Sluneční energie Solární konstanta, záření přímé a difúzní. Solární konstanta, záření přímé a difúzní. Relativní pohyb Slunce kolem Země
|
|
- Vladimír Kadlec
- před 8 lety
- Počet zobrazení:
Transkript
1 Sluneční Z celkového výkonu vyzařovaného Sluncem dopadají na naší Zemi jen přibližně dvě miliardtiny, tj. asi 7, kw 34 % se odrazí zpět do vesmíru od mraků, částeček prachu a zemského povrchu 19 % se pohltí v atmosféře 47 % je pohlceno zemským povrchem - mění se v teplo, z této části 14 % je vyzařováno z povrchu Země jako infračervené záření a pohlcováno v atmosféře víceatomovými plyny (skleníkový efekt) 23 % se spotřebuje na vypařování vody 10 % je odvedeno konvekcí do vzduchu 1 2 Solární konstanta, záření přímé a difúzní Solární konstanta I o je od Slunce, za jednotku času, dopadající na jednotku plochy kolmou ke směru šíření záření, při průměrné vzdálenosti Slunce od Země, mimo zemskou atmosféru. I o = 1367 W/m 2 Sluneční záření dopadající na určitou plochu lze rozdělit na dvě složky: přímé sluneční záření G b : sluneční záření dopadající na plochu bez jakéhokoliv rozptylu v atmosféře, difúzní sluneční záření G d : sluneční záření dopadající na plochu po změně směru záření vlivem rozptylu v atmosféře. 3 Solární konstanta, záření přímé a difúzní Solární konstanta mimo zemskou atmosféru I o = 1367 W/m 2 Maximální dopadající na povrch Země I max = 1100 W/m 2 4 Relativní pohyb Slunce kolem Země Sluneční záření během dne v průběhu roku, podle zeměpisné šířky 5 6 1
2 Definice pojmů hemisférické sluneční záření: sluneční záření na rovinný povrch, přijímané v prostorovém úhlu 2π sr ze shora přilehlého poloprostoru, globální sluneční záření: hemisférické sluneční záření přijímané vodorovnou plochou, ozáření G: hustota zářivé dopadající na povrch, t.j. podíl zářivého toku dopadajícího na určitý povrch a velikosti tohoto povrchu (W/m 2 ), dávka ozáření H: zářivá dopadající na jednotku plochy za určitou dobu, která se zjistí integrací ozáření v určitém časovém intervalu, (za hodinu nebo den) (MJ/m 2 ), exitance záření M: zářivý tok, vycházející z určitého povrchu jeho vlastní emisivitou, odrazem dopadajícího záření propustností dělený plochou tohoto prvku 7 výška slunce nad obzorem h sluneční azimut γ s úhel dopadu θ úhel sklonu β panel úhel orientace plochy γ 8 Základní pojmy a definice zeměpisná šířka φ : úhlové umístění severně (+) nebo jižně (-) od rovníku; -90 φ 90, sluneční deklinace δ: úhel, který svírá spojnice středů Země a Slunce s rovinou zemského rovníku (odchylka od rovníku na sever se značí znaménkem +); -23,45 δ 23,45, úhel sklonu β : úhel mezi vodorovnou rovinou a rovinou sledovaného povrchu; -180 β 90, (β > 90 znamená, že sledovaný povrch směřuje dolů), úhel orientace plochy γ(azimut plochy): úhlová odchylka průmětu normály plochy do horizontální roviny od lokálního poledníku, přičemž 0 odpovídá orientaci na jih, (-) východ, (+) západ; -180 γ 180, sluneční časový úhel ω (azimut Slunce): úhel mezi průmětem spojnice pozorovatele a Slunce v určitém čase na rovinu proloženou zemským rovníkem a mezi průmětem této spojnice při slunečním poledni. Sluneční časový úhel se mění přibližně o 360 za 24 hodin (přibližně 15 za hodinu). Tento úhel je záporný dopoledne a kladný odpoledne, t.j. (ve stupních) ω ~ 15 (Hr - 12), Hr je sluneční čas v hodinách, 9 úhel dopadu θ: (jen pro přímé sluneční záření) úhel mezi spojnicí středu Slunce a ozářené plochy a vnější kolmicí vztyčenou nad ozářenou plochou, úhel slunečního zenitu θ z : úhel sevřený spojnicí pozorovatele a Slunce a svislicí nad pozorovatelem (také úhel dopadu přímého slunečního záření na vodorovnou plochu). výška slunce nad obzorem h: doplňkový úhel slunečního zenitu h = 90 - θ z sluneční azimut γ s : úhel, který svírá svislý průmět spojnice místa pozorovatele a momentální polohy Slunce do vodorovné roviny v místě pozorovatele s přímkou směřující od místa pozorovatele k jihu (na severní polokouli) nebo k severu (na jižní polokouli). měří se ve smyslu chodu hodinových ručiček na severní polokouli a proti smyslu na jižní polokouli. je negativní dopoledne (Slunce je na východ od jihu), 0 nebo 180 v poledne (záleží na poměrné hodnotě sluneční deklinace a na místní zeměpisné šířce) a kladný je odpoledne (západní polohy Slunce) na celé zeměkouli. odlišuje se od zeměpisného azimutu, který se měří od severu ve směru hodinových ručiček na celé zeměkouli. 10 Směr dopadu slunečních paprsků je dán vzájemnou polohou Slunce nad obzorem a osluněné plochy. u osluněné plochy se zpravidla jedná o stálou polohu danou její orientací ke světovým stranám a úhlem sklonu (kromě systémů s rotací za sluncem) poloha Slunce se mění v závislosti na denní a roční době. Poloha Slunce je dána jeho výškou nad obzorem h a jeho azimutem γ s. Pro tyto dva úhly platí vztahy Sluneční deklinace se během roku mění, pro každý den má jinou hodnotu. Sluneční deklinace δ pro libovolný den v roce se vypočítá ze vztahu D je pořadí dne v měsíci, M pořadí měsíce v roce nebo
3 úhel dopadu slunečních paprsků θ = úhel, který svírá normála osluněné plochy se směrem paprsků úhel dopadu slunečních paprsků θ na obecně orientovanou a skloněnou plochu cos θ = sin h cos β + cos h sin β cos (γ s -γ) = cos θ z cos β + sin θ z sin β cos (γ s -γ) h je výška slunce nad obzorem γ s azimut slunce θ z úhel slunečního zenitu β úhel sklonu Přímé a difúzní sluneční záření Intenzita slunečního záření na plochu kolmou ke směru paprsků I o je sluneční konstanta Z je souč. znečištění atmosféry ε je souč. závislý na výšce Slunce nad obzorem a na nadmořské výšce místa Přímé a difúzní sluneční záření Intenzita přímého záření na obecně položenou plochu (W/m 2 ) Intenzitu difúzního záření lze přibližně vypočítat Teoreticky možnou denní dávku ozáření (množství dopadající ) H T,den,teor je možné zjistit integrací intenzity slunečního záření G T β je úhel sklonu osluněné plochy od vodorovné roviny, r je reflexní schopnost okolních ploch pro sluneční paprsky (nejčastěji r = 0,20), G b je intenzita přímého slunečního záření na vodorovnou plochu G d je intenzita difúzního slunečního záření na vodorovnou plochu. Přímé a difúzní sluneční záření dopadající na vodorovnou plochu (W/m 2 ) Intenzita celkového slunečního záření dopadající na obecnou plochu (W/m 2 ) Hodnota τ teor je dána dvěma krajními hodnotami τ 1 a τ 2, pro které je v daný den výška Slunce nad obzorem h = 0 (východ a západ slunce) Během dne se však střídá jasná obloha s oblohou zataženou mraky, kdy dopadá jen difúzní záření. poměrnou dobu slunečního svitu τ r = τ skut /τ teor
4 Intenzita slunečního záření během bezoblačného dne Intenzita slunečního záření za dne s oblačností střední intenzita slunečního záření Možnosti využití slunečního záření je důležitou veličinou ve výpočtech energetických zisků kolektorů slunečního záření. skutečná dávku ozáření dopadající na osluněnou plochu za den (kwh/(m 2 den)) za měsíc n je počet dnů v měsíci Fototermální přeměna záření nejjednodušší cesta, jak využít sluneční záření a přeměnit jej v tepelnou energii aktivní systémy - tepelná je odváděna z povrchu cíleně a transponována teplonosnou látkou na jiné místo (většinou akumulátor tepla nebo přímo spotřebič), pasivní systémy - tepelná je využívána přímo v místě výroby (vzniku) a není aktivně transponována Aktivní systémy fototermální přeměny Jednotlivé typy kolektorů definovány v ČSN EN ISO Solární kolektor, solární tepelný kolektor: zařízení určené k pohlcení slunečního záření a jeho přeměně na tepelnou energii, která je předávána látce, protékající kolektorem. Kapalinový tepelný kolektor: sluneční kolektor, ve kterém je používána kapalina jako teplonosná látka
5 Kapalinové tepelné kolektory Dopadající slunečního záření se zachycuje kolektorem slunečního záření a odvádí teplonosnou látkou 1 zasklení 2 absorpční plocha - absorbér 3 zadní tepelná izolace 4 rám kolektoru Různé typy absorbérů Kapalinové tepelné kolektory slunečního záření u nás i ve světě nejběžnější aplikace v solárních systémech pro ohřev vody hlavní typy a) vakuové trubicové b) vakuové ploché c) ploché kolektory pro celoroční využití d) ploché kolektory bez transparentního krytu - absorbéry Dvouokruhový kapalinový solární systém pro celoroční přípravu teplé vody Jednookruhový kapalinový solární systém pro sezonní využití 1. solární kolektor 2. tepelný výměník 3. přívod studené vody 4. odběr teplé vody 5. oběhové čerpadlo 6. automatická regulace 7. expanzní nádoba 1. solární kolektor 2. zásobník teplé vody 3. přívod studené vody 4. odběr teplé vody 5. expanzní nádoba Vakuový trubicový kolektor Vakuový plochý kolektor
6 Fototermální elektrárny v současnosti extrémní rozvoj 3,85 GW v r. 2013, 5,6 GWe ve výstavbě nebo ve fázi příprav nejvíce Španělsko (celkem 2,3 GWe + projekty) USA (1,325 + projekty) stále snižování ceny za vyrobenou energii ( c/kwh): 31 Fototermální elektrárny typy parabolické koncentrační parabola směřuje paprsek do jednoho bodu, je umístěn vhodný přijímač schopný transformace tepelné, nejčastěji Stirlingův motor, ale může být nainstalován i tepelný výměník s výrobou páry zrcadlové power tower, také heliostat systém plochých natáčivých zrcadel, které odrážejí sluneční paprsky na vrchol věžového kolektoru. Výhody: lze dosáhnout vysoké teploty (a lepší účinnost), není nutnost velkých zemních úprav-věž může stát na kopci. Nevýhody: nutnost dvouosého natáčení samostatně pro každé zrcadlo. parabolický žlab v ohnisku je trubka s teplonosným médiem, které se ohřívá obvykle termoolej, nebo roztavená sůl, popř. i pára. Natáčení jen v jedné ose, která je společná pro celou řadu ( žlab ) parabol lineární reflektor s Fresnelovými čočkami (LFR) systém podobný žlabové parabole, ale se zrcadlem a koncentrační Fresnelovou čočkou. Výhody lehčí (a levnější) konstrukce, trubka s teplonosným médiem může být společná pro víc řad zrcadel.nevýhody: stínění paprsků sousedními řadami zrcade 32 Parabolické koncentrační fotoelektrárny Systém power tower jižní Kalifornie, USA: Stirlingův motor, 82 zrcadel, plocha celkem 88 m 2. Při ozáření 1000 W/m 2 výkon 25 kw, tj. účinnost 28 %. PS10, Sevilla, Španělsko: 624 natáčivých zrcadel, každé 120 m 2 ; věž 115 m, pára 50 bar, 285 C. Elektrický výkon 11 MW, celková účinnost cca 15 % (při ozáření 1000 W/m 2 )
7 SEGS I-IX: Mohavská poušť, USA; instalovaný výkon 354 MW,průměrná celková produkce 75 MWe, tj. časové využití 21%. Parabolická zrcadla s automatickým nastavováním. Primární okruh termoolej C, sekundární voda-pára. 340 slunečných dnů v roce. SEGS celkem zrcadel, plocha cca 6,5 km 2.Foto bloky III-VI Systém parabolický žlab způsoby zapojení Fresnelův reflektor zatím ve stádiu prototypů, demonstrační projekt ukončen v Belgii (Solarmundo), v provozu New South Wales, Australia. V plánu je výstavba v Kalifornii, předpokládaný instalovaný výkon 177 MW, ve Španělsku (Gottarendura), 10 MW Fototermální elektrárny řešení Hlavním problémem je pokrytí výroby v noci a času bez slunečního záření kombinace akumulace a hybridních systémů Capa city (MW) Fototermální elektrárny v provozu Technology type Name Country Location Notes 354 parabolic trough 392 solar power tower 200 parabolic trough 150 parabolic trough 20 power tower Solar Energy Generating Systems Ivanpah Solar Power Facility Solaben Solar Power Station Solnova Solar Power Station PS20 solar power tower USA USA Spain Spain Spain Mojave desert California San Bernardino, California Lagrosán Sanlúcar la Mayor Seville Collection of 9 units 2/ /2008 9/2010 4/
= [-] (1) Přednáška č. 9 Využití sluneční energie pro výrobu tepla 1. Úvod Součinitel znečištění atmosféry Z: Kde: I 0
Přednáška č. 9 Využití sluneční energie pro výrobu tepla 1. Úvod Součinitel znečištění atmosféry Z: Z ln I ln I ln I ln I 0 n = [-] (1) 0 n, č Kde: I 0 sluneční konstanta 1 360 [W.m -2 ]; I n intenzita
Solární soustavy pro bytové domy
Využití solární energie pro bytové domy Solární soustavy pro bytové domy Bořivoj Šourek Ústav techniky prostředí, Fakulta strojní ČVUT v Praze Původ sluneční energie, její šíření prostorem a dopad na Zemi
1/55 Sluneční energie
1/55 Sluneční energie sluneční záření základní pojmy dopadající energie teoretické výpočty praktické výpočty Slunce 2/55 nejbližší hvězda střed naší planetární soustavy sluneční soustavy Slunce 3/55 průměr
Obr. 4 Změna deklinace a vzdálenosti Země od Slunce v průběhu roku
4 ZÁKLADY SFÉRICKÉ ASTRONOMIE K posouzení proslunění budovy nebo oslunění pozemku je vždy nutné stanovit polohu slunce na obloze. K tomu slouží vztahy sférické astronomie slunce. Pro sledování změn slunečního
Systémy pro využití sluneční energie
Systémy pro využití sluneční energie Slunce vyzáří na Zemi celosvětovou roční potřebu energie přibližně během tří hodin Se slunečním zářením jsou spojeny biomasa pohyb vzduchu koloběh vody Energie
Solární systémy. Termomechanický a termoelektrický princip
Solární systémy Termomechanický a termoelektrický princip Absorbce světla a generace tepla Absorpce je způsobena interakcí světla s částicemi hmoty (elektrony a jádry) Je-li energie částice před interakcí
Efektivita provozu solárních kolektorů. Energetické systémy budov I
Efektivita provozu solárních kolektorů Energetické systémy budov I Sluneční energie Doba slunečního svitu a zářivý výkon závisí na: zeměpisné poloze ročním obdobím povětrnostních podmínkách Základní pojmy:
Obsah: Solární energie 2 Využití solární energie 3 Solární věže 4 Dish stirling 5 Solární komín 6
Obsah: Solární energie 2 Využití solární energie 3 Solární věže 4 Dish stirling 5 Solární komín 6 Newsletter of the Regional Energy Agency of Moravian-Silesian Region, February 2011 Solární energie Sluneční
Obnovitelné zdroje energie Solární energie
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie Solární energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. M.Kabrhel 1 Druhy energií
1/66 Sluneční energie
1/66 Sluneční energie sluneční záření základní pojmy dopadající energie 2/66 Slunce nejbližší hvězda střed naší planetární soustavy sluneční soustavy 3/66 Slunce průměr 1 392 000 km 109 x větší než průměr
Solární systém pro ohřev vody s vakuovými trubicovými kolektory VIA SOLIS DOMOV 160-300 HODNOCENÍ
Solární systém pro ohřev vody s vakuovými trubicovými kolektory VIA SOLIS DOMOV 160-300 1. Sestava systému DOMOV 160-300 HODNOCENÍ Solární systém sestává ze 3 kolektorů VIA SOLIS VK6 ve spojení se zásobníkem
SLUNEČNÍ ZÁŘENÍ JAKO ZDROJ ENERGIE
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 SLUNEČNÍ ZÁŘENÍ JAKO ZDROJ ENERGIE
Obnovitelné zdroje energie Budovy a energie
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie Budovy a energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. 1 Solární energie 2 1
ZÁVISLOSTI DOPADAJÍCÍ ENERGIE SLUNEČNÍHO ZÁŘENÍ NA PLOCHU
ZÁVISLOSTI DOPADAJÍCÍ ENERGIE SLUNEČNÍHO ZÁŘENÍ NA PLOCHU Jaroslav Peterka Fakulta umění a architektury TU v Liberci jaroslav.peterka@tul.cz Konference enef Banská Bystrica 16. 18. 10. 2012 ALTERNATIVNÍ
NAVRHOVÁNÍ SOLÁRNÍCH SOUSTAV
NAVRHOVÁNÍ SOLÁRNÍCH SOUSTAV Bořivoj Šourek Ústav techniky prostředí, Fakulta strojní ČVUT v Praze s poděkováním T. Matuškovi za podklady Původ sluneční energie, její šíření prostorem a dopad na Zemi Jaderná
HODNOCENÍ VÝKONNOSTI SOLÁRNÍCH KOLEKTORŮ
Konference Alternativní zdroje energie 2010 13. až 15. července 2010 Kroměříž HODNOCENÍ VÝKONNOSTI SOLÁRNÍCH KOLEKTORŮ Tomáš Matuška Ústav techniky prostředí, Fakulta strojní, ČVUT v Praze tomas.matuska@fs.cvut.cz
TECHNICKÁ ZAŘÍZENÍ BUDOV
Katedra prostředí staveb a TZB TECHNICKÁ ZAŘÍZENÍ BUDOV Přednášky pro bakalářské studium studijního oboru Příprava a realizace staveb Přednáška č. 9 Zpracoval: Ing. Zdeněk GALDA Nové výukové moduly vznikly
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 SOLÁRNÍ SYSTÉMY MILAN KLIMEŠ TENTO
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí Protokol o zkoušce tepelného výkonu solárního kolektoru při ustálených podmínkách podle ČSN EN 12975-2 Ing. Tomáš Matuška,
Zásady pro vypracování diplomové práce
Zásady pro vypracování diplomové práce I. Diplomovou prací (dále jen DP) se ověřují vědomosti a dovednosti, které student získal během studia, a jeho schopnosti využívat je při řešení teoretických i praktických
solární systémy Copyright (c) 2009 Strojírny Bohdalice, a.s.. All rights reserved. STISKNI ENTER
solární systémy Copyright (c) 2009 Strojírny Bohdalice, a.s.. All rights reserved. TERMICKÉ SOLÁRNÍ SYSTÉMY k ohřevu vody pro hygienu (sprchování, koupel, mytí rukou) K ČEMU k ohřevu pro technologické
Protokol. o zkoušce tepelného výkonu solárního kolektoru při ustálených podmínkách podle ČSN EN ISO 9806
České vysoké učení technické v Praze Univerzitní centrum energeticky efektivních budov Třinecká 1024 273 43 Buštěhrad www.uceeb.cz Protokol o zkoušce tepelného výkonu solárního kolektoru při ustálených
Obnovitelné zdroje energie Otázky k samotestům
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Obnovitelné zdroje energie Otázky k samotestům Ing. Michal Kabrhel, Ph.D. Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113
Sluneční energie, fotovoltaický jev Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113 1 Osnova přednášky Slunce jako zdroj energie Vlastnosti slunečního
Poznámky k sestavení diagramu zastínění
Poznámky k sestavení diagramu zastínění pojmy uvedené v tomto textu jsou detailně vysvětleny ve studijních oporách nebo v normách ČSN 73 4301 a ČSN 73 0581 podle ČSN 73 4301 se doba proslunění hodnotí
Slunce # Energie budoucnosti
Možnosti využití sluneční energie Slunce # Energie budoucnosti www.nelumbo.cz 1 Globální klimatická změna hrozí Země se ohřívá a to nejrychleji od doby ledové.# Prognózy: další růst teploty o 1,4 až 5,8
Obnovitelné zdroje energie
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra technických zařízení budov Obnovitelné zdroje energie doc. Ing. Michal Kabrhel, Ph.D. Verze 2.17 Koncentrační solární systémy Historie AugustinMouchot(1825-1912)vytvořil
Budovy a energie Obnovitelné zdroje energie
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra technických zařízení budov Budovy a energie Obnovitelné zdroje energie doc. Ing. Michal Kabrhel, Ph.D. Verze 2.17 Solární energie Kolektory
PROGRAM "TEPLO SLUNCEM"
PROGRAM "TEPLO SLUNCEM" Obsah 1 Jak můžeme využít energii slunečního záření?... Varianty řešení...5 3 Kritéria pro výběr projektů... Přínosy...7.1. Přínosy energetické...7. Přínosy environmentální...8
Obnovitelné zdroje energie Budovy a energie
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie Budovy a energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. 21 Fototermické solární
Obnovitelné zdroje energie Budovy a energie
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie Budovy a energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. 1 Vzduchová solární soustava
Možnosti využití solární energie pro zásobování teplem
TS ČR 22.9.2010 Teplárenství a jeho technologie VUT Brno Možnosti využití solární energie pro zásobování teplem Bořivoj Šourek, Tomáš Matuška Československá společnost pro sluneční energii - národní sekce
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí Protokol o zkoušce tepelného výkonu solárního kolektoru při ustálených podmínkách podle ČSN EN 12975-2 Kolektor: SK 218 Objednatel:
Solární tepelné soustavy. Ing. Stanislav Bock 3.května 2011
Solární tepelné soustavy Ing. Stanislav Bock 3.května 2011 Princip sluneční kolektory solární akumulační zásobník kotel pro dohřev čerpadlo Možnosti využití nízkoteplotní aplikace do 90 C ohřev bazénové
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí Protokol o zkoušce tepelného výkonu solárního kolektoru při ustálených podmínkách podle ČSN EN 12975-2 Ing. Tomáš Matuška,
Budovy a energie Obnovitelné zdroje energie
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra technických zařízení budov Budovy a energie Obnovitelné zdroje energie doc. Ing. Michal Kabrhel, Ph.D. Verze 2.17 Návrh solárních systémů Návrh
OPTICKÉ RASTRY ZE SKLA PRO ARCHITEKTURU A STAVEBNICTVÍ
OPTICKÉ RASTRY ZE SKLA PRO ARCHITEKTURU A STAVEBNICTVÍ Ing. Vladimír Jirka, CSc Ing. Bořivoj Śourek. ENKI, o.p.s. Třeboň jirka@enki.cz OPTICKÝ RASTR Jakákoliv periodicky se opakující struktura, ovlivňující
Sluneční energie v ČR potenciál solárního tepla
1/29 Sluneční energie v ČR potenciál solárního tepla David Borovský Československá společnost pro sluneční energii (ČSSE) CityPlan spol. s r.o. 2/29 Termíny Sluneční energie x solární energie sluneční:
PROJEKT III. (IV.) - Vzduchotechnika 1. Popis výpočtu tepelné zátěže klimatizovaných prostor podle ČSN
PROJEKT III. (IV.) - Vzduchotechnika 1. Popis výpočtu tepelné zátěže klimatizovaných prostor podle ČSN Autor: Organizace: E-mail: Web: Ing. Vladimír Zmrhal, Ph.D. České vysoké učení technické v Praze Fakulta
solární systémy Brilon SUNPUR Trubicové solární kolektory www.brilon.cz
solární systémy Brilon SUNPUR Trubicové solární kolektory www.brilon.cz Proč zvolit vakuové solární kolektory Sunpur? Vakuové kolektory SUNPUR jsou při srovnání s tradičními plochými kolektory mnohem účinnější,
ALTERNATIVNÍ ZDROJE ENERGIE
ALTERNATIVNÍ ZDROJE ENERGIE Využití energie slunce Na zemský povrch dopadá průměrně 0,2 kw/m 2 V ČR dopadne na 1 m 2 přibližně 1000 kwh energie ročně Je několik možností, jak přeměnit energii slunečního
1/64 Solární kolektory
1/64 Solární kolektory účinnost zkoušení optická charakteristika měrný zisk Solární kolektory - princip 2/64 Odraz na zasklení Odraz na absorbéru Tepelná ztráta zasklením Odvod tepla teplonosnou látkou
Sférická trigonometrie v matematické geografii a astronomii
Sférická trigonometrie v matematické geografii a astronomii Mgr. Hana Lakomá, Ph.D., Mgr. Veronika Douchová 00 Tento učební materiál vznikl v rámci grantu FRVŠ F1 066. 1 Základní pojmy sférické trigonometrie
1.1 Oslunění vnitřního prostoru
1.1 Oslunění vnitřního prostoru Úloha 1.1.1 Zadání V rodném městě X slavného fyzika Y má být zřízeno muzeum, připomínající jeho dílo. Na určeném místě v galerii bude umístěna deska s jeho obrazem. V den
Solární energie. M.Kabrhel. Solární energie Kolektory
Solární energie M.Kabrhel 1 Solární energie Kolektory 1 Kapalinové solární kolektory Trubkový vakuový kolektor - plochý nebo válcový selektivní absorbér ve vakuované skleněné trubce, tlak
V+K stavební sdružení. Dodavatel solárních kolektorů
V+K stavební sdružení Dodavatel solárních kolektorů Představení společnosti dodavatelem solárních kolektorů Belgicko-slovenského výrobce Teamidustries a Ultraplast. V roce 2002 firmy Teamindustries a Ultraplast
ENERGIE SLUNCE - SLUNEČNÍ TEPLO, OHŘEV VODY A VZDUCHU
ENERGIE SLUNCE - SLUNEČNÍ TEPLO, OHŘEV VODY A VZDUCHU Téměř veškerá energie, kterou na Zemi máme, pochází ze Slunce. Na území ČR dopadne za rok stotisíckrát více energie, než je veškerá spotřeba paliv.
Energeticky soběstačně, čistě a bezpečně?
Možnosti ekologizace provozu stravovacích a ubytovacích zařízení Energeticky soběstačně, čistě a bezpečně? Ing. Edvard Sequens Calla - Sdružení pro záchranu prostředí Globální klimatická změna hrozí Země
1/89 Solární kolektory
1/89 Solární kolektory typy účinnost použití 2/89 Fototermální přeměna jímací plocha (obecně kolektor) plocha, na které se sluneční záření pohlcuje a mění na teplo (kolektor zasklení, absorbér) akumulátor
10. Energeticky úsporné stavby
10. Energeticky úsporné stavby Klíčová slova: Nízkoenergetický dům, pasivní dům, nulový dům, aktivní dům, solární panely, fotovoltaické články, tepelné ztráty objektu, součinitel prostupu tepla. Anotace
SOLAR ENERGY. SOLÁRNÍ PANELY - katalog produktů.
SOLAR ENERGY SOLÁRNÍ PANELY - katalog produktů www.becc.cz Nová třísložková vakuová trubice Vakuové trubice mají zdokonalené vrstvé jádro s použitím nové třísložkové technologie, které zajistí postupné
Profesionální zpráva. 8bd: Ohřev vody (solární termika, high-flow) Výřez mapy. Stanoviště zařízení
Projekt 8bd: Ohřev vody (solární termika, high-flow) Stanoviště zařízení Chýně Stupeň zeměpisné délky: 14,223 Stupeň zeměpisné šířky: 50,061 Nadmořská výška: 0 m Výřez mapy "Current report item is not
b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0
Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:
ENERSOL 2015 VZDĚLÁVACÍ PROJEKT NA TÉMATA OBNOVITELNÝCH ZDROJŮ ENERGIE, ÚSPORY ENERGIÍ A SNIŽOVÁNÍ EMISÍ V DOPRAVĚ STŘEDOČESKÝ KRAJ
ENERSOL 2015 VZDĚLÁVACÍ PROJEKT NA TÉMATA OBNOVITELNÝCH ZDROJŮ ENERGIE, ÚSPORY ENERGIÍ A SNIŽOVÁNÍ EMISÍ V DOPRAVĚ STŘEDOČESKÝ KRAJ Kategorie projektu: Enersol a praxe Jméno, příjmení žáka: Kateřina Čermáková
VÝSLEDKY OVĚŘOVÁNÍ ZEMNÍHO MASIVU JAKO ZDROJE ENERGIE PRO TEPELNÁ ČERPADLA. Technická fakulta České zemědělské univerzity v Praze
VÝSLEDKY OVĚŘOVÁNÍ ZEMNÍHO MASIVU JAKO ZDROJE ENERGIE PRO TEPELNÁ ČERPADLA Radomír Adamovský Pavel Neuberger Technická fakulta České zemědělské univerzity v Praze H = 1,0 2,0 m; D = 0,5 2,0 m; S = 0,1
Solární kolektory a solární soustavy pro obytné budovy. Tomáš Matuška Ústav techniky prostředí, Fakulta strojní ČVUT v Praze
Solární kolektory a solární soustavy pro obytné budovy Tomáš Matuška Ústav techniky prostředí, Fakulta strojní ČVUT v Praze Sluneční energie v Evropě zdroj: PVGIS Sluneční energie v České republice zdroj:
1.2 Sluneční hodiny. 100+1 příklad z techniky prostředí
1.2 Sluneční hodiny Sluneční hodiny udávají pravý sluneční čas, který se od našeho běžného času liší. Zejména tím, že pohyb Slunce během roku je nepravidelný (to postihuje časová rovnice) a také tím, že
OPTICKÉ RASTRY ZE SKLA STŘEŠNÍ ZASKLÍVACÍ PRVEK
OPTICKÉ RASTRY ZE SKLA STŘEŠNÍ ZASKLÍVACÍ PRVEK Ing. Vladimír Jirka, CSc., Ing. Bořivoj Šourek ENKI, o.p.s. Třeboň jirka@enki.cz RASTROVÉ ZASTŘEŠENÍ exteriér interiér POUŽITÍ Krytina ve formě izolačního
Porovnání solárního fototermického a fotovoltaického ohřevu vody
Porovnání solárního fototermického a fotovoltaického ohřevu vody Tomáš Matuška, Bořivoj Šourek RP2 Energetické systémy budov Univerzitní centrum energeticky efektivních budov ČVUT v Praze ÚPRAVA OPROTI
Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země
Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země strana 2 Co je DPZ Dálkový průzkum je umění rozdělit svět na množství malých barevných čtverečků, se kterými si lze hrát na počítači a odhalovat jejich neuvěřitelný
Využití sluneční energie díky solárním kolektorům Apricus
Využití sluneční energie díky solárním kolektorům Apricus Základní princip solárního ohřevu Absorpce slunečního záření Sluneční energie, která dopadá na zemský povrch během slunečného dne, se dokáže vyšplhat
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ Katedra elektroenergetiky a ekologie DIPLOMOVÁ PRÁCE Solární systém pro ohřev TUV Martin Jedlička 2016 Abstrakt Předkládaná diplomová práce je
Solární energie. Vzduchová solární soustava
Solární energie M.Kabrhel 1 Vzduchová solární soustava teplonosná látka vzduch, technicky nejjednodušší solární systémy pro ohřev větracího vzduchu, vysoušení,možné i temperování pohon ventilátorem nebo
Provozní podmínky fotovoltaických systémů
Provozní podmínky fotovoltaických systémů Pro provoz fotovoltaických systémů jsou důležité Orientace fotovoltaického pole vůči Slunci Lokální stínění Teplota PV pole P Pevná konstrukce (orientace, sklon)
VLIV OKRAJOVÝCH PODMÍNEK NA VÝSLEDEK ZKOUŠKY TEPELNÉHO VÝKONU SOLÁRNÍHO KOLEKTORU
Energeticky efektivní budovy 2015 sympozium Společnosti pro techniku prostředí 15. října 2015, Buštěhrad VLIV OKRAJOVÝCH PODMÍNEK NA VÝSLEDEK ZKOUŠKY TEPELNÉHO VÝKONU SOLÁRNÍHO KOLEKTORU Bořivoj Šourek,
Elektrické světlo příklady
Elektrické světlo příklady ZÁKLADNÍ POJMY SVĚTELNÉ TECHNIKY. Rovinný úhel (rad) = arc = a/r = a'/l (pro malé, zorné, úhly) a a' a arc / π = /36 (malým se rozumí r/a >3 až 5) r l. Prostorový úhel Ω = S/r
Tel , TEL Technické parametry solárních vakuových kolektorů dewon VACU
Technické parametry solárních vakuových kolektorů dewon VACU Součásti kolektoru: Vakuové trubice Sběrná skříň s potrubím procházejícím izolovaným sběračem kolektoru Možnosti montáže: Na střechu Na rovnou
Připravený k propojení
Nový Roth plochý kolektor a doporučené solární sestavy na ohřev teplé vody Reg. č. 0-7589 F NOVÉ Připravený k propojení Nový Roth kolektor se vyznačuje čtyřmi konektory založenými na technologii zásuvného
Vakuové trubicové solární kolektory
solární systémy Vakuové trubicové solární kolektory www.thermomax.cz Změňte svůj způsob myšlení s kolektory Thermomax Thermomax špičkový evropský originál Při volbě účinných a finančně efektivních řešení
Univerzitní centrum energeticky efektivních budov, České vysoké učení technické, Buštěhrad
Zjednodušená měsíční bilance solární tepelné soustavy BILANCE 2015/v2 Tomáš Matuška, Bořivoj Šourek Univerzitní centrum energeticky efektivních budov, České vysoké učení technické, Buštěhrad Úvod Pro návrh
Vzdálenosti a východ Slunce
Vzdálenosti a východ Slunce Zdeněk Halas KDM MFF UK, 2011 Aplikace matem. pro učitele Zdeněk Halas (KDM MFF UK, 2011) Vzdálenosti a východ Slunce Aplikace matem. pro učitele 1 / 8 Osnova Zdeněk Halas (KDM
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA CHEMICKÁ. Měření a regulace počítačem řízených solárních systémů. Mgr. SILVIE KOTLÍKOVÁ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA CHEMICKÁ DIPLOMOVÁ PRÁCE Měření a regulace počítačem řízených solárních systémů BRNO 2008 Mgr. SILVIE KOTLÍKOVÁ 2 PROHLÁŠENÍ Prohlašuji, že jsem diplomovou práci vypracovala
4. Statika základní pojmy a základy rovnováhy sil
4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr
Tepelná čerpadla + solární soustavy = konkurence nebo spolupráce?
Tepelná čerpadla + solární soustavy = konkurence nebo spolupráce? Tomáš Matuška, Bořivoj Šourek Ústav techniky prostředí, Fakulta strojní ČVUT v Praze Zdroje tepla pro tepelná čerpadla energie pocházející
POČÍTAČOVÝ PROGRAM KOLEKTOR 2.1 PRO MODELOVÁNÍ SOLÁRNÍCH KOLEKTORŮ
Simulace budov a techniky prostředí 2006 4. konference IBPSA-CZ Praha, 7. listopadu 2006 POČÍTAČOVÝ PROGRAM KOLEKTOR 2.1 PRO MODELOVÁNÍ SOLÁRNÍCH KOLEKTORŮ Tomáš Matuška, Vladimír Zmrhal Ústav techniky
Nezávislost na dodavatelích tepla možnosti, příklady. Tomáš Matuška Ústav techniky prostředí Fakulta strojní, ČVUT v Praze
Nezávislost na dodavatelích tepla možnosti, příklady Tomáš Matuška Ústav techniky prostředí Fakulta strojní, ČVUT v Praze Volně dostupné zdroje tepla sluneční energie základ v podstatě veškerého přírodního
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV PROCESNÍHO A EKOLOGICKÉHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF PROCESS AND ENVIROMENTAL
Obnovitelné zdroje energie
ČVUT v Praze Fakulta stavební Katedra technických zařízení budov TBA1 Vytápění Zdroje tepla - obnovitelné zdroje 1 Obnovitelné zdroje energie Zákon 406/2000 Sb o hospodaření energií OZE=nefosilní přírodní
Plochý solární kolektor ZELIOS XP 2.5-1 V / H
Plochý solární kolektor ZELIOS XP 2.5-1 V / H Inovovaný, vysoce výkonný solární kolektor (XP=extra power) s celkovou plochou 2,5 m 2 pro celoroční použití v uzavřených systémech. Pro nucený oběh teplonosné
Jak vybrat solární kolektor?
1/25 Jak vybrat solární kolektor? Tomáš Matuška Československá společnost pro sluneční energii (ČSSE) Fakulta strojní, ČVUT v Praze 2/25 Druhy solárních tepelných kolektorů Nezasklený plochý kolektor bez
Tepelně vlhkostní bilance budov
AT 02 TZB II a technická infrastruktura LS 2012 Tepelně vlhkostní bilance budov 10. Přednáška Ing. Olga Rubinová, Ph.D. Harmonogram t. část Přednáška Cvičení 1 UT Mikroklima budov, výpočet tepelných ztrát
Voda jako životní prostředí - světlo
Hydrobiologie pro terrestrické biology Téma 6: Voda jako životní prostředí - světlo Sluneční světlo ve vodě Sluneční záření dopadající na hladinu vody je 1) cestou hlavního přísunu tepla do vody 2) zdrojem
Solární tepelné soustavy
Sborník přednášek k 1. části kurzu Solární tepelné soustavy 5. 6. 11. 2009 Centrum technologických informací a vzdělávání CTIV Fakulta strojní ČVUT v Praze Technická 4 166 07 Praha 6 Publikace byla zpracována
Speciální aplikace FV systémů. Tomáš Matuška RP2 Energetické systémy budov Univerzitní centrum energeticky efektivních budov ČVUT v Praze
Speciální aplikace FV systémů Tomáš Matuška RP2 Energetické systémy budov Univerzitní centrum energeticky efektivních budov ČVUT v Praze Fotovoltaický ohřev vody (a jeho porovnání s fototermickým...) CÍL
Západočeská univerzita v Plzni Fakulta elektrotechnická
Západočeská univerzita v Plzni Fakulta elektrotechnická KEE/VEN Semestrální práce z blokové výuky VEN Exkurze - skupina: 2 / 25.4.2008 Datum vypracování: 11.5.2008 Vypracoval: Václav Laxa A. ENERGIE VODY:
BYTOVÉ DOMY v rámci 2. výzvy k podávání žádostí
Metodický pokyn k upřesnění výpočetních postupů a okrajových podmínek pro podprogram NZÚ BYTOVÉ DOMY v rámci 2. výzvy k podávání žádostí Podoblast podpory C.3 Instalace solárních termických a fotovoltaických
Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 -
Geometrická optika Optika je část fyziky, která zkoumá podstatu světla a zákonitosti světelných jevů, které vznikají při šíření světla a při vzájemném působení světla a látky. Světlo je elektromagnetické
Odraz světla na rozhraní dvou optických prostředí
Odraz světla na rozhraní dvou optických prostředí Může kulová nádoba naplněná vodou sloužit jako optická čočka? Exponát demonstruje zaostření světla procházejícího skrz vodní kulovou čočku. Pohyblivý světelný
Otázky pro samotestování. Téma1 Sluneční záření
Otázky pro samotestování Téma1 Sluneční záření 1) Jaká je vzdálenost Země od Slunce? a. 1 AU b. 6378 km c. 1,496 x 10 11 m (±1,7%) 2) Jaké množství záření dopadá přibližně na povrch atmosféry? a. 1,60210-19
JAK FUNGUJE SLUNEČNÍ ZAŘÍZENÍ PRO OHŘEV UŽITKOVÉ VODY A PRO PŘITÁPĚNÍ?
Sluneční zařízení Energie slunce patří mezi obnovitelné zdroje energie (OZE) a můžeme ji využívat různými způsoby a pro rozdílné účely. Jedním ze způsobů využití energie slunce je výroba tepla na ohřev
Návrh alternativního zdroje energie pro ohřev TUV v RD
Návrh alternativního zdroje energie pro ohřev TUV v RD Vypracoval: Jiří Špála Kruh: 5 Rok: 2006/07 Popis: Jedná se o rodinný domek, který se nachází v obci Krhanice, která leží 12km od Benešova u Prahy.
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV ENERGETIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF ENERGY SOLÁRNÍ KOLEKTORY SOLAR COLLECTORS BAKALÁŘSKÁ
Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm.
1. Podstata světla Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm. Vznik elektromagnetických vln (záření): 1. při pohybu elektricky nabitých částic s nenulovým zrychlením
Základní škola, Ostrava-Poruba, I. Sekaniny 1804, příspěvková organizace
Základní škola, Ostrava-Poruba, I. Sekaniny 1804, příspěvková organizace Název projektu Zkvalitnění vzdělávání na ZŠ I.Sekaniny - Škola pro 21. století Registrační číslo projektu CZ.1.07/1.4.00/21.1475
Střešní fotovoltaický systém
Střešní fotovoltaický systém Elektrická energie Vašeho stávajícího dodavatele je a bude jen dražší, staňte se nezávislí a pořiďte si vlastní fotovoltaickou elektrárnu již dnes. Fotovoltaická elektrárna
Měření sluneční záření
1/64 Sluneční energie měření údaje o slunečním záření solární mapy praktický přepočet 2/64 Měření sluneční záření 1 Měření přímého slunečního ozáření 3/64 pyrheliometr (actinometr) 5.7 kolimované čidlo
Solární zařízení v budovách - otázky / odpovědi
Solární zařízení v budovách - otázky / odpovědi Ing. Bořivoj Šourek Ph.D. Československá společnost pro sluneční energii (ČSSE) Novotného lávka 5, 116 68 Praha 1 Česká republika info@solarnispolecnost.cz
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROMECHANIKY A VÝKONOVÉ ELEKTRONIKY BAKALÁŘSKÁ PRÁCE
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROMECHANIKY A VÝKONOVÉ ELEKTRONIKY BAKALÁŘSKÁ PRÁCE Návrh řešení ohřevu TUV pro domácnost pomocí solárních kolektorů Vojtěch Šafář 2016
DÁLKOVÉ VYTÁPĚNÍ =DISTRICT HEATING, = SZT SYSTÉM ZÁSOBOVÁNÍ TEPLEM = CZT CENTRALIZOVANÉ ZÁSOBOVÁNÍ TEPLEM
DÁLKOVÉ VYTÁPĚNÍ =DISTRICT HEATING, = SZT SYSTÉM ZÁSOBOVÁNÍ TEPLEM = CZT CENTRALIZOVANÉ ZÁSOBOVÁNÍ TEPLEM 184 Zdroj tepla Distribuční soustava Předávací stanice Otopná soustava Dálkové vytápění Zdroj tepla
1/58 Solární soustavy
1/58 Solární soustavy hydraulická zapojení zásobníky tepla tepelné výměníky 2/58 Přehled solárních soustav příprava teplé vody kombinované soustavy ohřev bazénové vody hydraulická zapojení typické zisky