tento projekt je spolufinancován Evropským
VíceDNA TECHNIKY IDENTIFIKACE ŽIVOČIŠNÝCH DRUHŮ V KRMIVU A POTRAVINÁCH. Michaela Nesvadbová
DNA TECHNIKY IDENTIFIKACE ŽIVOČIŠNÝCH DRUHŮ V KRMIVU A POTRAVINÁCH Michaela Nesvadbová Význam identifikace živočišných druhů v krmivu a potravinách povinností každého výrobce je řádně a pravdivě označit
VíceMENDELOVA ZEMĚDĚLSKÁ A LESNICKÁ UNIVERZITA V BRNĚ Agronomická fakulta
MENDELOVA ZEMĚDĚLSKÁ A LESNICKÁ UNIVERZITA V BRNĚ Agronomická fakulta Ústav morfologie, fyziologie a genetiky zvířat Určování a ověřování paternity u koní. Bakalářská práce Brno 2006 Vedoucí bakalářské
VíceVyužití metod strojového učení v bioinformatice David Hoksza
Využití metod strojového učení v bioinformatice David Hoksza SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita v Praze Bioinformatika Biologické inspirace
VíceNěkteré vlastnosti DNA důležité pro analýzu
Některé vlastnosti DNA důležité pro analýzu Spiralizace Denaturace Záporný náboj Syntéza Ligace Rekombinace Mutabilita Despiralizace Reasociace Štěpení Metody používané k analýze DNA Southern blotting
VíceZákladní škola a Mateřská škola G.A.Lindnera Rožďalovice. Za vše mohou geny
Základní škola a Mateřská škola G.A.Lindnera Rožďalovice Za vše mohou geny Jméno a příjmení: Sandra Diblíčková Třída: 9.A Školní rok: 2009/2010 Garant / konzultant: Mgr. Kamila Sklenářová Datum 31.05.2010
VíceVztah genotyp fenotyp
Evoluce fenotypu II Vztah genotyp fenotyp plán? počítačový program? knihovna? genotypová astrologie (Jablonka a Lamb) Modely RNA - různé vážení: A-U, G-C, G-U interakcí, penalizace za neodpovídající si
VíceTeorie neutrální evoluce a molekulární hodiny
Teorie neutrální evoluce a molekulární hodiny Teorie neutrální evoluce Konec 60. a začátek 70. let 20. stol. Ukazuje jak bude vypadat genetická variabilita v populaci a jaká bude rychlost evoluce v případě,
VíceMikrosatelity (STR, SSR, VNTR)
Mikrosatelity (STR, SSR, VNTR) Repeats Více než polovina našeho genomu Interspersed (transposony) Tandem (mini- a mikrosatelity) Minisatellites (longer motifs 10 100 nucleotides) mikrosatelity Tandemová
Více3) Analýza mtdna mitochondriální Eva, kdy a kde žila. 8) Haploskupiny mtdna a chromozomu Y v ČR
p 1) Jak to, že máme společného předka 2) Metodika výzkumu mtdna 3) Analýza mtdna mitochondriální Eva, kdy a kde žila 4) Problémy a názory proti 5) Analýza chromozomu Y 6) Jak jsme osídlili svět podle
VíceTeorie neutrální evoluce a molekulární hodiny
Teorie neutrální evoluce a molekulární hodiny Teorie neutrální evoluce Konec 60. a začátek 70. let 20. stol. Ukazuje jak bude vypadat genetická variabilita v populaci a jaká bude rychlost divergence druhů
VíceEvropský sociální fond Praha & EU: Investujeme do vaší budoucnosti URČOVÁNÍ PRIMÁRNÍ STRUKTURY BÍLKOVIN
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti URČOVÁNÍ PRIMÁRNÍ STRUKTURY BÍLKOVIN Primární struktura primární struktura bílkoviny je dána pořadím AK jejích polypeptidových řetězců
VíceVzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Biosyntéza nukleových kyselin. VY_32_INOVACE_Ch0219.
Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek
VíceInovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Genomika (KBB/GENOM) Poziční klonování Ing. Hana Šimková, CSc. Cíl přednášky - seznámení s metodou pozičního klonování genů
Vícevelké fragmenty střední fragmenty malé fragmenty
velké fragmenty střední fragmenty malé fragmenty Southern 1975 Northern Western denaturace DNA hybridizace primerů (annealing) (mají délku kolem 20 bází) syntéza nové DNA termostabilní polymerázou vstup
VíceMolecular Ecology J. Bryja, M. Macholán MU, P. Munclinger - UK
MODULARIZACE VÝUKY EVOLUČNÍ A EKOLOGICKÉ BIOLOGIE CZ.1.07/2.2.00/15.0204 Molecular Ecology J. Bryja, M. Macholán MU, P. Munclinger - UK Co je molekulární ekologie? Uměle vytvořený obor vymezený technickým
VíceBiologie - Oktáva, 4. ročník (přírodovědná větev)
- Oktáva, 4. ročník (přírodovědná větev) Biologie Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k
VíceDigitální učební materiál
Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tematická Odborná biologie, část biologie Společná pro
VíceBiologie - Oktáva, 4. ročník (humanitní větev)
- Oktáva, 4. ročník (humanitní větev) Biologie Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti
VíceKameyama Y. et al. (2001): Patterns and levels of gene flow in Rhododendron metternichii var. hondoense revealed by microsatellite analysis.
Populační studie Kameyama Y. et al. (2001): Patterns and levels of gene flow in Rhododendron metternichii var. hondoense revealed by microsatellite analysis. Molecular Ecology 10:205 216 Proč to studovali?
VíceENZYMY A NUKLEOVÉ KYSELINY
ENZYMY A NUKLEOVÉ KYSELINY Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 28. 3. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Organické sloučeniny 1 Anotace: Žáci se seznámí
VíceInovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)
VíceInovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
VíceGENETIKA dědičností heredita proměnlivostí variabilitu Dědičnost - heredita podobnými znaky genetickou informací Proměnlivost - variabilita
GENETIKA - věda zabývající se dědičností (heredita) a proměnlivostí (variabilitu ) živých soustav - sleduje rozdílnost a přenos dědičných znaků mezi rodiči a potomky Dědičnost - heredita - schopnost organismu
VíceExprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza
Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových
VíceMOLEKULÁRNÍ BIOLOGIE. 2. Polymerázová řetězová reakce (PCR)
MOLEKULÁRNÍ BIOLOGIE 2. Polymerázová řetězová reakce (PCR) Náplň praktik 1. Izolace DNA z buněk bukální sliznice - izolační kit MACHEREY-NAGEL 2. PCR polymerázová řetězová reakce (templát gdna) 3. Restrikční
VíceGenetika - maturitní otázka z biologie (2)
Genetika - maturitní otázka z biologie (2) by jx.mail@centrum.cz - Ned?le, B?ezen 01, 2015 http://biologie-chemie.cz/genetika-maturitni-otazka-z-biologie-2/ Otázka: Genetika I P?edm?t: Biologie P?idal(a):
VícePoznámky k nutrigenetice
Poznámky k nutrigenetice Ondřej Šeda Institut klinické a experimentální medicíny, Praha Ústav biologie a lékařské genetiky 1.LF UK a VFN, Praha Research Centre CHUM, Montreal, Canada Nutrigenetika Jednotlivé
Víceb) Jak se změní sekvence aminokyselin v polypeptidu, pokud dojde v pozici 23 k záměně bázového páru GC za TA (bodová mutace) a s jakými následky?
1.1: Gén pro polypeptid, který je součástí peroxidázy buku lesního, má sekvenci 3'...TTTACAGTCCATTCGACTTAGGGGCTAAGGTACCTGGAGCCCACGTTTGGGTCATCCAG...5' 5'...AAATGTCAGGTAAGCTGAATCCCCGATTCCATGGACCTCGGGTGCAAACCCAGTAGGTC...3'
Více7. Regulace genové exprese, diferenciace buněk a epigenetika
7. Regulace genové exprese, diferenciace buněk a epigenetika Aby mohl mnohobuněčný organismus efektivně fungovat, je třeba, aby se jednotlivé buňky specializovaly na určité funkce. Nový jedinec přitom
VíceVyužití molekulárních markerů v systematice a populační biologii rostlin. 9. Sekvenování DNA II. nrdna, low-copy markery
Využití molekulárních markerů v systematice a populační biologii rostlin 9. Sekvenování DNA II. nrdna, low-copy markery Jaderný genom mnoho genů je v mnoha kopiích (multiple-copy) problém s homologií nevíme,
VíceJak se matematika poučila v biologii
Jak se matematika poučila v biologii René Kalus IT4Innovations, VŠB TUO Role matematiky v (nejen) přírodních vědách Matematika inspirující a sloužící jazyk pro komunikaci s přírodou V 4 3 r 3 Matematika
VíceMolekulárn. rní genetika
Molekulárn rní genetika Centráln lní dogma molekulárn rní biologie cesta přenosu genetické informace: DNA RNA proteiny výjimkou reverzní transkripce retrovirů: RNA DNA Chemie nukleových kyselin dusíkaté
VíceSylabus témat ke zkoušce z lékařské biologie a genetiky. Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně
Sylabus témat ke zkoušce z lékařské biologie a genetiky Buněčná podstata reprodukce a dědičnosti Struktura a funkce prokaryot Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně
VíceInovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
VíceInovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
VíceNukleové kyseliny Replikace Transkripce translace
Nukleové kyseliny Replikace Transkripce translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti buněk skladovat,
VíceZákladní pojmy obecné genetiky, kvalitativní a kvantitativní znaky, vztahy mezi geny
Obecná genetika Základní pojmy obecné genetiky, kvalitativní a kvantitativní znaky, vztahy mezi geny Doc. RNDr. Ing. Eva PALÁTOVÁ, PhD. Ing. Roman LONGAUER, CSc. Ústav zakládání a pěstění lesů LDF MENDELU
VíceCentrální dogma molekulární biologie
řípravný kurz LF MU 2011/12 Centrální dogma molekulární biologie Nukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Mendel) 1869 objev nukleových kyselin (Miescher) 1944 genetická informace v nukleových
VíceMolekulárně biologické metody princip, popis, výstupy
& Molekulárně biologické metody princip, popis, výstupy Klára Labská Evropský program pro mikrobiologii ve veřejném zdravotnictví (EUPHEM), ECDC, Stockholm NRL pro herpetické viry,centrum epidemiologie
VíceGenetický screening predispozice k celiakii
VETERINÁRN RNÍ A FARMACEUTICKÁ UNIVERZITA BRNO Farmaceutická fakulta Ústav humánn nní farmakologie a toxikologie Genetický screening predispozice k celiakii RNDr. Ladislava Bartošov ová,ph.d. 1, PharmDr.
VíceVyužití molekulárních markerů v systematice a populační biologii rostlin. 10. Další metody
Využití molekulárních markerů v systematice a populační biologii rostlin 10. Další metody Další molekulární markery trflp ISSRs (retro)transpozony kombinace a modifikace různých metod real-time PCR trflp
VíceNukleové kyseliny. DeoxyriboNucleic li Acid
Molekulární lární genetika Nukleové kyseliny DeoxyriboNucleic li Acid RiboNucleic N li Acid cukr (deoxyrobosa, ribosa) fosforečný zbytek dusíkatá báze Dusíkaté báze Dvouvláknová DNA Uchovává genetickou
VíceAnalýza DNA. Co zjišťujeme u DNA DNA. PCR polymerase chain reaction. Princip PCR PRINCIP METODY PCR
o zjišťujeme u DN nalýza DN enetickou podstatu konkrétních proteinů Mutace bodové (sekvenční delece nebo inzerce nukleotidů), chromosomové aberace (numerické, strukturální) Polymorfismy konkrétní mutace,
Více5. Sekvenování, přečtení genetické informace, éra genomiky.
5. Sekvenování, přečtení genetické informace, éra genomiky. Minulá přednáška nastínila zrod molekulární biologie a představila některé možnosti, jak pracovat s DNA - jak ji analyzovat na základě velikosti
VíceMolekulární biotechnologie č.9. Cílená mutageneze a proteinové inženýrství
Molekulární biotechnologie č.9 Cílená mutageneze a proteinové inženýrství Gen kódující jakýkoliv protein lze izolovat z přírody, klonovat, exprimovat v hostitelském organismu. rekombinantní protein purifikovat
VíceMOLEKULÁRNĚ BIOLOGICKÉ METODY V ENVIRONMENTÁLNÍ MIKROBIOLOGII. Martina Nováková, VŠCHT Praha
MOLEKULÁRNĚ BIOLOGICKÉ METODY V ENVIRONMENTÁLNÍ MIKROBIOLOGII Martina Nováková, VŠCHT Praha MOLEKULÁRNÍ BIOLOGIE V BIOREMEDIACÍCH enumerace FISH průtoková cytometrie klonování produktů PCR sekvenování
VíceGenetika zvířat - MENDELU
Genetika zvířat DNA - primární struktura Několik experimentů ve 40. a 50. letech 20. století poskytla důkaz, že genetický materiál je tvořen jedním ze dvou typů nukleových kyselin: DNA nebo RNA. DNA je
VíceTok GI v buňce. Genetický polymorfizmus popis struktury populací. Organizace genetického materiálu. Definice polymorfismu
Genetický olymorfizmus ois struktury oulací Tok GI v buňce Dr. Ing. Urban Tomáš ÚSTAV GEETIKY MZLU Brno urban@mendelu.cz htt://www.mendelu.cz/af/genetika/ Seminář doktorského grantu 53/03/H076 : Molekulárn
VíceGENETIKA V MYSLIVOSTI
GENETIKA V MYSLIVOSTI Historie genetiky V r. 1865 publikoval Johann Gregor Mendel výsledky svých pokusů s hrachem v časopisu Brněnského přírodovědeckého spolku, kde formuloval principy přenosu vlastností
VíceNUKLEOVÉ KYSELINY. Základ života
NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním
VíceGenotypování: Využití ve šlechtění a určení identity odrůd
Molekulární přístupy ve šlechtění rostlin Aplikovaná genomika Genotypování: Využití ve šlechtění a určení identity odrůd Miroslav Valárik 14.2. 2017 Šlěchtění rostlin: Cílený výběr a manipulace s genomy
VíceOsnova přednášky volitelného předmětu Evoluční vývoj a rozmanitost lidských populací, letní semestr
Osnova přednášky volitelného předmětu Evoluční vývoj a rozmanitost lidských populací, letní semestr Evoluční teorie Základy evoluce, adaptace na životní podmínky - poskytuje řadu unifikujících principů
VíceMolekulární základ dědičnosti
Molekulární základ dědičnosti Dědičná informace je zakódována v deoxyribonukleové kyselině, která je uložena v jádře buňky v chromozómech. Zlomovým objevem pro další rozvoj molekulární genetiky bylo odhalení
VíceEvoluce (nejen) rostlinné buňky Martin Potocký laboratoř buněčné biologie ÚEB AV ČR, v.v.i. potocky@ueb.cas.cz http://www.ueb.cas.cz Evoluce rostlinné buňky Vznik a evoluce eukaryotních organismů strom
VíceExprese genetické informace
Exprese genetické informace Tok genetické informace DNA RNA Protein (výjimečně RNA DNA) DNA RNA : transkripce RNA protein : translace Gen jednotka dědičnosti sekvence DNA nutná k produkci funkčního produktu
VíceAnalýza DNA. Co zjišťujeme u DNA
Analýza DNA Co zjišťujeme u DNA Genetickou podstatu konkrétních proteinů Mutace bodové (sekvenční delece nebo inzerce nukleotidů, záměny), chromosomové aberace (numerické, strukturní) Polymorfismy konkrétní
VíceOndřej Scheinost Nemocnice České Budějovice, a.s.
Ondřej Scheinost Nemocnice České Budějovice, a.s. Nové technologie přelomové období principy technologií klinická použitelnost chips (arrays) sekvenační technologie Důležitost genetických informací i další
VíceBAKTERIÁLNÍ GENETIKA. Lekce 12 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc.
BAKTERIÁLNÍ GENETIKA Lekce 12 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc. -dědičnost u baktérií principiálně stejná jako u komplexnějších organismů -genom haploidní a značně menší Bakteriální genom
VíceGenetika. Genetika. Nauka o dědid. dičnosti a proměnlivosti. molekulárn. rní buněk organismů populací
Genetika Nauka o dědid dičnosti a proměnlivosti Genetika molekulárn rní buněk organismů populací Dědičnost na úrovni nukleových kyselin Předávání vloh z buňky na buňku Předávání vlastností mezi jednotlivci
Vícepolymorfní = vícetvarý, mnohotvárný
Genetický polymorfismus s Řeckyy morphos = tvar polymorfní = vícetvarý, mnohotvárný Genetický polymorfismus je tedy označení pro výskyt téhož znaku ve více tvarech, formách, přičemž tato mnohotvárnost
VíceGarant předmětu GEN: prof. Ing. Jindřich Čítek, CSc. Garant předmětu GEN1: prof. Ing. Václav Řehout, CSc.
Garant předmětu GEN: prof. Ing. Jindřich Čítek, CSc. Garant předmětu GEN1: prof. Ing. Václav Řehout, CSc. Další vyučující: Ing. l. Večerek, PhD., Ing. L. Hanusová, Ph.D., Ing. L. Tothová Předpoklady: znalosti
VícePŘÍLOHA č. 1 SEZNAM ZKRATEK A MYSLIVECKÝCH A GENETICKÝCH POJMŮ
10 SEZNAM PŘÍLOH PŘÍLOHA č. 1 SEZNAM ZKRATEK A MYSLIVECKÝCH A GENETICKÝCH POJMŮ PŘÍLOHA č. 2 MAPY Mapa 1 Lokalizace zájmového území (zdroj: Mapy.cz) Mapa 2 Místa odlovených nebo uhynulých kusů (zdroj:
VícePopulační genetika III. Radka Reifová
Populační genetika III Radka Reifová Genealogie, speciace a fylogeneze Genové genealogie Rodokmeny jednotlivých kopií určitého genu v populaci. Popisují vztahy mezi kopiemi určitého genu v populaci napříč
VíceVyužití DNA sekvencování v
Využití DNA sekvencování v taxonomii prokaryot Mgr. Pavla Holochová, doc. RNDr. Ivo Sedláček, CSc. Česká sbírka mikroorganismů Ústav experimentální biologie Přírodovědecká fakulta Masarykova univerzita,
Více