Měřicí a řídicí technika pro 1. roč. magisterského studia FPBT. zachycení veškerého tepl. záření

Rozměr: px
Začít zobrazení ze stránky:

Download "Měřicí a řídicí technika pro 1. roč. magisterského studia FPBT. zachycení veškerého tepl. záření"

Transkript

1 MĚŘENÍ TEPLOTY teplota je jednou z nejdůležitějších veličin ovlivňujících téměř všechny stavy a procesy v přírodě při měření teploty se měří obecně jiná veličina A, která je na teplotě závislá podle určitého vztahu A = f (t), který lze číselně vyjádřit k měření teploty se využívá celé řady funkčních principů Rozdělení snímačů teploty: snímače dotykové snímače bezdotykové 1 Přehled technických teploměrů Skupina teploměrů Typ teploměru Fyzikální princip Teplotní rozsah [ o C] Speciální teploměry teploměrná tělíska teploměrné barvy kapalné krystaly bod tání změna barvy změna orientace Dilatační teploměry plynový tenzní kapalinový kovový změna tlaku změna tenze par změna objemu délková roztažnost Elektrické teploměry termoelektrické termoelektrické jev odporové kovové změna elektrického odporu odpor. polovodičové diodové změna prahového napětí širokopásmové Bezdotykové monochromatické IČ-teploměry poměrové termovize zachycení veškerého tepl. záření zachycení úzkého svazku záření srovnání dvou svazků teplotního záření o různých vlnových délkách snímání teplotního obrazu tělesa Speciální teploměry teploměrná tělíska využívá se keramické hmoty s definovaným bodem měknutí dochází k deformaci teploměrného tělíska ve tvaru šikmého jehlanu teploměrné barvy na bázi kapalných krystalů (termochromní kapalné krystaly) kapalné krystaly cholesterického typu, u nichž dochází k vratným změnám orientace se změnou teploty na bázi organických molekulárních komplexů dochází ke změně barvy při tzv. teplotě zvratu Použití speciálních teploměrů: pro měření povrchové teploty těles k přípravě termochromních tiskových barev např. pro etikety (termocitlivá látka je uzavřena do polymerní mikrokapsule) pro jednorázové změření teploty nejsou vhodné jako čidla regulátorů v řídicích obvodech 3 3-FPBT09-Teplota.doc 1 K. Kadlec,

2 Ukázky aplikace termochromních barev samolepicí štítky nevratná změna barvy při překročení mezní teploty vratná změna barvy při překročení mezní teploty využití na etiketách některých výrobků (např. lahvové pivo) 4 Teploměry tenzní využívají závislosti tenze par na teplotě, kterou je možno vyjádřit např. Antoineovou rovnicí: Statická charakteristika: B logp = A t + C Provedení tenzního teploměru: spojovací kapilára p vlnovec T v T k T Δ t jímka částečně naplněná kapalinou Δ l Používané náplně: propan (-40 až 90) C ethylether (35 až 190) C toluen (120 až 300) C a další... 5 Teploměry kapalinové měření změn objemu při změně teploty: V t = V 0 (1 + β.t) běžně používané jsou skleněné teploměry, nejčastěji plněné rtutí Provedení kapalinového teploměru pro provozní použití: deformační tlakoměr kompenzační kapilára měřicí nádobka ukazovací ústrojí spojovací kapilára Používané náplně: rtuť (-30 až 500) C, xylen (-40 až 400) C, methanol (-40 až 150) C aj. 6 3-FPBT09-Teplota.doc 2 K. Kadlec,

3 Dvojkovové senzory teploty teploměrným čidlem je bimetal (dvojkov) bimetalický pásek je zhotovený ze dvojice pevně spojených kovových materiálů s rozdílným teplotním součinitelem roztažnosti Provedení bimetalového teploměru pro spínací účely: bimetal (dvojkov) spínací kontakt pro zvýšení citlivosti bývá bimetalový pásek stočen do spirály nebo šroubovice bimetalových senzorů se nejčastěji využívá pro dvoupolohovou regulaci teploty 7 Elektrické teploměry termoelektrické snímače teploty odporové snímače teploty transformují teplotu na elektrický signál (napětí, proud, odpor) nejčastěji používané typy senzorů pro provozní měření teploty pro čidla regulátorů při automatickém řízení teploty pro moderní přenosné teploměry 8 Termoelektrické senzory teploty termoelektrické senzory jsou založeny na Seebeckovu jevu (převod tepelné energie na elektrickou) termoelektrický článek - dva vodiče z různých kovových materiálů, které jsou na obou koncích spolu vodivě spojeny jestliže teplota t m měřicího spoje bude různá od teploty t s srovnávacího spoje, vzniká termoelektrické napětí a obvodem prochází proud v zjednodušené formě můžeme závislost termoelektrického napětí na teplotě vyjádřit lineárním vztahem: E = α AB t m + α BA t s = α AB (t m -t s ) α AB je koeficient závislý na materiálech použitých kovů a platí α AB = - α BA Uvedený vztah platí jen pro úzké rozmezí teplot. Pro přesnější vyjádření se používá vztahu: n i E = a i Δt n = 2 až 14 podle i =0 požadované přesnosti 9 3-FPBT09-Teplota.doc 3 K. Kadlec,

4 Typy termočlánků Materiál na výrobu termočlánků by měl vykazovat: co největší a lineární přírůstek termoelektrického napětí s teplotou stabilitu údaje při dlouhodobém provozu odolnost proti chemickým a mechanickým vlivům Statické charakteristiky termočlánků: Páry materiálů pro vytvoření termočlánků jsou normalizovány. typ E J T K R S B materiál NiCr-CuNi Fe-CuNi Cu-CuNi NiCr-NiAl PtRh13-Pt PtRh10 Pt PtRh30-PtRh6 10 Konstrukční uspořádání termoelektrických snímačů Termoelektrický snímač s ochrannou jímkou snímač pro provozní aplikace připojovací hlavice se svorkovnicí Termoelektrický článek je umístěn v ochranné armatuře zabraňuje jeho mechanickému poškození chrání před nepříznivými fyzikálními a chemickými vlivy zhoršuje však jeho dynamické vlastnosti keramická izolace termočlánek ochranná jímka 11 Plášťový termočlánek Termočlánkové dráty jsou uloženy v niklové nebo nerezové trubičce vyplněné práškovým MgO nebo Al 2 O 3 termočlánkové dráty kovová kapilára Přednosti plášťových termočlánků: snadné tvarové přizpůsobení možnost měření na těžko přístupných místech malá tepelná kapacita velmi dobrý přestup tepla příznivé dynamické vlastnosti termočlánek Φ 0,5 mm rukojeť keramický prášek kovová kapilára 13 3-FPBT09-Teplota.doc 4 K. Kadlec,

5 Měřicí obvod termočlánku A t m měřicí spoj B t s srovnávací spoj dva spojené kovové vodiče A a B navzájem spolu spojené měřicí spoj srovnávací spoj pro správnou funkci snímače je nutné aby teplota t 0 srovnávacího spoje byla konstantní, nebo aby vliv termoelektrického napětí tohoto spoje byl kompenzován Měření termoelektrického napětí: termočlánky jsou zdrojem napětí řádově jednotek až desítek mv měřicí přístroj se zapojí tak, že se rozpojí srovnávací spoj měřicí přístroj se zapojí do jedné větve termočlánku 14 Základní zapojení termočlánku: Přímé měření termoelektrického napětí milivoltmetrem: t m t s Rj měřicí spoj srovnávací spoj vyrovnávací (justační) odpor měřicí přístroj vodiče termočlánku měděné vodiče přesný milivoltmetr měřicí spoj srovnávací spoj (voda s ledem) vodiče i spoje jsou izolované od vody 15 Potlačení vlivu teploty srovnávacího spoje umístěním srovnávacího spoje do termostatu v laboratoři při 0 C u provozních aplikací při 50 C analogovými kompenzačními obvody (kompenzační krabice) u číslicových měřicích systémů číslicovou korekcí měřicí spoj Termostat: t 0 Elektronická kompenzace: měřicí spoj t 0 t m t m elektronické vyhodnocovací obvody regulace teploty srovnávací spoj v termostatu topení měření teploty srovnávacího spoje teplotní čidlo 16 3-FPBT09-Teplota.doc 5 K. Kadlec,

6 termoelektrickým senzorem spoužitím dvouvodičového převodníku termočlánek měřicí přístroj (4 až 20) ma t m t 0 napájecí napětí srovnávací spoj na svorkách převodníku převodník (zesilovač) s unifikovaným proudovým výstupem napájecí zdroj velikost napájecího proudu převodníku je funkcí hodnoty měřené veličiny při počáteční hodnotě teploty je hodnota výstupního signálu 4 ma s rostoucí teplotou se zvyšuje velikost proudového výstupu až k maximální hodnotě 20 ma tohoto zapojení se používá při provozním měření teploty 17 Teploměr s číslicovým výstupem termočlánek A/D převodník číslicový displej ZES A/D EO DISP srovnávací spoj na svorkách převodníku zesilovač analogového signálu číslicové elektronické obvody teplota srovnávacího spoje se měří polovodičovým senzorem teploty číslicový elektronický obvod zajišťuje korekci údaje při změnách teploty srovnávacího spoje číslicové obvody zajišťují rovněž linearizaci statické charakteristiky teploměru 18 vícemístným měřicím systémem termočlánky izotermická svorkovnice polovodičový senzor teploty měřicí blok s multiplexerem Multiplexer mnohapolohový přepínač zajišťuje sériové zpracování informací z jednotlivých měřicích míst A/D měřicí systém převodník řízený mikroprocesorem Mikroprocesor zajišťuje zpracování signálu z jednotlivých měřicích míst zajišťuje kompenzaci teploty srovnávacího spoje 19 3-FPBT09-Teplota.doc 6 K. Kadlec,

7 Odporové snímače teploty kovové odporové teploměry polovodičové odporové teploměry ukázky provedení průmyslových snímačů teploty 21 Kovové odporové teploměry elektrický odpor kovových vodičů vzrůstá s teplotou pro menší teplotní rozsah (Δt < 100 C) lze použít lineární vztah: R = R 0 [1 + α (t - t 0 )] kde α je teplotní součinitel odporu, jehož střední hodnota je: R100 R0 α = 100R 0 dalším základním parametrem odporových snímačů je poměr odporů čidla při teplotě 100 C a při 0 C R100 W 100 = R 0 pro širší teplotní rozmezí použijeme polynom vyššího stupně např.: R = R 0 [1 + α (t - t 0 ) + β (t - t 0 ) 2 ] 22 Provedení kovových odporových senzorů používají se především čisté kovy, jejichž teplotní součinitel má být stálý a pokud možno co největší (platina, nikl, měď) nejčastěji používaným materiálem je platina může být vyrobena ve standardně čistém stavu je fyzikálně a chemicky stálá Drátkové měřicí odpory drátkový měřicí odpor (jmenovitá hodnota odporu při 0 C je 100 Ω) skleněná nebo keramická izolace skleněný plášť přívodní vodiče platinový drátek dvojitá drátkové odpory jsou časově velmi stálé keramická kapilára umisťují se do ochranné jímky nevýhodou jsou nepříznivé dynamické vlastnosti (velká tepelná kapacita) 23 3-FPBT09-Teplota.doc 7 K. Kadlec,

8 Plošné měřicí odpory měřicí odpory vyráběné tenkovrstvou technologií, při níž se platinový odpor vytvoří fotolitografickou technikou ve formě jednoduchého meandru na ploché korundové destičce jmenovitý odpor čidla se nastaví pomocí laseru plošné měřicí odpory se vyrábí se jmenovitou hodnotou 100 Ω, 500 Ω, 1000 Ω, 2000 Ω keramický tmel skleněná ochranná vrstva přívody Pt meandr korundová podložka perspektivní senzory vyráběné moderní technologií vyšší hodnota jmenovitého odporu příznivé dynamické vlastnosti 24 Polovodičové odporové teploměry využívá se závislosti odporu polovodičů na teplotě v praxi se využívá několika typů polovodičových senzorů teploty: NTC - termistory (negastory) vyráběny práškovou technologií z oxidů kovů (Fe 2 O 3, TiO 2, CuO, MnO, NiO, CoO, BaO aj.) vylisované senzory (nejčastěji ve tvaru perličky) se zpevňují slinováním za vysoké teploty vykazují záporný teplotní součinitel odporu závislost odporu na teplotě je nelineární a odpor s teplotou klesá: R 1 1 B T T0 = R 0 e PTC - termistory (pozistory) přívodní drátky termistor průměr několik desetin mm R, R 0 - odpory termistoru při teplotách T a T 0 B - veličina úměrná aktivační energii vyrábějí se z polykrystalické feroelektrické keramiky např. BaTiO 3 vykazují kladný teplotní součinitel odporu v úzkém teplotním rozmezí odpor pozistoru prudce stoupá 25 Porovnání teplotních závislostí odporových senzorů negastor pozistor kovový teploměr polovodičové senzory vykazují vyšší citlivost než kovové polovodičové senzory mají příznivější dynamické vlastnosti kovové senzory vykazují vysokou stabilitu, reprodukovatelnost a přesnost 26 3-FPBT09-Teplota.doc 8 K. Kadlec,

9 Měřicí obvody pro odporové senzory teploty K měření odporu se nejčastěji využívá zapojení do Wheatstoneova můstku, který může pracovat jako: vyvážený můstek metoda nulová nevyvážený můstek - metoda výchylková Při provozním měření se využívá metoda výchylková. Výchylka měřicího přístroje zapojeného v diagonále můstku je mírou měřeného odporu. Podle počtu vodičů spojujících měřicí odpor s přístrojem se setkáváme se zapojením dvouvodičovým, třívodičovým a čtyřvodičovým. Průchodem měřicího proudu odporovým senzorem teploty dochází k chybě měření vlivem oteplení senzoru. 27 Nevyvážený můstek pro odporové senzory teploty Dvouvodičové zapojení Třívodičové zapojení U stab U stab definovaná hodnota odporu vedení R v = 20 Ω vliv teploty na odpor spojovacího vedení R t R j vyrovnávací (justační) odpor měřicí odpor R j R t R j odporem R j se nastavuje odpor spojovacího vedení zapojení kompenzuje vliv teploty na odpor spojovacího vedení 28 Porovnání elektrických teploměrů Termočlánek Kovový odporový teploměr Termistor Výhody aktivní snímač jednoduchý levný odolný široký teplotní rozsah příznivé dynamické vlastnosti vysoká stabilita vysoká přesnost lepší linearita než u termočlánku vysoká úroveň signálu a jeho necitlivost k rušivým vlivům vysoká citlivost rychlá odezva dvouvodičové měření Nevýhody obecně nelineární nízká úroveň signálu potřeba kompenzace srovnávacího spoje potřeba stabiliz. napájecího zdroje zahřívání procházejícím proudem horší dynamické vlastnosti nelineární omezený teplotní rozsah křehký potřeba stabiliz. napájecíhoho zdroje zahřívání procházejícím proudem 29 3-FPBT09-Teplota.doc 9 K. Kadlec,

10 Indikační a registrační teploměry Panelové přístroje ukazovací přístroje Elektronické bezpapírové zapisovače s bargrafem kompaktní regulátory 30 Teploměry s datalogerem Dataloger zařízení umožňující ukládání naměřených dat do paměti a následné čtení zaznamenaných údajů elektronický zapisovač naměřených hodnot možnost přenosu dat do PC Kompaktní dataloger teplotní senzor elektronické obvody paměť baterie Interface: propojení datalogeru s počítačem programování datalogeru čtení zaznamenaných údajů nabíjení akumulátoru datalogeru 31 Aplikace teploměru s datalogerem Záznam teploty při laboratorních experimentech při skladování při transportu při výrobním procesu konzervárenství, mrazírny, farmaceutické výroby ap. dataloger Software grafické a tabulkové vyhodnocení 32 3-FPBT09-Teplota.doc 10 K. Kadlec,

11 Inteligentní převodníky teploty Inteligentní převodník (smart transmitter) : umožňuje připojení různých čidel pro snímání měřené veličiny (termočlánek, odporový teploměr a j.) zahrnuje elektronické obvody pro zpracování, analýzu a unifikaci signálu jedná se o přístroj, jehož funkce je řízena mikroprocesorem umožňuje konfiguraci výstupního signálu umožňuje komunikaci s PC konfigurace a funkce převodníku je programovatelná uživatelem 33 Schéma inteligentního převodníku teploty senzor A/D převodník kompenzace srovnávacího spoje různé typy termočlánků, odporových teploměrů, další typy snímačů mikorpočítač řízení měření měřicí rozsah linearizace tlumení korekce inž. jednotky diagnostika komunikace paměť EPROM rozsahy měření konfigurace převodníku korekční faktory tabulky hodnot D/A převodník číslicová komunikace (4 až 20) ma programátorský modul 34 Zabudování a propojení teploměrných snímačů Správné umístění snímače do potrubí Snímač s připojovací hlavicí převodník do připojovací hlavice převodníky pro montáž na lištu převodník s displejem 35 3-FPBT09-Teplota.doc 11 K. Kadlec,

12 Zabudování dotykových teploměrů vhodné umístění teplotních snímačů je jedním ze základních předpokladů správného měření teploty u snímače musí být zajištěn dokonalý styk s prostředím, aby docházelo i k dobrému přestupu tepla ztráty tepla vedením se omezí dostatečným ponorem teploměru měření teploty kapalin v nádobách vyžaduje míchání zvětšení součinitele přestupu tepla dosažení homogenního teplotního pole Volba měřicího místa: snadná montáž, demontáž a údržba teploměru umístění čidla do teploměrné jímky, která chrání teploměr proti chemickým a mechanickým vlivům dochází však ke zhoršení dynamických vlastností 36 BEZDOTYKOVÉ TEPLOMĚRY měření bezdotykovými teploměry je založeno na vyhodnocování tepelného elektromagnetického záření těles λ [m] Spektrum záření: vlnové délky IČ-záření leží v rozmezí od 0,7μm do 1000 μm pro bezdotykové měření teploty jsou využívány pouze vlnové délky od 0,7μm do 20 μm uvedený rozsah záření pokrývá měření teploty od - 40 C do C tento rozsah záření spadá částečně do viditelného spektra (0,4 až 0,78) μm a dále do infračerveného spektra pro detekci IČ-záření nejsou k disposici vhodné detektory pro vlnové délky 37 nad 20 μm Vyzařování tělesa Planckův a Wienův zákon M 0λ - spektrální hustota vyzařování černého tělesa intenzita vyzařování klesá výrazně s klesající teplotou 38 3-FPBT09-Teplota.doc 12 K. Kadlec,

13 Vyzařování tělesa Stefan-Bolzmannůvzákon Stefan-Boltzmannův zákon udává intenzitu vyzařování dokonale černého tělesa H 0 [W m -2 ] pro danou teplotu v celém rozsahu vlnových délek H 0 = σ T 4 σ = 5, [W m -2 K -4 ] skutečné těleso vyzařuje i pohlcuje méně než dokonale černé těleso poměr energie vyzařované objektem při dané teplotě k energii vyzařované dokonale černým tělesem při téže teplotě se nazývá emisivita ε λ hodnota emisivity ε λ je vždy menší než 1 H 0 = ε σt 4 Stefan-Boltzmannův zákon je důležitý pro spektrálně neselektivní (úhrnné) pyrometry 39 Vyzařování těles: intenzita vyzařování černé těleso šedé těleso selektivní zářiče vlnová délka Hodnoty emisivity pro vybrané povrchy: těleso emisivita černé těleso 1 černý matový lak 0,99 voda 0,95 cihly 0,85 zoxidovaný ocelový plech 0,75 zoxidovaný hliník 0,55 lesklý ocelový plech 0,25 Při aplikaci bezdotykových teploměrů pro měření teploty povrchu těles je znalost hodnoty emisivity nezbytná. 40 Rozdělení bezdotykových teploměrů BEZDOTYKOVÉ MĚŘENÍ TEPLOTY IČ-TEPLOMĚRY (PYROMETRY) ZOBRAZOVACÍ ZAŘÍZENÍ SUBJEKTIVNÍ PYROMETRY OBJEKTIVNÍ IČ-TEPLOMĚRY MONOCHROMATICKÉ spektrálně selektivní, měří ve velmi úzkém vlnovém pásmu PÁSMOVÉ měří prostřednictvím záření v úzkém pásmu vlnových délek CELKOVÉHO ZÁŘENÍ vyhodnocují teplotu v celém spektru vlnových délek 41 3-FPBT09-Teplota.doc 13 K. Kadlec,

14 IČ-teploměry (pyrometry) celkového záření vyhodnocují teplotu podle Stefan-Boltzmannova zákona pro šedé těleso: H = ε.σ.t 4 pracují teoreticky v celém spektru vlnových délek od λ =0 do λ = v praxi dochází ke spektrálnímu omezení vlivem optiky Blokové schéma IČ-teploměru: ε zadává uživatel optický systém detektor záření elektronické obvody povrch měřeného objektu zaostření záření na senzor soustava čoček či zrcadel pro detekci se využívá tepelných senzorů přesnost měření pyrometrem závisí do značné míry na přesnosti určení emisivity 42 Detektory tepelného záření Termočlánkové baterie baterie termočlánků obsahuje několik desítek měřicích spojů na ploše 4 mm 2 Bolometry načerněné tenkovrstvé odporové senzory teploty měřicí bolometr srovnávací bolometr měřicí spoje termočlánků srovnávací spoje termočlánků skutečná velikost senzoru citlivá část senzoru je načerněna senzor se umisťuje často do vakuované baňky Pyroelektrické senzory založeny na pyroelektrickém jevu (vyvolání náboje na elektrodách) 43 Kvantové detektory IČ-záření využívají fyzikálních jevů vznikajících při interakci fotonů dopadajících na strukturu senzoru fotodioda - vznik fotoelektrického napětí (proudu) -PN-přechod na Si-diodě fotoodpor -změna elektrické vodivosti (odporu) - fotoodpory na bázi PbS, InSb, PbSe měří teplotu prostřednictvím záření v úzkém pásmu vlnových délek šíře pásma vlnových délek je od 10 nm do jednotek μm pásmo vlnových délek závisí na použité optice a senzoru záření 44 3-FPBT09-Teplota.doc 14 K. Kadlec,

15 Provedení přenosných IČ-teploměrů zaměřovací systém s laserem nebo dalekohledem optický systém detektor záření vstupní okénko IČ-teploměru bývá chráněno tenkou polyetylenovou folií, která propouští IČ-záření elektronické obvody jsou řízené μp měřicí rozsah -20 C až 1500 C digitální foto pro dokumentaci měření 45 Zaměření měřeného objektu plocha měřeného objektu musí zcela vyplňovat zorné pole IČ-teploměru tato plocha roste se čtvercem vzdálenosti nesplnění tohoto požadavku vede k chybným výsledkům měření (měří se průměrná teplota pozorované oblasti, tj. objektu a jeho okolí) měření je nezávislé na vzdálenosti přístroje od měřeného objektu, pokud obraz objektu kryje obrys přijímače záření kontrola se provádí vizuálně okulárem nebo podle diagramu na přístroji či pomocí laserového zaměřovače Zorné pole IČ-teploměru: Laserové zaměřování: bodové kruhové Velikost objektu a zorné pole: objekt chybně zorné pole správně správně chybně 46 Kalibrace IČ-teploměrů kalibrace se provádí pomocí černého tělesa reálné černé těleso má hodnotu emisivity 0,99 > ε > 0,98 Princip černého tělesa: Provedení černého tělesa: PID regulátor teploty zařízení poskytuje stabilní teploty i pod 0 C vybavení rozhraním RS 232 umožňuje počítačové řízení při nastavování teploty (automatické testování) rozsahy teplot u vyráběných zařízení: od -20 C až přes 1000 C 47 3-FPBT09-Teplota.doc 15 K. Kadlec,

16 Termovize pro měření rozložení teploty na povrchu těles - snímání teplotních polí Termovizní systémy: s rozkladem obrazu: opticko-mechanicky obraz se rozloží do řádek a bodů pomocí kmitajícího zrcadla a rotujícího hranolu detekce záření kvantovým detektorem (např. InSb) elektronicky využívá řádkových pyroelektrických senzorů s maticovým detektorem termokamera teplotní obraz izolátorů viditelný obraz teplotního pole je možno sledovat na displeji či obrazovce problematické je zadání emisivity 48 Termokamery s maticovým detektorem moderní termokamery využívají chlazené i nechlazené maticové mikrobolometrické detektory termokamera odporový meandr na bázi oxidů kovů (např. TiO 2 ) mikrobolometrické senzory lze uspořádat jako řádkové nebo plošné detektory matice obsahují 320x240 až 640x480 elementů ( ) rozměr matice 49x43 mm FPA Focal Plane Array 50 Použití bezdotykových teploměrů měření rozložení teplot na technologickém zařízení na elektronických obvodech na povrchu biologických objektů měření teplot pohybujících objektů potravinářské výrobky (pekárny) rotující objekty, běžící pásy apod. měření rychlých změn teploty bezdotykové teploměry mají velmi příznivé dynamické vlastnosti T 90 leží v rozmezí 100 ms až 1 s diagnostická a inspekční měření prevence vzniku poruchových a havarijních stavů (teplotní změny na elektrických obvodech, na tepelných zařízeních ap.) diagnostika v lékařství (teplotní pole na povrchu těla) 52 3-FPBT09-Teplota.doc 16 K. Kadlec,

17 Přednosti a nedostatky bezdotykového měření teploty Výhody: zanedbatelný vliv měřicího zařízení na měřený objekt možnost měření rotujících a pohybujících se těles možnost měření rychlých teplotních změn možnost snímání rozložení teplot na celém povrchu objektu (termovize) Nevýhody: chyba způsobená nejistotou stanovení emisivity měřeného objektu chyba způsobená prostupností prostředí (absorbce tepelného záření v prostředí mezi měřeným objektem a pyrometrem - sklo, CO 2, vodní páry, dým) chyba způsobená odraženým zářením z okolního prostředí 53 Odkazy na literaturu Kreidl M.:. BEN Praha 2005 Lysenko V.: Detektory pro bezdotykové měření teplot. BEN Praha 2005 Bentley J. P.: Measurement Systems. Pearson Education Limited 2005 Dyer S. A.: Survey of Instrumentation and Measurement. Wiley- Interscience 2001 Altmann W.: Practical Control for Engineers and Technicans. Newnes- Elsevier 2005 Internetové odkazy: FPBT09-Teplota.doc 17 K. Kadlec,

MĚŘENÍ TEPLOTY. Přehled technických teploměrů. Teploměry kapalinové. Teploměry tenzní. Rozdělení snímačů teploty: Ukázky aplikace termochromních barev

MĚŘENÍ TEPLOTY. Přehled technických teploměrů. Teploměry kapalinové. Teploměry tenzní. Rozdělení snímačů teploty: Ukázky aplikace termochromních barev MĚŘENÍ TEPLOTY teplota je jednou z nejdůležitějších veličin ovlivňujících téměř všechny stavy a procesy v přírodě při měření teploty se měří obecně jiná veličina A, která je na teplotě závislá podle určitého

Více

MĚŘENÍ TEPLOTY. Přehled technických teploměrů. Teploměry kapalinové. Teploměry tenzní. Rozdělení snímačů teploty: Ukázky aplikace termochromních barev

MĚŘENÍ TEPLOTY. Přehled technických teploměrů. Teploměry kapalinové. Teploměry tenzní. Rozdělení snímačů teploty: Ukázky aplikace termochromních barev MĚŘENÍ TEPLOTY teplota je jednou z nejdůležitějších veličin ovlivňujících téměř všechny stavy a procesy v přírodě při měření teploty se měří obecně jiná veličina A, která je na teplotě závislá podle určitého

Více

širokopásmové zachycení veškerého teplotního

širokopásmové zachycení veškerého teplotního Měření technologických veličin Měření tlaku Měření průtoku a proteklého množství Měření hladiny Měření koncentračních veličin 1 MĚŘENÍ TEPLOTY teplota je jednou z nejdůležitějších veličin ovlivňujících

Více

PRINCIP MĚŘENÍ TEPLOTY spočívá v porovnání teploty daného tělesa s definovanou stupnicí.

PRINCIP MĚŘENÍ TEPLOTY spočívá v porovnání teploty daného tělesa s definovanou stupnicí. 1 SENZORY TEPLOTY TEPLOTA je jednou z nejdůležitějších veličin ovlivňujících téměř všechny stavy a procesy v přírodě Ke stanovení teploty se využívá závislosti určitých fyzikálních veličin na teplotě (A

Více

-80 +400 širokopásmové zachycení veškerého teplotního

-80 +400 širokopásmové zachycení veškerého teplotního Měřicí a řídicí technika 3. přednáška Obsah přednášky: Přehled snímačů teploty Principy, vlastnosti a použití dotykových snímačů teploty bezdotykových snímačů teploty Teplota je jednou z nejdůležitějších

Více

SNÍMAČE PRO MĚŘENÍ TEPLOTY

SNÍMAČE PRO MĚŘENÍ TEPLOTY SNÍMAČE PRO MĚŘENÍ TEPLOTY 10.1. Kontaktní snímače teploty 10.2. Bezkontaktní snímače teploty 10.1. KONTAKTNÍ SNÍMAČE TEPLOTY Experimentální metody přednáška 10 snímač je připevněn na měřený objekt 10.1.1.

Více

Senzorika a senzorické soustavy

Senzorika a senzorické soustavy Senzorika a senzorické soustavy Snímače teploty Tato publikace vznikla jako součást projektu CZ.04.1.03/3.2.15.2/0285 Inovace VŠ oborů strojního zaměření, který je spolufinancován evropským sociálním fondem

Více

25 A Vypracoval : Zdeněk Žák Pyrometrie υ = -40 C.. +10000 C. Výhody termovize Senzory infračerveného záření Rozdělení tepelné senzory

25 A Vypracoval : Zdeněk Žák Pyrometrie υ = -40 C.. +10000 C. Výhody termovize Senzory infračerveného záření Rozdělení tepelné senzory 25 A Vypracoval : Zdeněk Žák Pyrometrie Bezdotykové měření Pyrometrie (obrázky viz. sešit) Bezdotykové měření teplot je měření povrchové teploty těles na základě elektromagnetického záření mezi tělesem

Více

TEPLOTA Měření tepla a teploty: Rozdíl mezi teplotou a teplem. Teplota je projev hmoty - teplo = druh energie =

TEPLOTA Měření tepla a teploty: Rozdíl mezi teplotou a teplem. Teplota je projev hmoty - teplo = druh energie = TEPLOTA Měření tepla a teploty: Rozdíl mezi teplotou a teplem. Teplota je projev hmoty - teplo = druh energie = Q = c m t Teplota je jednou z nejdůležitějších veličin jež provází všechny procesy ve výrobě.

Více

TEPLOTA Měření tepla a teploty: Rozdíl mezi teplotou a teplem. Teplota je projev hmoty - teplo = druh energie =

TEPLOTA Měření tepla a teploty: Rozdíl mezi teplotou a teplem. Teplota je projev hmoty - teplo = druh energie = TEPLOTA Měření tepla a teploty: Rozdíl mezi teplotou a teplem. Teplota je projev hmoty - teplo = druh energie = Q = c m t Teplota je jednou z nejdůležitějších veličin jež provází všechny procesy ve výrobě.

Více

Integrovaná střední škola, Kumburská 846, Nová Paka Automatizace Snímače teploty. Snímače teploty

Integrovaná střední škola, Kumburská 846, Nová Paka Automatizace Snímače teploty. Snímače teploty Snímače teploty Měření teploty patří k jednomu z nejdůležitějších oborů měření, protože je základem řízení řady technologických procesů. Pro měření teploty jsou stanoveny dvě stupnice: a) Termodynamická

Více

Zapojení teploměrů. Zadání. Schéma zapojení

Zapojení teploměrů. Zadání. Schéma zapojení Zapojení teploměrů V této úloze je potřeba zapojit elektrickou pícku a zahřát na požadovanou teplotu, dále zapojit dané teploměry dle zadání a porovnávat jejich dynamické vlastnosti, tj. jejich přechodové

Více

Základní pojmy. T = ϑ + 273,15 [K], [ C] Definice teploty:

Základní pojmy. T = ϑ + 273,15 [K], [ C] Definice teploty: Definice teploty: Základní pojmy Fyzikální veličina vyjadřující míru tepelného stavu tělesa Teplotní stupnice Termodynamická (Kelvinova) stupnice je určena dvěma pevnými body: absolutní nula (ustává termický

Více

Měření teploty v budovách

Měření teploty v budovách Měření teploty v budovách Zadání 1. Seznamte se s fyzikálními principy a funkčností předložených senzorů: odporový teploměr Pt100, termistor NCT, termočlánek typu K a bezdotykový úhrnný pyrometr 2. Proveďte

Více

Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1

Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Číslo projektu Číslo materiálu Název školy CZ.1.07/1.5.00/34.0394 VY_32_INOVACE_15_OC_1.01 Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Autor Tématický celek Ing. Zdenka

Více

Měřicí řetězec. měřicí zesilovač. převod na napětí a přizpůsobení rozsahu převodníku

Měřicí řetězec. měřicí zesilovač. převod na napětí a přizpůsobení rozsahu převodníku Měřicí řetězec fyzikální veličina snímač měřicí zesilovač A/D převodník počítač převod fyz. veličiny na elektrickou (odpor, proud, napětí, kmitočet...) převod na napětí a přizpůsobení rozsahu převodníku

Více

Základní pojmy. T = ϑ + 273,15 [K], [ C] Termodynamická (Kelvinova) Definice teploty:

Základní pojmy. T = ϑ + 273,15 [K], [ C] Termodynamická (Kelvinova) Definice teploty: Základní pojmy Definice teploty: Fyzikální veličina vyjadřující míru tepelného stavu tělesa Teplotní stupnice Termodynamická (Kelvinova) stupnice je určena dvěma pevnými body: absolutní nula (ustává termický

Více

EXPERIMENTÁLNÍ METODY I 3. Měření teplot

EXPERIMENTÁLNÍ METODY I 3. Měření teplot FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I 3. Měření teplot OSNOVA 3. KAPITOLY Úvod do problematiky měření teplot

Více

MĚŘENÍ PROVOZNÍCH VELIČIN V CUKROVARNICTVÍ. Měření teploty MEASUREMENT OF PROCESS VARIABLES IN SUGAR INDUSTRY: TEMPERATURE MEASUREMENT

MĚŘENÍ PROVOZNÍCH VELIČIN V CUKROVARNICTVÍ. Měření teploty MEASUREMENT OF PROCESS VARIABLES IN SUGAR INDUSTRY: TEMPERATURE MEASUREMENT LISTY CUKROVARNICKÉ a ŘEPAŘSKÉ MĚŘENÍ PROVOZNÍCH VELIČIN V CUKROVARNICTVÍ Měření teploty MEASUREMENT OF PROCESS VARIABLES IN SUGAR INDUSTRY: TEMPERATURE MEASUREMENT Karel Kadlec Vysoká škola chemicko-technologická

Více

1 Bezkontaktní měření teplot a oteplení

1 Bezkontaktní měření teplot a oteplení 1 Bezkontaktní měření teplot a oteplení Cíle úlohy: Cílem úlohy je seznámit se s technologií bezkontaktního měření s vyhodnocováním tepelné diagnostiky provozu elektrických zařízení. Součastně se seznámit

Více

Teorie měření a regulace

Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace měření teploty - 2 17.SP-t.2. ZS 2015/2016 2015 - Ing. Václav Rada, CSc. Další pokračování o měření teploty a tepla Termistory (krystalické)

Více

e, přičemž R Pro termistor, který máte k dispozici, platí rovnice

e, přičemž R Pro termistor, který máte k dispozici, platí rovnice Nakreslete schéma vyhodnocovacího obvodu pro kapacitní senzor. Základní hodnota kapacity senzoru pf se mění maximálně o pf. omu má odpovídat výstupní napěťový rozsah V až V. Pro základní (klidovou) hodnotu

Více

A:Měření odporových teploměrů v ultratermostatu B:Měření teploty totálním pyrometrem KET/MNV (8. cvičení)

A:Měření odporových teploměrů v ultratermostatu B:Měření teploty totálním pyrometrem KET/MNV (8. cvičení) A:Měření odporových teploměrů v ultratermostatu B:Měření teploty totálním pyrometrem KET/MNV (8. cvičení) Vypracoval : Martin Dlouhý Osobní číslo : A8B268P A:Měření odporových teploměrů v ultratermostatu

Více

Měření teploty 2 Pracoviště: Katedra textilních a jednoúčelových strojů TUL

Měření teploty 2 Pracoviště: Katedra textilních a jednoúčelových strojů TUL Měření teploty 2 Pracoviště: Katedra textilních a jednoúčelových strojů TUL Tento materiál vznikl jako součást projektu In-TECH 2, který je spolufinancován Evropským sociálním fondem a státním rozpočtem

Více

Mikrosenzory a mikroelektromechanické systémy. Odporové senzory

Mikrosenzory a mikroelektromechanické systémy. Odporové senzory Mikrosenzory a mikroelektromechanické systémy Odporové senzory Obecné vlastnosti odporových senzorů Odporové senzory kontaktové Měřící potenciometry Odporové tenzometry Odporové senzory teploty Odporové

Více

11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr

11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr 11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr Otázky k úloze (domácí příprava): Pro jakou teplotu je U = 0 v případě použití převodníku s posunutou nulou dle obr. 1 (senzor Pt 100,

Více

Senzory tepelných veličin

Senzory tepelných veličin Senzory tepelných veličin -teplota termodynamická stavová veličina -teplotní stupnice: Kelvinova (trojný bod vody 273,16 K), Celsiova,... IS-90 (4 rozsahy) senzory teploty: kontaktní elektrické: odporové

Více

Základní pojmy. p= [Pa, N, m S. Definice tlaku: Síla působící kolmo na jednotku plochy. diference. tlaková. Přetlak. atmosférický tlak. Podtlak.

Základní pojmy. p= [Pa, N, m S. Definice tlaku: Síla působící kolmo na jednotku plochy. diference. tlaková. Přetlak. atmosférický tlak. Podtlak. Základní pojmy Definice tlaku: Síla působící kolmo na jednotku plochy F p= [Pa, N, m S 2 ] p Přetlak tlaková diference atmosférický tlak absolutní tlak Podtlak absolutní nula t 2 ozdělení tlakoměrů Podle

Více

Měření teploty v průmyslových aplikacích

Měření teploty v průmyslových aplikacích Měření teploty v průmyslových aplikacích Ing. L. Harwot, CSc. Měření teploty patří mezi nejrozšířenější měření v průmyslových a laboratorních podmínkách. Výsledek měření teploty zařízení obsahuje jak samotnou

Více

Snímače teploty a tepelného množství

Snímače teploty a tepelného množství Snímače teploty a tepelného množství Základní pojmy Teplota je fyzikální veličina vyjadřující míru tepelného stavu tělesa. Teplo je forma energie, která má svůj původ v neuspořádaném pohybu elementárních

Více

9. ČIDLA A PŘEVODNÍKY

9. ČIDLA A PŘEVODNÍKY Úvod do metrologie - 49-9. ČIDLA A PŘEVODNÍKY (V.LYSENKO) Čidlo (senzor, detektor, receptor) je em jedné fyzikální veličiny na jinou fyzikální veličinu. Snímač (senzor + obvod pro zpracování ) je to člen

Více

Ústav technologie, mechanizace a řízení staveb. Teorie měření a regulace. emisivní p. ZS 2015/ Ing. Václav Rada, CSc.

Ústav technologie, mechanizace a řízení staveb. Teorie měření a regulace. emisivní p. ZS 2015/ Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace emisivní - 2 18-2p. ZS 2015/2016 2015 - Ing. Václav Rada, CSc. Přímé pokračování - 2. díl o A emisivních principech snímačů VR -

Více

Verze 2. Měření teploty - 1. Doplněná inovovaná přednáška. Pracoviště: Katedra textilních a jednoúčelových strojů TUL

Verze 2. Měření teploty - 1. Doplněná inovovaná přednáška. Pracoviště: Katedra textilních a jednoúčelových strojů TUL Verze 2 Měření teploty - 1 Doplněná inovovaná přednáška Pracoviště: Katedra textilních a jednoúčelových strojů TUL Tento materiál vznikl jako součást projektu In-TECH 2, který je spolufinancován Evropským

Více

d p o r o v t e p l o m ě r, t e r m o č l á n k

d p o r o v t e p l o m ě r, t e r m o č l á n k d p o r o v t e p l o m ě r, t e r m o č l á n k Ú k o l : a) Proveďte kalibraci odporového teploměru, termočlánku a termistoru b) Určete teplotní koeficienty odporového teploměru, konstanty charakterizující

Více

A:Cejchování termočlánku na bod tání čistého kovu B:Měření teploty termočlánkem C:Cejchování termoelektrického snímače KET/MNV (9.

A:Cejchování termočlánku na bod tání čistého kovu B:Měření teploty termočlánkem C:Cejchování termoelektrického snímače KET/MNV (9. A:Cejchování termočlánku na bod tání čistého kovu B:Měření teploty termočlánkem C:Cejchování termoelektrického snímače KET/MNV (9. cvičení) Vypracoval : Martin Dlouhý Osobní číslo : A08B0268P A: Cejchování

Více

Teplota je nepřímo měřená veličina!!!

Teplota je nepřímo měřená veličina!!! TERMOVIZE V PRAXI Roman Vavřička ČVUT v Praze, Fakulta strojní Ústav techniky prostředí 1/48 Teplota je nepřímo měřená veličina!!! Základní rozdělení senzorů teploty: a) dotykové b) bezdotykové 2/48 1

Více

SNÍMAČE. - čidla, senzory snímají měří skutečnou hodnotu regulované veličiny (dávají informace o stavu technického zařízení).

SNÍMAČE. - čidla, senzory snímají měří skutečnou hodnotu regulované veličiny (dávají informace o stavu technického zařízení). SNÍMAČE - čidla, senzory snímají měří skutečnou hodnotu regulované veličiny (dávají informace o stavu technického zařízení). Rozdělení snímačů přímé- snímaná veličina je i na výstupu snímače nepřímé -

Více

PROVOZ, DIAGNOSTIKA A ÚDRŽBA STROJŮ

PROVOZ, DIAGNOSTIKA A ÚDRŽBA STROJŮ VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ PROVOZ, DIAGNOSTIKA A ÚDRŽBA STROJŮ Termodiagnostika doc. Ing. Helebrant František, CSc. Ing. Hrabec Ladislav, Ph.D. Ing. Blata Jan, Ph.D.

Více

9. Měření teploty. P. Ripka A3B38SME přednáška 9

9. Měření teploty. P. Ripka A3B38SME přednáška 9 9. Měření teploty přednášky A3B38ME enzory a měření zdroje převzatých obrázků: pokud není uvedeno jinak, zdrojem je monografie Haasz, edláček: Elektrická měření a skripta Ripka, Ďaďo, Kreidl, Novák: enzory

Více

MĚŘENÍ RELATIVNÍ VLHKOSTI. - pro měření relativní vlhkosti se používají metody měření

MĚŘENÍ RELATIVNÍ VLHKOSTI. - pro měření relativní vlhkosti se používají metody měření MĚŘENÍ RELATIVNÍ VLHKOSTI - pro měření relativní vlhkosti se používají metody měření obsahu vlhkosti vplynech Psychrometrické metody Měření rosného bodu Sorpční metody Rovnovážné elektrolytické metody

Více

Základy pyrometrie. - pyrometrie = bezkontaktní měření teploty. 0.4 µm... 25 µm - 40 0 C... 10 000 0 C

Základy pyrometrie. - pyrometrie = bezkontaktní měření teploty. 0.4 µm... 25 µm - 40 0 C... 10 000 0 C Základy pyrometrie - pyrometrie = bezkontaktní měření teploty 0.4 µm... 25 µm - 40 0 C... 10 000 0 C výhody: zanedbatelný vliv měřící techniky na objekt možnost měření rotujících nebo pohybujících se těles

Více

Obrazové snímače a televizní kamery

Obrazové snímače a televizní kamery Obrazové snímače a televizní kamery Prof. Ing. Václav Říčný, CSc. Současná televizní technika a videotechnika kurz U3V Program semináře a cvičení Snímače obrazových signálů akumulační a neakumulační. Monolitické

Více

Obrazové snímače a televizní kamery

Obrazové snímače a televizní kamery Obrazové snímače a televizní kamery Prof. Ing. Václav Říčný, CSc. Současná televizní technika a videotechnika kurz U3V Program semináře a cvičení Snímače obrazových signálů akumulační a neakumulační. Monolitické

Více

Použití. Výhody. Technické parametry. Certifikace. Přístroj ukazovací kompenzační ZEPAX 10. přístroj je určen k dálkovému měření fyzikálních veličin

Použití. Výhody. Technické parametry. Certifikace. Přístroj ukazovací kompenzační ZEPAX 10. přístroj je určen k dálkovému měření fyzikálních veličin Použití přístroj je určen k dálkovému měření fyzikálních veličin Výhody široká nabídka typů vstupních signálů možnost vybavení signalizací ve 2 a 4 mezních hodnotách Přístroj ukazovací kompenzační str.

Více

Fyzikální praktikum pro nefyzikální obory. Úloha č. 5: Měření teploty

Fyzikální praktikum pro nefyzikální obory. Úloha č. 5: Měření teploty Ústav fyzikální elektroniky PřF MU http://www.physics.muni.cz/kof/vyuka/ Fyzikální praktikum pro nefyzikální obory Úloha č. 5: Měření teploty 1. Úvod jarní semestr 2012 Teplota patří k nejdůležitějším

Více

Technická diagnostika, chyby měření

Technická diagnostika, chyby měření Technická diagnostika, chyby měření Obsah přednášky Technická diagnostika Měřicí řetězec Typy chyb měření Příklad diagnostiky: termovize ložisko 95 C měření 2/21 Co to je? Technická diagnostika Obdoba

Více

MaRweb.sk. P5102 Univerzální programovatelné dvouvodičové převodníky. Použití. Technické parametry. Popis

MaRweb.sk. P5102 Univerzální programovatelné dvouvodičové převodníky. Použití. Technické parametry. Popis www.marweb.sk P5102 Univerzální programovatelné dvouvodičové převodníky Jeden typ převodníku pro všechna běžná odporová i termoelektrická čidla. Linearizovaný výstupní signál 4 až 20 ma. Přesnost dle rozsahu

Více

Bezkontaktní termografie

Bezkontaktní termografie Bezkontaktní termografie Biofyzikální ústav LF MU Elektromagnetické spektrum http://cs.wikipedia.org/wiki/soubor:elmgspektrum.png Bezkontaktní termografie 2 Zdroje infračerveného záření Infračervené záření

Více

ABSTRAKT ABSTRACT. Radek Tomšej Dynamické vlastnosti teploměrů. Energetický ústav FSI VUT v Brně

ABSTRAKT ABSTRACT. Radek Tomšej Dynamické vlastnosti teploměrů. Energetický ústav FSI VUT v Brně ABSTRAKT Tato bakalářská práce se zabývá možnostmi měření teploty. V úvodní části práce jsou popsány jednotlivé metody, včetně principů, na kterých jsou založeny. Jsou zde uvedeny vhodnosti jednotlivých

Více

1 SENZORY V MECHATRONICKÝCH SOUSTAVÁCH

1 SENZORY V MECHATRONICKÝCH SOUSTAVÁCH 1 V MECHATRONICKÝCH SOUSTAVÁCH Senzor - důležitá součást většiny moderních elektronických zařízení. Účel: Zjišťovat přítomnost různých fyzikálních, většinou neelektrických veličin, a umožnit další zpracování

Více

Bezkontaktní me ř ení teploty

Bezkontaktní me ř ení teploty Bezkontaktní me ř ení teploty I když je bezkontaktní měření teploty velmi jednoduché - opravdu stačí "namířit na měřený objekt a na displeji odečíst teplotu" - pro dosažení správných hodnot, co nejvyšší

Více

Termodiagnostika pro úsporu nákladů v průmyslových provozech

Termodiagnostika pro úsporu nákladů v průmyslových provozech Termodiagnostika pro úsporu nákladů v průmyslových provozech SpektraVision s.r.o. Štěpán Svoboda Vidíme svět v celém spektru Zaměření společnosti Analyzátory kvality elektrické energie Zásahové termokamery

Více

P5201 Univerzální programovatelné převodníky s galvanickým oddělením

P5201 Univerzální programovatelné převodníky s galvanickým oddělením Převodníky - KB0288-2015/05 P5201 Univerzální programovatelné převodníky s galvanickým oddělením Jeden typ převodníku pro všechna běžná odporová i termoelektrická čidla. Výstupní signál dle provedení 4

Více

Měření teploty dotykové teplotoměry

Měření teploty dotykové teplotoměry Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Anotace: Inovace a zkvalitnění výuky prostřednictvím ICT Měření fyzikálních a technických veličin

Více

BEZDOTYKOVÉ TEPLOMĚRY

BEZDOTYKOVÉ TEPLOMĚRY Tento dokument je k disposici na internetu na adrese: http://www.vscht.cz/ufmt/kadleck.html BEZDOTYKOVÉ TEPLOMĚRY Bezdotykové teploměry doznaly v poslední době značného pokroku a rozšíření díky pokroku

Více

EXPERIMENTÁLNÍ METODY

EXPERIMENTÁLNÍ METODY 04 EXPERIMENTÁLNÍ METODY Pro zjištění informace o hodnotě teploty v daném místě a daném časovém okamžiku existují prvky, které lze charakterizovat aktuálním účelem například takto A měření teploty snímače

Více

Jihočeská univerzita v Českých Budějovicích. Pedagogická fakulta Katedra fyziky. Přístroje pro měření teplot. Bakalářská práce

Jihočeská univerzita v Českých Budějovicích. Pedagogická fakulta Katedra fyziky. Přístroje pro měření teplot. Bakalářská práce Jihočeská univerzita v Českých Budějovicích Pedagogická fakulta Katedra fyziky Přístroje pro měření teplot Bakalářská práce Vedoucí práce: Ing. Michal Šerý Autor: Josef Horelica Anotace Práce se zabývá

Více

LABORATORNÍ CVIČENÍ Z FYZIKY

LABORATORNÍ CVIČENÍ Z FYZIKY ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA APLIKOVANÉ MATEMATIKY FAKULTA DOPRAVNÍ LABORATORNÍ CVIČENÍ Z FYZIKY Jméno Jana Kuklová Stud. rok 7/8 Číslo kroužku 2 32 Číslo úlohy 52 Ročník 2. Klasifikace

Více

Fotoelektrické snímače

Fotoelektrické snímače Fotoelektrické snímače Úloha je zaměřena na měření světelných charakteristik fotoelektrických prvků (součástek). Pro měření se využívají fotorezistor, fototranzistor a fotodioda. Zadání 1. Seznamte se

Více

Měřící a senzorová technika

Měřící a senzorová technika VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ Měřící a senzorová technika Semestrální projekt Vypracovali: Petr Osadník Akademický rok: 2006/2007 Semestr: zimní Původní zadání úlohy

Více

Inteligentní převodníky SMART. Univerzální vícevstupový programovatelný převodník. 6xS

Inteligentní převodníky SMART. Univerzální vícevstupový programovatelný převodník. 6xS Univerzální vícevstupový programovatelný převodník 6xS 6 vstupů: DC napětí, DC proud, Pt100, Pt1000, Ni100, Ni1000, termočlánek, ( po dohodě i jiné ) 6 výstupních proudových signálů 4-20mA (vzájemně galvanicky

Více

Senzory teploty. Evropský sociální fond. Praha & EU: Investujeme do vaší budoucnosti.

Senzory teploty. Evropský sociální fond. Praha & EU: Investujeme do vaší budoucnosti. Senzory teploty Evropský sociální fond. Praha & EU: Investujeme do vaší budoucnosti. P. Ripka, 00 -teplota termodynamická stavová veličina -teplotní stupnice: Kelvinova (trojný bod vody 73,6 K), Celsiova,...

Více

6. STUDIUM SOLÁRNÍHO ČLÁNKU

6. STUDIUM SOLÁRNÍHO ČLÁNKU 6. STUDIUM SOLÁRNÍHO ČLÁNKU Měřicí potřeby 1) solární baterie 2) termoelektrická baterie 3) univerzální měřicí zesilovač 4) reostat 330 Ω, 1A 5) žárovka 220 V / 120 W s reflektorem 6) digitální multimetr

Více

MOLEKULOVÁ FYZIKA A TERMODYNAMIKA

MOLEKULOVÁ FYZIKA A TERMODYNAMIKA MOLEKULOVÁ FYZIKA A TERMODYNAMIKA 4. TEPLO, TEPLOTA, TEPELNÁ VÝMĚNA Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. TEPLO Teplo je míra změny vnitřní energie, kterou systém vymění při styku s jiným

Více

SNÍMAČE PRO MĚŘENÍ DEFORMACE

SNÍMAČE PRO MĚŘENÍ DEFORMACE SNÍMAČE PRO MĚŘENÍ DEFORMACE 8.1. Odporové tenzometry 8.2. Optické tenzometry 8.3. Bezkontaktní optické metody 8.1. ODOPROVÉ TENZOMETRY 8.1.1. Princip měření deformace 8.1.2. Kovové tenzometry 8.1.3. Polovodičové

Více

2.3 Elektrický proud v polovodičích

2.3 Elektrický proud v polovodičích 2.3 Elektrický proud v polovodičích ( 6 10 8 10 ) Ωm látky rozdělujeme na vodiče polovodiče izolanty ρ ρ ( 10 4 10 8 ) Ωm odpor s rostoucí teplotou roste odpor nezávisí na osvětlení nebo ozáření odpor

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 6.1a 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace emisivní

Více

FlexTop 2222 Univerzální převodník teploty s komunikací HART

FlexTop 2222 Univerzální převodník teploty s komunikací HART FlexTop 2222 Univerzální převodník teploty s komunikací HART Programovatelný přes USB port nebo HART komunikátor Kalibrace čidla ofsetem, sklonem charakteristiky nebo polynomem u odporových čidel lepší

Více

EXPERIMENTÁLNÍ METODY I. 4. Měření tlaků

EXPERIMENTÁLNÍ METODY I. 4. Měření tlaků FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I OSNOVA 4. KAPITOLY Úvod do problematiky měření tlaků Kapalinové tlakoměry

Více

Teorie měření a regulace

Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace měření hladiny 2 P-10b-hl ZS 2015/2016 2015 - Ing. Václav Rada, CSc. Hladinoměry Principy, vlastnosti, použití Jedním ze základních

Více

UNIVERZÁLNÍ PID REGULÁTORY

UNIVERZÁLNÍ PID REGULÁTORY UNIVERZÁLNÍ PID REGULÁTORY TZN4S (rozměry: š x v x h = 48 x 48 x 100mm) dvoupolohová nebo PID regulace jeden nezávislý alarm druhá žádaná hodnota externím kontaktem manuální i automatické nastavení konstant

Více

Detektory kovů řady Vistus

Detektory kovů řady Vistus Technické údaje Detektory kovů řady Vistus Dotykový displej Multifrekvenční technologie Vyšší vyhledávací citlivost Kratší bezkovová zóna Větší odolnost proti rušení 1 Základní popis zařízení Detektory

Více

11/18/2012. Snímače ve VPM. Snímače ve VPM obsah prezentace. Snímače ve VPM. Konstrukce polovodičových měničů

11/18/2012. Snímače ve VPM. Snímače ve VPM obsah prezentace. Snímače ve VPM. Konstrukce polovodičových měničů Snímače ve VPM Konstrukce polovodičových měničů Snímače ve VPM obsah prezentace Vlastnosti snímačů s Hallovým generátorem Proudová čidla smínač s Hallovým generátorem s otevřenou smyčkou smínač s Hallovým

Více

Bezpečnostní inženýrství. - Detektory požárů a senzory plynů -

Bezpečnostní inženýrství. - Detektory požárů a senzory plynů - Bezpečnostní inženýrství - Detektory požárů a senzory plynů - Úvod 2 Včasná detekce požáru nebo úniku nebezpečných látek = důležitá součást bezpečnostního systému Základní požadavky včasná detekce omezení

Více

Optoelektronické senzory. Optron Optický senzor Detektor spektrální koherence Senzory se CCD prvky Foveon systém

Optoelektronické senzory. Optron Optický senzor Detektor spektrální koherence Senzory se CCD prvky Foveon systém Optoelektronické senzory Optron Optický senzor Detektor spektrální koherence Senzory se CCD prvky Foveon systém Optron obsahuje generátor světla (LED) a detektor optické prostředí změna prostředí změna

Více

2010 Brno. Hydrotermická úprava dřeva - cvičení vnější parametry sušení

2010 Brno. Hydrotermická úprava dřeva - cvičení vnější parametry sušení 2010 Brno 06 - cvičení vnější parametry sušení strana 2 Proč určujeme parametry prostředí? správné řízení sušícího procesu odvislné na správném řízení naplánovaného sušícího procesu podle naměřených hodnot

Více

5. MĚŘENÍ TEPLOTY TERMOČLÁNKY

5. MĚŘENÍ TEPLOTY TERMOČLÁNKY . MĚŘENÍ TEPLOTY TEMOČLÁNKY Úkol měření Ověření funkce dvoudrátového převodníku XT pro měření teploty termoelektrickými články (termočlánky) a kompenzace studeného konce polovodičovým přechodem PN.. Ověřte

Více

Použití. Výhody. Technické parametry. Certifikace. Přístroj ukazovací číslicový ZEPAX 02

Použití. Výhody. Technické parametry. Certifikace. Přístroj ukazovací číslicový ZEPAX 02 str. 1/5 Použití přístroj je určen k dálkovému měření fyzikálních veličin, které jsou zobrazeny na 4 1/2 LED dispeji Výhody široká nabídka typů vstupních signálů možnost signalizace 2 mezních hodnot pomocí

Více

V da1ším budou popisovány pouze teploměry s převodem na elektrický signál.

V da1ším budou popisovány pouze teploměry s převodem na elektrický signál. 5. Měření teploty Základní jednotkou termodynamické teploty je K (Kelvin) a je to 73,6 tá část termodynamické teploty trojného bodu vody (od absolutní nulové teploty 0 K). Trojný bod vody je stav rovnováhy

Více

Fyzikální praktikum pro nefyzikální obory. Úloha č. 5: Měření teploty

Fyzikální praktikum pro nefyzikální obory. Úloha č. 5: Měření teploty Ústav fyzikální elektroniky Přírodovědecká fakulta, Masarykova univerzita, Brno Fyzikální praktikum pro nefyzikální obory 1 Úvod Úloha č. 5: Měření teploty jarní semestr 2015 Teplota patří k nejdůležitějším

Více

Příručka pro infračervenou měřicí techniku

Příručka pro infračervenou měřicí techniku Příručka pro infračervenou měřicí techniku 3. přepracované vydání Příručka pro infračervenou měřicí techniku Informace shromážděné naší firmou jsou uvedeny s veškerou vynaloženou pečlivostí a s odbornými

Více

PHCN-50. Uživatelská příručka

PHCN-50. Uživatelská příručka PHCN-50 Uživatelská příručka Průmyslové zapisovače a regulátory ph Série PHCN-50 $1105 Základní jednotka Zapisovač a regulátor ph Můžete vybírat ze 6 modelů Měření, regulace a zápis ph Rozsah od 2 do 12

Více

Železniční konstrukce II CN 04

Železniční konstrukce II CN 04 Železniční konstrukce II CN 04 Přednáška č. 7b Jaroslav Smutný 1 z 27 Teplotní senzory - jednotky Jednotky : k měření teploty se používají různé jednotky C stupeň Celsia v Evropě zaveden mezinárodní smlouvou

Více

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ (c) -2008, ACH/IM BLOKOVÉ SCHÉMA: (a) emisní metody (b) absorpční metody (c) luminiscenční metody U (b) monochromátor často umístěn před kyvetou se vzorkem. Části

Více

CZ.1.07/1.1.30/01.0038 SPŠ

CZ.1.07/1.1.30/01.0038 SPŠ Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 5 Téma: MĚŘENÍ V PROVOZECH TEPELNÉHO ZPRACOVÁNÍ Lektor: Ing. Jiří Hájek, Ph.D. Třída/y:

Více

15. Elektrický proud v kovech, obvody stejnosměrného elektrického proudu

15. Elektrický proud v kovech, obvody stejnosměrného elektrického proudu 15. Elektrický proud v kovech, obvody stejnosměrného elektrického proudu 1. Definice elektrického proudu 2. Jednoduchý elektrický obvod a) Ohmův zákon pro část elektrického obvodu b) Elektrický spotřebič

Více

AX-7520. Návod k obsluze. UPOZORNĚNÍ: Tento návod popisuje tři modely, které jsou odlišeny označením model A, B a C. A B C.

AX-7520. Návod k obsluze. UPOZORNĚNÍ: Tento návod popisuje tři modely, které jsou odlišeny označením model A, B a C. A B C. AX-7520 UPOZORNĚNÍ: Tento návod popisuje tři modely, které jsou odlišeny označením model A, B a C. A B C Nastavitelná emisivita Teplotní alarm Návod k obsluze OBSAH 1. Bezpečnostní informace...3 2. Bezpečnostní

Více

TERMOGRAFICKÉ MĚŘENÍ LOPATEK ROTAČNÍHO STROJE "FROTOR"

TERMOGRAFICKÉ MĚŘENÍ LOPATEK ROTAČNÍHO STROJE FROTOR TERMOMECHANIKA TECHNOLOGICKÝCH PROCESŮ VÝZKUMNÁ ZPRÁVA TERMOGRAFICKÉ MĚŘENÍ LOPATEK ROTAČNÍHO STROJE "FROTOR" Autoři: Ing. Pavel Litoš Ing. Jiří Tesař Číslo projektu: Číslo zprávy: Odpovědný pracovník

Více

11. Polovodičové diody

11. Polovodičové diody 11. Polovodičové diody Polovodičové diody jsou součástky, které využívají fyzikálních vlastností přechodu PN nebo přechodu kov - polovodič (MS). Nelinearita VA charakteristiky, zjednodušeně chápaná jako

Více

Molekulová fyzika a termika:

Molekulová fyzika a termika: Molekulová fyzika a termika: 1. Měření teploty: 2. Délková roztažnost a Objemová roztažnost látek 3. Bimetal 4. Anomálie vody 5. Částicová stavba látek, vlastnosti látek 6. Atomová hmotnostní konstanta

Více

Manuální, technická a elektrozručnost

Manuální, technická a elektrozručnost Manuální, technická a elektrozručnost Realizace praktických úloh zaměřených na dovednosti v oblastech: Vybavení elektrolaboratoře Schématické značky, základy pájení Fyzikální principy činnosti základních

Více

Chyby měřidel a metody měření vybraných fyzikálních veličin

Chyby měřidel a metody měření vybraných fyzikálních veličin Chyby měřidel a metody měření vybraných fyzikálních veličin Jaké měřidlo je vhodné zvolit? Pravidla: Přesnost měřidla má být pětkrát až desetkrát vyšší, než je požadovaná přesnost měření. Např. chceme-li

Více

ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ

ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ (1.1, 1.2 a 1.3) Ing. Pavel VYLEGALA 2014 Rozdělení snímačů Snímače se dají rozdělit podle mnoha hledisek. Základním rozdělení: Snímače

Více

Teplotní profil průběžné pece

Teplotní profil průběžné pece Teplotní profil průběžné pece Zadání: 1) Seznamte se s měřením teplotního profilu průběžné pece a s jeho nastavením. 2) Osaďte desku plošného spoje SMD součástkami (viz úloha 2, kapitoly 1.6. a 2) 3) Změřte

Více

Infračervený teploměr

Infračervený teploměr Infračervený teploměr testo 830 rychlé, bezdotykové měření povrchové teploty C Laserové označení místa měření a optika pro přesné měření i při větších vzdálenostech Rychlé zjištění měřené hodnoty dvěmi

Více

Mikrosenzory a mikroelektromechanické systémy

Mikrosenzory a mikroelektromechanické systémy Mikrosenzory a mikroelektromechanické systémy Ing. Jaromír Hubálek, Ph.D. Ústav mikroelektroniky U7/104 Tel. 54114 6163 hubalek@feec.vutbr.cz http://www.umel.feec.vutbr.cz/~hubalek Obsah Úvod do senzorové

Více

Infračervený teploměr

Infračervený teploměr Infračervený teploměr testo 830 rychlé, bezdotykové měření povrchové teploty Laserové označení místa měření a velká optika pro přesné měření i při větších vzdálenostech C Rychlé zjištění měřené hodnoty

Více

Snímkování termovizní kamerou

Snímkování termovizní kamerou AB Solartrip,s.r.o. Na Plavisku 1235 755 01 Vsetín www.solarniobchod.cz mobil 777 642 777, e-mail: r.ostarek@volny.cz AKCE: Termovizní diagnostika vnitřní prostory rodinného domu č. p. 197 Ústí u Vsetína

Více

ODPOROVÝ SNÍMAČ TEPLOTY DO JÍMKY

ODPOROVÝ SNÍMAČ TEPLOTY DO JÍMKY - odporový snímač teploty do jímky - měřící rozsah -200 C až +600 C ( závisí na typu použitého odporového senzoru ) - široký rozsah průměrů, typů a instalačních délek ( parametr "ponor" i parametr "nástavek"

Více

Inteligentní koberec ( )

Inteligentní koberec ( ) Inteligentní koberec (10.4.2007) Řešení projektu bylo rozděleno do dvou fází. V první fázi byly hledány vhodné principy konstrukce senzorového pole. Druhá fáze se zaměřuje na praktické ověření vlastností

Více