Teorie měření a regulace

Rozměr: px
Začít zobrazení ze stránky:

Download "Teorie měření a regulace"

Transkript

1 Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace měření teploty SP-t.2. ZS 2015/ Ing. Václav Rada, CSc.

2 Další pokračování o měření teploty a tepla

3 Termistory (krystalické) V posledních cca 20 letech se jako čidlo velmi často používá polovodič (polykrystal, nebo čistý krystal Si nebo Ge), který má výhodu v tom, že součástí měrného čipu může být zároveň obvod první úpravy signálu. Základní rozdělení tohoto druhu snímačů: polykrystalické termistory monokrystalické klasický polovodič s p-n nebo n-p přechodem.

4 Termistory

5 Termistory (krystalické) Dělí se na: negastory (zkratka NTC), se zápornou závislostí odporu na teplotě pozistory (PTC), s kladnou závislostí odporu na teplotě Teplotní součinitel odporu termistorů je pětkrát až padesátkrát větší než u kovových odporových snímačů. - R 0 od 10 1 do 10 6 Ω. Používají se především k měření nízkých a středních teplot - +4,2 až 600 K ( 269,8 až +327 C), horní hranice je zatím C.

6 Termistory NTC (negastory) Tento typ snímače využívá fyzikální závislost materiálu, z něhož je vyroben, kdy odpor v závislosti na teplotě klesá. Mají záporný teplotní koeficient pro nižší teploty strmější. Průběh statické charakteristiky je vždy nelineárním průběhem funkce odporu na teplotě. Jeho čidlo je podle typu a způsobu zapojení vstupního obvodu navazujícího přístroje, víceméně ovlivňováno proudem jím procházejícím. Materiály na bázi kysličníků: Fe 2 O 3, TiO 2, CuO, MnO, NiO, CoO a BaO.

7 Termistory NTC (negastory) NTC termistory se běžně používají pro měření teplot v teplotním rozsahu -50 až 150 C. Kromě přímého měření teploty mohou být termistory použity i pro měření jiných fyzikálních veličin např.: měření rychlosti průtoku kapalin a plynů potrubím teplotní kompenzace součástek v elektronických obvodech termostat požární hlásič.

8 Termistory NTC (negistory)

9 Termistory PTC (posistory) Má opačnou vlastnost odpor v závislosti na teplotě stoupá. Obvykle pro vyšší teploty strměji (pro nízké teploty někdy i trochu klesá je silně nelineární) - mají kladný teplotní koeficient. Stejně tak má nelineární statickou charakteristiku průběhu funkce odporu na teplotě. I jeho čidlo je, podle typu a způsobu zapojení, ovlivňováno proudem jím procházejícím. Obvyklým konstrukčním materiálem je polykrystalický kysličník BaTiO 2.

10 Tlustovrstvé termistory Jsou to velice levné a spolehlivé prvky pro dotyková měření teplot v průmyslu (v technologiích, v automobilech, v telekomunikacích aj.), ale i v lékařských aplikacích (!) Mají dostatečnou celkovou robustnost, malé rozměry, vysokou, mechanickou, chemickou odolnost a tepelnou přetížitelnost. Nevynikají vysokou přesností, ale pro běžné (nelaboratorní) aplikace je dostačující (1 % běžně). Jsou velmi rychlé dotyk je celou plochou čidla a miniaturní konstrukce zpožďuje přenos tepla jen minimálně. VR - ZS 2009/2010

11 (3.13) Termistory PTC (posistory) Teplotní závislost odporu termistoru a termodynamická teplota termistoru T je dána vztahem R Ae B T T kde R je odpor termistoru T ln A je konstanta závislá na geometrickém tvaru termistoru a materiálu nebo je to odpor při referenční teplotě B T je materiálová konstanta, která závisí na teplotě T T je termodynamická teplota termistoru. R R B 25 T B T T 25 1 B T ln 1 R R 25 1 T 25

12 Tlustovrstvé odporové teploměry (RTD) Jsou charakterizovány rozměrově tenkou dlouhou a různě tvarovanou linkou ze speciální pasty. Existují provedení NTC i PTC. Běžnější jsou NTC s teplotním součinitelem α = -3(7) * 10-3 K-1. Mají velmi dobrou linearitou. VR - ZS 2009/2010

13 Monokrastalické polovodičové termistory Pro měření teplot v rozsahu 160 až +150 C a čidla z arzenidu galia pro rozsah 270 až +270 C, u SiC do +450 C. Vyrábějí se z germania (Ge), křemíku (Si) a arzenidu galia (GaAs). S přechodem PN (diody, tranzistory) se používají v rozmezí teplot 1 až 400 K - výhodou polovodičové diody (tranzistoru v diodovém zapojení) je lineární závislost výstupního napětí přechodu na teplotě - v pásmu 1 až 30 K je citlivost čidla 55 mv/k, mezi 30 až 400 K je 2,75 mv/k - křemíková čidla se vyznačují malým šumem, jsou ale citlivější na vnější magnetické pole.

14 Tlustovrstvé termistory Jsou to velice levné a spolehlivé prvky pro dotyková měření teplot v průmyslu (v technologiích, v automobilech, v telekomunikacích aj.), ale i v lékařských aplikacích (!) Mají dostatečnou celkovou robustnost, malé rozměry, vysokou, mechanickou, chemickou odolnost a tepelnou přetížitelnost. Nevynikají vysokou přesností, ale pro běžné (nelaboratorní) aplikace je dostačující (1 % běžně). Jsou velmi rychlé dotyk je celou plochou čidla a miniaturní konstrukce zpožďuje přenos tepla jen minimálně.

15 Tlustovrstvé odporové teploměry (RTD) Jsou charakterizovány rozměrově tenkou dlouhou a různě tvarovanou linkou ze speciální pasty. Existují provedení NTC i PTC. Běžnější jsou NTC s teplotním součinitelem α = -3(7) * 10-3 K-1. Mají velmi dobrou linearitou.

16 Srovnání teplotní závislosti termistoru, Pt čidla a Ni čidla Odpor R [Ω] NTC termistor 20 Ω Pt1000 Ni Teplota T [K]

17 Termoelektrické snímače V 18. stol. A. Volta objevil, že při dotyku dvou různých kovů mezi nimi vzniká kontaktní napětí, přičemž zjistil, že jeho velikost závisí na druhu kovů a také na teplotě - přesněji Seebeckův jev Termoelektrické snímače pracují na principu vzniku termoelektrického napětí v místě (bodě) spojení (svaru) dvou vhodných materiálů obvykle kovů s rozdílným termoelektrickým potenciálem. Spojení je perličkový svár zaručujícího minimální fyzické rozměry takto vzniklého čidla - při dotykovém měření vyšších teplot představují v podstatě jediné řešení použitelné v praxi. Vlastnostmi kovů je dán pracovní rozsah teplot.

18 Termoelektrické snímače Materiál na výrobu termočlánků by měl vykazovat: co největší přírůstek termoelektrického napětí s teplotou maximálně (přirozeně) lineární přírůstek termoelektrického napětí s teplotou stabilitu údaje při dlouhodobém provozu stabilitu pro opakovatelnost měření odolnost proti chemickým a mechanickým vlivům. Páry materiálů pro vytvoření termočlánků jsou normalizovány.

19 Termoelektrické snímače Na styku dvou různých kovů s různou výstupní prací vzniká rozdíl potenciálů E úměrný teplotě tohoto místa a použitým materiálům. Při uzavření obvodu bude výstupní termoelektrické napětí U úměrné rozdílu teploty obou míst E º U = f[α (ϑ1 ϑ2)] kde ϑ1 je teplota měřicího spoje, ϑ2 teplota srovnávacího spoje (vztažná teplota, ČSN IEC 584), α Seebeckův koeficient použitých materiálů.

20 Termoelektrické snímače Jestliže teplota měřicího spoje bude různá od teploty t 0 srovnávacího spoje, vzniká termoelektrické napětí a obvodem prochází elektrický proud. Dále uvedený první vztah platí jen pro úzké rozmezí teplot.

21 Ve zjednodušené formě můžeme závislost termoelektrického napětí na teplotě vyjádřit lineárním vztahem: E = α AB * t m + α BA * t 0 = α AB * ( t m - t 0 ) α AB je koeficient závislý na materiálech použitých kovů a platí: α AB = - α BA. Pro přesnější vyjádření se používá vztahu: E = Σ a i * Δt. pro i = 0 až n (2 až 14 podle požadované přesnosti)

22 Zapojení měřicího obvodu s termočlánkem Dva spojené kovové vodiče A a B navzájem spolu spojené (vždy musí být obě spojení) jako srovnávací spoj = jedna z možností umístění měřicího přístroje (nedoporučuje se lepší je zapojit přístroj do jedné z obou větví) měřicí spoj = čidlo. Pro správnou funkci snímače je nutné aby teplota t 0 srovnávacího spoje byla konstantní (nejlépe nulová), nebo aby vliv termoelektrického napětí tohoto spoje byl kompenzován.

23 Termoelektrické snímače Materiál na výrobu termočlánků by měl vykazovat: co největší přírůstek termoelektrického napětí s teplotou maximálně (přirozeně) lineární přírůstek termoelektrického napětí s teplotou stabilitu údaje při dlouhodobém provozu stabilitu pro opakovatelnost měření odolnost proti chemickým a mechanickým vlivům. Páry materiálů pro vytvoření termočlánků jsou normalizovány.

24 Požadavky na měřicí obvody: minimalizace vlivu kolísání teploty srovnávacího spoje minimalizace vlivu odporu přívodů k senzoru potlačení rušivých signálů Potlačení vlivu teploty srovnávacího spoje: umístěním srovnávacího spoje do tepelně odisolovaného termostatu (speciální box, termoska, apod.) t 0 v praxi: v laboratoři při 0 C u provozních aplikací při 50 C

25 Zapojení měřicího obvodu s termočlánkem Pro správnou funkci snímače je nutné aby teplota t 0 srovnávacího spoje byla konstantní (0 C pro laboratorní měření a 50 C pro průmyslová měření), nebo aby vliv termoelektrického napětí tohoto spoje byl vykompenzován.

26 Zapojení měřicího obvodu s termočlánkem Kompenzační bod je na vstupní izotermické svorkovnici zesilovače nízko šumo vý zesilo vač, přípa dně filtry A/D převo dník elektroni cké obvody - mikropo čítač displej Mikropočítač řízení měření a sběru měřicích údajů měřicí rozsahy linearizace čidla filtry a tlumení korekce inženýrské výpočty, převody, úpravy jednotek diagnostika komunikace.

27 Měřicích přístroje v obvodech s termočlánkem

28 termočlánek s jedním spojem označovaným jako měřicí spoj kompenzační (prodlužovací) vedení je tvořeno z jiných kovů než termočlánek srovnávací spoje leží v místě připojení srovnávacího vedení příp. přímo měřicího přístroje ke kompenzačnímu vedení, jejich teplota je udržována na konstantní normované hodnotě (obvykle 0 C nebo 50 C) spojovací vedení z mědi (Cu), spoje vodičů musí mít stejnou teplotu, aby se neměnilo termoel. napětí a nevznikla chyba měřicí přístroj milivoltmetr je připojen ke kompenzačnímu vedení buď přes spojovací vedení nebo přímo : Termočlánek s jedním spojem

29 zajištěním konstantní teploty srovnávacího spoje použitím Dewarovy nádoby, ve které je teplota srovnávacích spojů udržována na konstantní hodnotě 0 C za pomoci směsi vody a ledu - používá se pro laboratorní měření teplot Termočlánek s Dewarovou nádobou

30 vložením srovnávacích spojů do termostatu společně s odporovým vinutím, které ohřívá spoje termočlánku, udržení teploty srovnávacích spojů na konstantní teplotě 50 C je zajištěno zapínání ohřevu bimetalicky ovládaným kontaktem - používá se i pro průmyslová měření teplot : Termočlánek s Dewarovou nádobou

31 spoj obou kovů - drátky průměrů od 0,5 do 3,5 mm spojené mechanicky, svářením nebo pájením - spoj musí splňovat čistotu, pevnost, dokonalý kontakt obou drátků a další + oba drátky je zapotřebí vzájemně el. izolovat. kovový plášť - měď, bronz nebo Monelův kov povrch se chromuje nebo nikluje - odolné do 500 C ocel - vydrží do 700 C - legovaná ocel - vydrží do 1200 C Konstrukce termočlánku

32 Termočlánky - podle použitých kovů a maximální teploty. Typ B C Typ C C Typ D C Typ E C, chromel-konstantan Typ G C Typ J C, 52,3 μv/ C, železo-konstantan Typ K C, 40,8 μv/ C, chromel-alumel (Cr-Al)

33 Termočlánky - podle použitých kovů a maximální teploty. Typ N C Typ R C, platinarhodium-platina Typ S C, 6,3 μv/ C Typ E C Typ T C, měď-konstantan

34 Typ termočlánku Složení Teplotní rozsah [ C] Průměrná hodnota termoelektrického koeficientu α [mv/ C] T měď konstantan (Cu CuNi) -200 až 300 0,0460 J železo konstantan (Fe CuNi) 20 až 700 0,0563 K chromel alumel (NiCr NiAl) 0 až ,0413 E chromel konstantan (NiCr CuNi) 0 až 800 0,0745 N nickrosil nisil (NiCrSi NiSiMg) 0 až ,0357 R PtRh13 Pt 0 až ,0100 S PtRh10 Pt 0 až ,0090 B PtRh30 PtRh6 100 až ,0050 G W WRh 20 až ,0140 C WRh5 WRh26 50 až ,0170 Typy termoelektrických článků

35 Termoelektrické napětí [V] 0,06 0,05 0,04 0,03 0,02 0,01 typ K typ J typ N typ R typ B typ E Teplota t [ C] Závislost termoelektrického napětí jednotlivých termočlánků na teplotě

36 Některé typy termočlánků T, J, K, S

37 Tlustovrstvé termočlánky Jsou charakterizovány dvěma vrstvami z různých speciálních past (obvykle jedna je vodivá a druhá odporová). Používají se pro rozsah teplot od -50 až do o C a mají přesnost měření ± 1 (10) o C. Jejich teplotní citlivost je od 10 až do (cca) 20 μv/ o K.

38 Tlustovrstvé termočlánky Jsou charakterizovány dvěma vrstvami z různých speciálních past (obvykle jedna je vodivá a druhá odporová). Používají se pro rozsah teplot od -50 až do o C a mají přesnost měření ± 1 (10) o C. Jejich teplotní citlivost je od 10 až do (cca) 20 μv/ o K.

39 Termoelektrické snímače základní charakteristiky

40 Termoelektrické snímače Vliv teploty na nejistotu termoelektrických čidel

41 Termoelektrické snímače

42 Termoelektrické snímače konstrukční řešení

43 výhodou je malá tepelná kapacita Průmyslové provedení snímačů termočlánek připojovací vývod isolační rukojeť kovová kapilára - niklová nebo nerezová trubička Ø 0,5 mm vyplněná práškovým MgO nebo Al2O3

44 Termoelektrické snímače konstrukční řešení

45 Bezkontaktní měření teploty

46

47 Emisivní / radiační snímače pyrometry Principem je snímání záření tělesa, které každé těleso vyzařuje do chladnějšího okolního prostoru v určitém frekvenčním spektru. Celková energie, kterou těleso vyzařuje jednotkovou plochou za jednotku času, se nazývá celkovou zářivostí. Čidlem je tzv. Bolometr teplotně emisivní prvek.

48 Bezkontaktní měření teploty Bezdotykové měření teplot je založeno na skutečnosti, že povrch každého tělesa, jehož teplota je vyšší než 0 K tj. -273,15 C, vyzařuje = emituje do svého okolí elektromagnetické záření = tepelné záření, protože je spojeno s tepelným pohybem částic tělesa - s použitím zákonů záření (Wienův zákon, Stefan Boltzmannův zákon...) určí jeho povrchová teplota - emise záření závisí na teplotě tělesa a na vlastnostech povrchu tělesa (materiálu tělesa). viz speciální přednáška

49 Bezkontaktní měření teploty Základem snímače je Bolometrický detektor záření - tvořen odporovým čidlem, jehož odpor je závislý na teplotě - elektromagnetické záření emitované tělesem, jehož teplotu chceme určit, dopadá přes vstupní okénko (plní funkci filtru tj. musí odstínit záření, které předpokládáme, že není emitováno měřeným předmětem) na odporové čidlo, které je pokryto černým lakem pro zajištění lepší absorpce - např. při nízkých teplotách se neemituje viditelné záření a vhodný filtr ho odstíní a propustí pouze IR záření. viz speciální přednáška

50 mikrobolometry jedná se o desítky až tisíce bolometrů uspořádaných do matice, někdy označované jako bolometrické pole - element je tvořen odporovou vrstvou z oxidu vanadu, na které dochází k absorpci IR záření a je od křemíkového substrátu tepelně izolována pomocí mikromůstku, izolantem je vzduch viz speciální přednáška

51

52

53 Optické vláknové snímače Optické vláknové snímače (OVS) patří do třetí generace snímačů, jejichž vznik spadá současně s prvními v praxi použitelnými optickými vlákny zhruba do konce šedesátých a začátku sedmdesátých let minulého století - jejich nástup byl velmi razantní, nicméně od té doby zájem o ně poklesl, dnes opět renesance. Ačkoliv neexistuje fyzikální veličina, kterou by nebylo možné těmito snímači měřit, nerozšířily se tak, jak se z počátku předpokládalo - hlavními příčinami byla ekonomická stránka a také určitý konzervatismus uživatelů měřicí a regulační techniky.

54 Optické vláknové snímače Využívají odlišných fyzikálních principů a konstrukcí, takže mají zejména velká citlivost, odolnost proti vnějšímu rušení (včetně optického záření), velký izolační odpor ( galvanické oddělení), jiskrová bezpečnost (do 7 mw), rychlá odezva a velká šířka frekvenčního pásma, malá energetická náročnost, velká pevnost v tahu, mechanická pružnost a velký dynamický rozsah, odolnost proti působení agresivního prostředí, použitelnost v obtížně přístupných místech (bez přímé viditelnosti), technologická a obvodová kompatibilita, lepší utajitelnost a malé rozměry (mikromechanické systémy).

55 Optické vláknové snímače Vláknové optické snímače lze využít jako snímače rotace, zrychleni, elektrickeho pole a magnetického pole, teploty, tlaku, vlhkosti, viskozity, chemických a biochemických vlastnosti.

56 Optické vláknové snímače Využívají vlastnosti optických vláken při přenosu záření diody GeAs. Jsou založeny na dvou principech: změna teploty ovlivňuje absorpci a mění přenášené spektrum změna teploty ovlivňuje úbytek intenzity fluorescence. Optické vláknové snímače teploty jsou výhodné zejména pro provozní měření.

57 Optické vláknové snímače Zdrojem optického záření je nejčastěji luminiscenční dioda (nekoherentní zdroj) nebo laserová dioda (koherentní zdroj) - je charakterizován zejména vlnovou délkou l, šířkou pásma Dl, optickým výkonem, stabilitou a druhem provozu (kontinuální nebo pulzní). Snímačem optického záření je obvykle fotodioda, dioda PIN nebo lavinová dioda (podle požadované citlivosti, odstupu signál-šum, zisku a způsobu dalšího zpracování signálu).

58 Optické vláknové snímače Teplota působící na optické vlákno vyvolává změny jeho optických vlastností. Nejčastěji jsou optické vláknové snímače založeny na generátorovém principu (v bodovém nebo rozprostřeném provedení), na spektrálně závislé absorpci (emisi) a fluorescenci, dilataci, doznívání fluorescence v čase, na závislosti indexu lomu, dvojlomu a rozptylu záření, popř. na dalších principech. VR - ZS 2009/2010

59 Optické vláknové snímače Čidlo se změnou vzájemné vazby světlovodů

60 Teploměry využívající optické vlákno Optické vlákno je dielektrický vlnovod, nejčastěji vyrobený z různých druhů skla nebo plastu, ve kterém se šíří elektromagnetické vlny ve směru podélné osy vlákna - nejčastěji se jedná o světlo popřípadě infračervené záření. Optické vlákno je vyrobeno ze dvou materiálů, které se od sebe liší hodnotou indexu lomu - kruhové jádro s indexem lomu n j, které je obklopeno válcovým pláštěm s indexem lomu n p. Obal slouží k ochraně a zpevnění jádra - celé optické vlákno je obaleno primární ochranou.

61 Teploměry využívající optické vlákno Základem každého fluorescenčního optovláknového snímače je sonda z fluorescenčního materiálu např. krystal LiSrAlF6:Cr3+. Zdroj záření - laserová dioda světlo červené barvy (λ = 670 nm). Vybuzené světlo je vedeno optickým vláknem přes jednoduchý skleněný filtr - propustí pouze světlo určitého intervalu vlnových délek je to dělič světla. Filtrem oddělené excitované světlo je vedeno na fotodetektor, kde je změřena doba poklesu intenzity fluorescence, úměrná teplotě.

62 Teploměry využívající optické vlákno Základem každého fluorescenčního optovláknového

63 Teploměry využívající optické vlákno Senzory využívající deformaci vlákna jsou založeny na jeho deformaci, což se projeví vznikem mikroohybů podél vlákna - dosáhnou-li mikroohyby kritického poloměru, dojde k porušení podmínek šíření světla tj. porušení podmínek pro vznik totálního odrazu na rozhraní jádro plášť.

64 Optické vláknové snímače bodové provedení Syntetický monokrystalický safír funguje jako černé těleso, které je v kontaktu s médiem jehož teplota se měří - zářivá energie je přenášena přes optické filtry na fotodetektor - přenos probíhá buď přímo optickým vláknem, nebo častěji oddělovacím safírovým vláknem Výstupní elektrický signál je úměrný měřené teplotě v rozsahu 500 až C a dosáhnout citlivosti v řádu 10 3 K (při teplotě C) - je dlouhodobě stabilní (10 6 /h), odolávají prudkým změnám teploty, korozi atd. - přesnost je podstatně lepší než u termočlánků (v Kanadě je používán v metrologii jako standard). Technologický proces výroby snímače je náročný.

65 Základní uspořádání reflexního snímače teploty

66 Měření odběru tepla Regulace otopných soustav se používá dlouhou řadu let. Jejím cílem je zabezpečit dodržení požadované teploty v daném (regulací ovlivněném) prostoru a to i při extrémních okolních podmínkách a vlivech. Návrh regulace musí zajistit rovnováhu mezi dodávaným teplem (spotřebovanou energií na jeho vznik a případně dopravu k místu spotřeby) a tepelnými ztrátami daného prostoru. To v praxi znamená zajistit optimální teplotu vyhřívacího média (obvykle teplé vody).

67 T e T úkž T i T úk regulátor čerpadlo radiátor T k (servo)pohon směšovací ventil kotel T rv servopohon

68 útlum posuv křivka T ukž požadovan á teplota otopné vody T ukž systém ekvitermických křivek teplota vratné vody T rv + - T rv kotel skutečná teplota otopné vody T už T už radiátor T r skutečná teplota T i v místnosti místnost T e T i T uk teplota otopné vody T uk střední teplota vody T r v radiátoru T e venkovní teplota T e T i

69 υ 1 PP υ 2 VP y 1 y K K ) - X K 1 y 1 - y 2 y 2 +) K * INT( y dt ) 0, T

70 datová linka pro dálkový odečet parní zdroj tepla napájení 230 V měřicí a vyhodnocovací zařízení množství tepla v páře tlak topný objekt průtokoměr zpětného kondenzátu teplota Pt100 datová linka pro dálkový odečet parní zdroj tepla napájení 230 V měřicí a vyhodnocovací zařízení množství tepla v páře pomocí entalpie páry tlak topný objekt teplota Pt100 datová linka pro dálkový odečet napájení 230 V měř. teploty Pt100 zdroj tepla měř. teploty Pt100 měřicí a vyhodnocovací zařízení množství tepla ve vodě průtokoměr topný objekt uzavřený topný systém

71 TEPLOTA - je mírou termální energie obsažené v jakémkoliv objektu TEPLOTA - lze ji měřit u kteréhokoliv existujícího objektu - existuje velké množství měřicích metod a prostředků TEPLOTA - její hodnoty jsou definovány teplotní stupnicí TEPLOTA - v podstatě vyjadřuje kterým směrem teče tepelný tok vyrovnávající teplotu mezi dvěma (více) objekty

72 Existují tři základní typy přenosu tepla: - vedení (kondukce) - proudění (konvence) - záření (radiace) Všechno teplo musí být přeneseno (šířeno) jedním z těchto tří způsobů Obvykle to však je kombinace dvou či všech tří způsobů přenosu tepla

73 a to by bylo k informačnímu přehledu o teplotě a teple (skoro) vše

74 Témata VR - ZS 2014/2015

MĚŘENÍ TEPLOTY. Přehled technických teploměrů. Teploměry kapalinové. Teploměry tenzní. Rozdělení snímačů teploty: Ukázky aplikace termochromních barev

MĚŘENÍ TEPLOTY. Přehled technických teploměrů. Teploměry kapalinové. Teploměry tenzní. Rozdělení snímačů teploty: Ukázky aplikace termochromních barev MĚŘENÍ TEPLOTY teplota je jednou z nejdůležitějších veličin ovlivňujících téměř všechny stavy a procesy v přírodě při měření teploty se měří obecně jiná veličina A, která je na teplotě závislá podle určitého

Více

Základní pojmy. T = ϑ + 273,15 [K], [ C] Definice teploty:

Základní pojmy. T = ϑ + 273,15 [K], [ C] Definice teploty: Definice teploty: Základní pojmy Fyzikální veličina vyjadřující míru tepelného stavu tělesa Teplotní stupnice Termodynamická (Kelvinova) stupnice je určena dvěma pevnými body: absolutní nula (ustává termický

Více

Fyzikální praktikum pro nefyzikální obory. Úloha č. 5: Měření teploty

Fyzikální praktikum pro nefyzikální obory. Úloha č. 5: Měření teploty Ústav fyzikální elektroniky PřF MU http://www.physics.muni.cz/kof/vyuka/ Fyzikální praktikum pro nefyzikální obory Úloha č. 5: Měření teploty 1. Úvod jarní semestr 2012 Teplota patří k nejdůležitějším

Více

SNÍMAČE. - čidla, senzory snímají měří skutečnou hodnotu regulované veličiny (dávají informace o stavu technického zařízení).

SNÍMAČE. - čidla, senzory snímají měří skutečnou hodnotu regulované veličiny (dávají informace o stavu technického zařízení). SNÍMAČE - čidla, senzory snímají měří skutečnou hodnotu regulované veličiny (dávají informace o stavu technického zařízení). Rozdělení snímačů přímé- snímaná veličina je i na výstupu snímače nepřímé -

Více

Fyzikální praktikum pro nefyzikální obory. Úloha č. 5: Měření teploty

Fyzikální praktikum pro nefyzikální obory. Úloha č. 5: Měření teploty Ústav fyzikální elektroniky Přírodovědecká fakulta, Masarykova univerzita, Brno Fyzikální praktikum pro nefyzikální obory 1 Úvod Úloha č. 5: Měření teploty jarní semestr 2015 Teplota patří k nejdůležitějším

Více

2. Pasivní snímače. 2.1 Odporové snímače

2. Pasivní snímače. 2.1 Odporové snímače . Pasivní snímače Pasivní snímače při působení měřené veličiny mění svoji charakteristickou vlastnost, která potom ovlivní tok elektrické energie. Její změna je pak mírou hodnoty měřené veličiny. Pasivní

Více

Senzory teploty. Evropský sociální fond. Praha & EU: Investujeme do vaší budoucnosti.

Senzory teploty. Evropský sociální fond. Praha & EU: Investujeme do vaší budoucnosti. Senzory teploty Evropský sociální fond. Praha & EU: Investujeme do vaší budoucnosti. P. Ripka, 00 -teplota termodynamická stavová veličina -teplotní stupnice: Kelvinova (trojný bod vody 73,6 K), Celsiova,...

Více

-80 +400 širokopásmové zachycení veškerého teplotního

-80 +400 širokopásmové zachycení veškerého teplotního Měřicí a řídicí technika 3. přednáška Obsah přednášky: Přehled snímačů teploty Principy, vlastnosti a použití dotykových snímačů teploty bezdotykových snímačů teploty Teplota je jednou z nejdůležitějších

Více

2. Pasivní snímače. 2.1 Odporové snímače

2. Pasivní snímače. 2.1 Odporové snímače . Pasivní snímače Pasivní snímače mění při působení měřené některou svoji charakteristickou vlastnost. Její změna je pak mírou hodnoty měřené veličiny a ta potom ovlivní tok elektrické energie ve vyhodnocovacím

Více

EXPERIMENTÁLNÍ METODY 1.

EXPERIMENTÁLNÍ METODY 1. EXPERIMENTÁLNÍ METODY 1. Ing. Tomáš Matuška, Ph.D. a Ing. Luděk Mareš Praha 009 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Obsah Obsah... 1 Předmluva... 5 1. Základní zásady měření

Více

EXPERIMENTÁLNÍ METODY

EXPERIMENTÁLNÍ METODY 04 EXPERIMENTÁLNÍ METODY Pro zjištění informace o hodnotě teploty v daném místě a daném časovém okamžiku existují prvky, které lze charakterizovat aktuálním účelem například takto A měření teploty snímače

Více

λ hc Optoelektronické součástky Fotorezistor, Laserová dioda

λ hc Optoelektronické součástky Fotorezistor, Laserová dioda Optoelektronické součástky Fotorezistor, Laserová dioda Úvod Optoelektronické součástky jsou založeny na interakci optického záření s elektricky nabitými částicemi v polovodičích. Vztah mezi energií fotonů

Více

9. MĚŘENÍ SÍLY TENZOMETRICKÝM MŮSTKEM

9. MĚŘENÍ SÍLY TENZOMETRICKÝM MŮSTKEM 9. MĚŘENÍ SÍLY TENZOMETRICKÝM MŮSTKEM Úkoly měření: 1. Změřte převodní charakteristiku deformačního snímače síly v rozsahu 0 10 kg 1. 2. Určete hmotnost neznámého závaží. 3. Ověřte, zda lze měření zpřesnit

Více

BEZDOTYKOVÉ TEPLOMĚRY

BEZDOTYKOVÉ TEPLOMĚRY Tento dokument je k disposici na internetu na adrese: http://www.vscht.cz/ufmt/kadleck.html BEZDOTYKOVÉ TEPLOMĚRY Bezdotykové teploměry doznaly v poslední době značného pokroku a rozšíření díky pokroku

Více

Smart Temperature Contact and Noncontact Transducers and their Application Inteligentní teplotní kontaktní a bezkontaktní senzory a jejich aplikace

Smart Temperature Contact and Noncontact Transducers and their Application Inteligentní teplotní kontaktní a bezkontaktní senzory a jejich aplikace XXXII. Seminar ASR '2007 Instruments and Control, Farana, Smutný, Kočí & Babiuch (eds) 2007, VŠB-TUO, Ostrava, ISBN 978-80-248-1272-4 Smart Temperature Contact and Noncontact Transducers and their Application

Více

2. kapitola: Přenosová cesta optická (rozšířená osnova)

2. kapitola: Přenosová cesta optická (rozšířená osnova) Punčochář, J: AEO; 2. kapitola 1 2. kapitola: Přenosová cesta optická (rozšířená osnova) Čas ke studiu: 4 hodiny Cíl: Po prostudování této kapitoly budete umět identifikovat prvky optického přenosového

Více

Výukové texty. pro předmět. Měřící technika (KKS/MT) na téma. Základní charakteristika a demonstrování základních principů měření veličin

Výukové texty. pro předmět. Měřící technika (KKS/MT) na téma. Základní charakteristika a demonstrování základních principů měření veličin Výukové texty pro předmět Měřící technika (KKS/MT) na téma Základní charakteristika a demonstrování základních principů měření veličin Autor: Doc. Ing. Josef Formánek, Ph.D. Základní charakteristika a

Více

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Charakteristiky termistoru. stud. skup.

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Charakteristiky termistoru. stud. skup. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II. Úloha č. IX Název: Charakteristiky termistoru Pracoval: Lukáš Vejmelka stud. skup. FMUZV (73) dne 17.10.2013 Odevzdal

Více

SONDY VLHKOSTI A SONDY VLHKOSTI a TEPLOTY s frekvenčním výstupem

SONDY VLHKOSTI A SONDY VLHKOSTI a TEPLOTY s frekvenčním výstupem HUMISTAR DUBEN 2008 URČENÍ SONDY VLHKOSTI A SONDY VLHKOSTI a TEPLOTY s frekvenčním výstupem řada HP- 3 a HTP- 3 Měřicí sondy vlhkosti a teploty řady HTP-3 se používají ke kontinuálnímu měření vlhkosti

Více

speciální topné kabely

speciální topné kabely speciální topné kabely KABELOVÉ TOPNÉ SYSTÉMY SR samoregulační topný kabel - popis SR samoregulační topný kabel - oblast použití FTS0 kabel pro vysoké teploty - popis FTS0 kabel pro vysoké teploty - oblast

Více

Návod pro laboratorní úlohu: Závislost citlivosti plynových vodivostních senzorů na teplotě

Návod pro laboratorní úlohu: Závislost citlivosti plynových vodivostních senzorů na teplotě Návod pro laboratorní úlohu: Závislost citlivosti plynových vodivostních senzorů na teplotě Náplní laboratorní úlohy je proměření základních parametrů plynových vodivostních senzorů: i) el. odpor a ii)

Více

4. Zpracování signálu ze snímačů

4. Zpracování signálu ze snímačů 4. Zpracování signálu ze snímačů Snímače technologických veličin, pasivní i aktivní, zpravidla potřebují převodník, který transformuje jejich výstupní signál na vhodnější formu pro další zpracování. Tak

Více

Návod pro laboratorní úlohu: Komerční senzory plynů a jejich testování

Návod pro laboratorní úlohu: Komerční senzory plynů a jejich testování Návod pro laboratorní úlohu: Komerční senzory plynů a jejich testování Úkol měření: 1) Proměřte závislost citlivosti senzoru TGS na koncentraci vodíku 2) Porovnejte vaši citlivostní charakteristiku s charakteristikou

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ Katedra elektromechaniky a výkonové elektroniky BAKALÁŘSKÁ PRÁCE Dynamický ohřev kabelových vodičů Martin Kupilík 2013 Abstrakt Předkládaná bakalářská

Více

Senzorika a senzorické soustavy

Senzorika a senzorické soustavy Senzorika a senzorické soustavy Snímače teploty Tato publikace vznikla jako součást projektu CZ.04.1.03/3.2.15.2/0285 Inovace VŠ oborů strojního zaměření, který je spolufinancován evropským sociálním fondem

Více

11-1. PN přechod. v přechodu MIS (Metal - Insolator - Semiconductor),

11-1. PN přechod. v přechodu MIS (Metal - Insolator - Semiconductor), 11-1. PN přechod Tzv. kontaktní jevy vznikají na přechodu látek s rozdílnou elektrickou vodivostí a jsou základem prakticky všech polovodičových součástek. v přechodu PN (který vzniká na rozhraní polovodiče

Více

5. ELEKTRICKÁ MĚŘENÍ

5. ELEKTRICKÁ MĚŘENÍ Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - T Ostrava 5. ELEKTCKÁ MĚŘENÍ rčeno pro posluchače všech bakalářských studijních programů FS 5.1 Úvod 5. Chyby měření 5.3 Elektrické

Více

9. MĚŘENÍ TEPELNÉ VODIVOSTI

9. MĚŘENÍ TEPELNÉ VODIVOSTI Měřicí potřeby 9. MĚŘENÍ TEPELNÉ VODIVOSTI 1) střídavý zdroj s regulačním autotransformátorem 2) elektromagnetická míchačka 3) skleněná kádinka s olejem 4) zařízení k měření tepelné vodivosti se třemi

Více

METODY CHARAKTERIZACE POLOVODIVÝCH TERMOELEKTRICKÝCH MATERIÁLŮ

METODY CHARAKTERIZACE POLOVODIVÝCH TERMOELEKTRICKÝCH MATERIÁLŮ METODY CHARAKTERIZACE POLOVODIVÝCH TERMOELEKTRICKÝCH MATERIÁLŮ J. KAŠPAROVÁ, Č. DRAŠAR Fakulta chemicko - technologická, Univerzita Pardubice, Studentská 573, 532 10 Pardubice, CZ, e-mail:jana.kasparova@upce.cz

Více

Obsah. Zobrazovací a ovládací prvky na čelním panelu. Účel použití. Elektrické zapojení. Obr. 5.2-1: Analogový vstupní modul 07 AI 91

Obsah. Zobrazovací a ovládací prvky na čelním panelu. Účel použití. Elektrické zapojení. Obr. 5.2-1: Analogový vstupní modul 07 AI 91 5. Analogový vstupní modul 07 AI 91 8 vstupů, konfigurovatelných pro teplotní senzory nebo jako proudové nebo napěťové vstupy, napájení 4 V DC, CS31 - linie 1 1 3 4 Obr. 5.-1: Analogový vstupní modul 07

Více

MENDELOVA UNIVERZITA V BRNĚ AGRONOMICKÁ FAKULTA DIPLOMOVÁ PRÁCE

MENDELOVA UNIVERZITA V BRNĚ AGRONOMICKÁ FAKULTA DIPLOMOVÁ PRÁCE MENDELOVA UNIVERZITA V BRNĚ AGRONOMICKÁ FAKULTA DIPLOMOVÁ PRÁCE BRNO 2010 Bc. JIŘÍ KRÁL Mendelova univerzita v Brně Agronomická fakulta Ústav zemědělské, potravinářské a environmentální techniky Měření

Více

d p o r o v t e p l o m ě r, t e r m o č l á n k

d p o r o v t e p l o m ě r, t e r m o č l á n k d p o r o v t e p l o m ě r, t e r m o č l á n k Ú k o l : a) Proveďte kalibraci odporového teploměru, termočlánku a termistoru b) Určete teplotní koeficienty odporového teploměru, konstanty charakterizující

Více

Chlazení termovizní kamery

Chlazení termovizní kamery TECHNICKÁ UNIVERZITA V LIBERCI Fakulta strojní Studijní program B 2341 - Strojírenství Studijní obor: 2301R022 Stroje a zařízení Zaměření: Sklářské stroje Chlazení termovizní kamery (Thermovisual camera

Více

SNÍMAČE PRO MĚŘENÍ TEPLOTY

SNÍMAČE PRO MĚŘENÍ TEPLOTY SNÍMAČE PRO MĚŘENÍ TEPLOTY 10.1. Kontaktní snímače teploty 10.2. Bezkontaktní snímače teploty 10.1. KONTAKTNÍ SNÍMAČE TEPLOTY Experimentální metody přednáška 10 snímač je připevněn na měřený objekt 10.1.1.

Více

1 ZÁKLADNÍ VLASTNOSTI TECHNICKÝCH MATERIÁLŮ Vlastnosti kovů a jejich slitin jsou dány především jejich chemickým složením a strukturou.

1 ZÁKLADNÍ VLASTNOSTI TECHNICKÝCH MATERIÁLŮ Vlastnosti kovů a jejich slitin jsou dány především jejich chemickým složením a strukturou. 1 ZÁKLADNÍ VLASTNOSTI TECHNICKÝCH MATERIÁLŮ Vlastnosti kovů a jejich slitin jsou dány především jejich chemickým složením a strukturou. Z hlediska použitelnosti kovů v technické praxi je obvyklé dělení

Více

SONDY VLHKOSTI A SONDY VLHKOSTI a TEPLOTY s frekvenčním výstupem

SONDY VLHKOSTI A SONDY VLHKOSTI a TEPLOTY s frekvenčním výstupem HUMISTAR LEDEN 2009 URČENÍ SONDY VLHKOSTI A SONDY VLHKOSTI a TEPLOTY s frekvenčním výstupem řady HP- 7 a HTP-7 Měřicí sondy vlhkosti a teploty řady HTP-7... se používají ke kontinuálnímu měření vlhkosti

Více

T8360A. Honeywell MECHANICKÉ PROSTOROVÉ TERMOSTATY. Použití. Technické parametry. Hlavní rysy. Konstrukce

T8360A. Honeywell MECHANICKÉ PROSTOROVÉ TERMOSTATY. Použití. Technické parametry. Hlavní rysy. Konstrukce říjen 2007 T8360 MECHANICKÉ PROSTOROVÉ TERMOSTATY Použití Mechanické prostorové termostaty jsou nejjednodušší formou automatické regulace prostorové teploty. Jestliže jsou použity v systémech vytápění

Více

11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr

11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr Úvod: 11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr Odporové senzory teploty (například Pt100, Pt1000) použijeme pokud chceme měřit velmi přesně teplotu v rozmezí přibližně 00 až +

Více

VY_32_INOVACE_AUT-2.N-13-SNIMACE SE ZMENOU ODPORU. Střední odborná škola a Střední odborné učiliště, Dubno

VY_32_INOVACE_AUT-2.N-13-SNIMACE SE ZMENOU ODPORU. Střední odborná škola a Střední odborné učiliště, Dubno Číslo projektu Číslo materiálu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0581 VY_32_INOVACE_AUT-2.N-13-SNIMACE SE ZMENOU ODPORU Střední odborná škola a Střední odborné učiliště, Dubno

Více

MaRweb.sk. PT-011 až PT-042 Řada programovatelných převodníků. pro odporová a termoelektrická čidla

MaRweb.sk. PT-011 až PT-042 Řada programovatelných převodníků. pro odporová a termoelektrická čidla MaRweb.sk www.marweb.sk PT-011 až PT-042 Řada programovatelných převodníků pro odporová a termoelektrická čidla Převádějí odporový signál Pt100 nebo napěťový signál termočlánku na lineární proudový signál

Více

Měření Planckovy konstanty

Měření Planckovy konstanty Měření Planckovy konstanty Online: http://www.sclpx.eu/lab3r.php?exp=2 Pro stanovení přibližné hodnoty Planckovy konstanty jsme vyšli myšlenkově z experimentu s LED diodami, viz např. [8], [81], nicméně

Více

P5310, P5311 Levné programovatelné převodníky s LHP komunikací

P5310, P5311 Levné programovatelné převodníky s LHP komunikací Převodníky - KB0824-2013/10 P5310, P5311 Levné programovatelné převodníky s LHP komunikací Univerzální převodník pro všechna běžná odporová i termoelektrická čidla. Unifikovaný proudový výstupní signál

Více

9. ČIDLA A PŘEVODNÍKY

9. ČIDLA A PŘEVODNÍKY Úvod do metrologie - 49-9. ČIDLA A PŘEVODNÍKY (V.LYSENKO) Čidlo (senzor, detektor, receptor) je em jedné fyzikální veličiny na jinou fyzikální veličinu. Snímač (senzor + obvod pro zpracování ) je to člen

Více

Teploty prostorové s převodníkem Snímač teploty s převodníkem

Teploty prostorové s převodníkem Snímač teploty s převodníkem Katalog výrobků 3 - Snímače a čidla eploty prostorové s převodníkem Snímač teploty s převodníkem Malého tlaku s převodníkem Snímač diference tlaku Snímač rychlosti proudění laku a tlakové diference Snímač

Více

Střední odborná škola a Střední odborné učiliště, Hradec Králové, Vocelova 1338, příspěvková organizace

Střední odborná škola a Střední odborné učiliště, Hradec Králové, Vocelova 1338, příspěvková organizace Střední odborná škola a Střední odborné učiliště, Hradec Králové, Vocelova 1338, příspěvková organizace Registrační číslo projektu: Číslo DUM: Tematická oblast: Téma: Autor: CZ.1.07/1.5.00/34.0245 VY_32_INOVACE_08_A_07

Více

MS měření teploty 1. METODY MĚŘENÍ TEPLOTY: Nepřímá Přímá - Termoelektrické snímače - Odporové kovové snímače - Odporové polovodičové

MS měření teploty 1. METODY MĚŘENÍ TEPLOTY: Nepřímá Přímá - Termoelektrické snímače - Odporové kovové snímače - Odporové polovodičové 1. METODY MĚŘENÍ TEPLOTY: Nepřímá Přímá - Termoelektrické snímače - Odporové kovové snímače - Odporové polovodičové 1.1. Nepřímá metoda měření teploty Pro nepřímé měření oteplení z přírůstků elektrických

Více

Úloha č. 8 Vlastnosti optických vláken a optické senzory

Úloha č. 8 Vlastnosti optických vláken a optické senzory Úloha č. 8 Vlastnosti optických vláken a optické senzory Optické vlákna patří k nejmodernějším přenosovým médiím. Jejich vysoká přenosová kapacita a nízký útlum jsou hlavní výhody, které je staví před

Více

Mikrosenzory a mikroelektromechanické systémy. Odporové senzory

Mikrosenzory a mikroelektromechanické systémy. Odporové senzory Mikrosenzory a mikroelektromechanické systémy Odporové senzory Obecné vlastnosti odporových senzorů Odporové senzory kontaktové Měřící potenciometry Odporové tenzometry Odporové senzory teploty Odporové

Více

TZB - Vytápění. Daniel Macek Katedra ekonomiky a řízení ve stavebnictví, Fakulta stavební, ČVUT v Praze

TZB - Vytápění. Daniel Macek Katedra ekonomiky a řízení ve stavebnictví, Fakulta stavební, ČVUT v Praze TZB - Vytápění Daniel Macek Katedra ekonomiky a řízení ve stavebnictví, Fakulta stavební, ČVUT v Praze Volba paliva pro vytápění Zemní plyn nejrozšířenější palivo v ČR relativně čistý zdroj tepelné energie

Více

Inteligentní převodníky SMART. Univerzální vícevstupový programovatelný převodník. 6xS

Inteligentní převodníky SMART. Univerzální vícevstupový programovatelný převodník. 6xS Univerzální vícevstupový programovatelný převodník 6xS 6 vstupů: DC napětí, DC proud, Pt100, Pt1000, Ni100, Ni1000, termočlánek, ( po dohodě i jiné ) 6 výstupních proudových signálů 4-20mA (vzájemně galvanicky

Více

EXPERIMENTÁLNÍ METODY I 3. Měření teplot

EXPERIMENTÁLNÍ METODY I 3. Měření teplot FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I 3. Měření teplot OSNOVA 3. KAPITOLY Úvod do problematiky měření teplot

Více

2.3 Elektrický proud v polovodičích

2.3 Elektrický proud v polovodičích 2.3 Elektrický proud v polovodičích ( 6 10 8 10 ) Ωm látky rozdělujeme na vodiče polovodiče izolanty ρ ρ ( 10 4 10 8 ) Ωm odpor s rostoucí teplotou roste odpor nezávisí na osvětlení nebo ozáření odpor

Více

Měření teploty v budovách

Měření teploty v budovách Měření teploty v budovách Zadání 1. Seznamte se s fyzikálními principy a funkčností předložených senzorů: odporový teploměr Pt100, termistor NCT, termočlánek typu K a bezdotykový úhrnný pyrometr 2. Proveďte

Více

Senzory tepelných veličin

Senzory tepelných veličin Senzory tepelných veličin -teplota termodynamická stavová veličina -teplotní stupnice: Kelvinova (trojný bod vody 273,16 K), Celsiova,... IS-90 (4 rozsahy) senzory teploty: kontaktní elektrické: odporové

Více

PRINCIP MĚŘENÍ TEPLOTY spočívá v porovnání teploty daného tělesa s definovanou stupnicí.

PRINCIP MĚŘENÍ TEPLOTY spočívá v porovnání teploty daného tělesa s definovanou stupnicí. 1 SENZORY TEPLOTY TEPLOTA je jednou z nejdůležitějších veličin ovlivňujících téměř všechny stavy a procesy v přírodě Ke stanovení teploty se využívá závislosti určitých fyzikálních veličin na teplotě (A

Více

NÁVOD K MONTÁŽI A OBSLUZE EKVITERMNÍ REGULÁTOR KOMEXTHERM RVT 052

NÁVOD K MONTÁŽI A OBSLUZE EKVITERMNÍ REGULÁTOR KOMEXTHERM RVT 052 NÁVOD K MONTÁŽI A OBSLUZE EKVITERMNÍ REGULÁTOR KOMEXTHERM RVT 052 OBSAH STRANA 1. Určení.. 3 2. Popis... 3 3. Montáž 4 3.1 Montáž elektro 4 3.2 Montáž servomotoru MK-CN. 5 3.3 Instalace čidla TA.. 5 3.4

Více

Lasery optické rezonátory

Lasery optické rezonátory Lasery optické rezonátory Optické rezonátory Optickým rezonátorem se rozumí dutina obklopená odrazovými plochami, v níž je pasivní dielektrické prostředí. Rezonátor je nezbytnou součástí laseru, protože

Více

1. Změřte statickou charakteristiku termistoru pro proudy do 25 ma a graficky ji znázorněte.

1. Změřte statickou charakteristiku termistoru pro proudy do 25 ma a graficky ji znázorněte. 1 Pracovní úkoly 1. Změřte statickou charakteristiku termistoru pro proudy do 25 ma a graficky ji znázorněte. 2. Změřte teplotní závislost odporu termistoru v teplotním intervalu přibližně 180 až 380 K.

Více

Manuální, technická a elektrozručnost

Manuální, technická a elektrozručnost Manuální, technická a elektrozručnost Realizace praktických úloh zaměřených na dovednosti v oblastech: Vybavení elektrolaboratoře Schématické značky, základy pájení Fyzikální principy činnosti základních

Více

1. Úvod, odhad nejistot měření, chyba metody. 2. Přístroje pro měření proudu, napětí a výkonu - přehled; měřicí zesilovače;

1. Úvod, odhad nejistot měření, chyba metody. 2. Přístroje pro měření proudu, napětí a výkonu - přehled; měřicí zesilovače; . Úvod, odhad nejistot měření, chyba metody Přesnost měření Základní kvantitativní charakteristika nejistoty měření Výpočet nejistoty údaje číslicových přístrojů Výpočet nejistoty nepřímých měření Rozšířená

Více

VY_32_INOVACE_06_III./2._Vodivost polovodičů

VY_32_INOVACE_06_III./2._Vodivost polovodičů VY_32_INOVACE_06_III./2._Vodivost polovodičů Vodivost polovodičů pojem polovodiče čistý polovodič, vlastní vodivost příměsová vodivost polovodičová dioda tranzistor Polovodiče Polovodiče jsou látky, jejichž

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMATIZACE AINFORMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMATION AND COMPUTER SCIENCE

Více

Světlo vyzařující dioda, též elektroluminiscenční dioda či LED, je elektronická polovodičová součástka obsahující přechod P-N.

Světlo vyzařující dioda, též elektroluminiscenční dioda či LED, je elektronická polovodičová součástka obsahující přechod P-N. Světlo vyzařující dioda, též elektroluminiscenční dioda či LED, je elektronická polovodičová součástka obsahující přechod P-N. Prochází-li přechodem elektrický proud v propustném směru, přechod vyzařuje

Více

2005, květen TECHNICKÉ PODMÍNKY TP 200501 pro poměrové indikátory s optickým snímačem. 1. Úvod 4. 2. Oblast použití a všeobecné podmínky 4

2005, květen TECHNICKÉ PODMÍNKY TP 200501 pro poměrové indikátory s optickým snímačem. 1. Úvod 4. 2. Oblast použití a všeobecné podmínky 4 2005, květen TECHNICKÉ PODMÍNKY TP 200501 pro poměrové indikátory s optickým snímačem Počet listů: 13 a elektronickým odečítáním List číslo: 1 VIPA C Obsah 1. Úvod 4 2. Oblast použití a všeobecné podmínky

Více

EMKOMETER INDUKČNÍ PRŮTOKOMĚR EMKO E. řešení pro Vaše měření. Emkometer,s.r.o., Na Žižkově 1245. tel/fax: 569 721 622, tel: 569 720 539, 569 721 549

EMKOMETER INDUKČNÍ PRŮTOKOMĚR EMKO E. řešení pro Vaše měření. Emkometer,s.r.o., Na Žižkově 1245. tel/fax: 569 721 622, tel: 569 720 539, 569 721 549 INDUKČNÍ PRŮTOKOMĚR EMKO E INDUKČNÍ PRŮTOKOMĚR EMKO E Indukční průtokoměr EMKO E se skládá ze senzoru a převodníku. Celý systém měří objemový průtok zjišťováním rychlosti proudění vodivé kapaliny, která

Více

P5310, P5311 Levné programovatelné převodníky s LHP komunikací

P5310, P5311 Levné programovatelné převodníky s LHP komunikací P5310, P5311 Levné programovatelné převodníky s LHP komunikací Jeden typ převodníku pro všechna běžná odporová i termoelektrická čidla. Proudový unifikovaný výstupní signál 4 až 20 ma s linearizací. Přesnost

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Charakteristiky optoelektronických součástek

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Charakteristiky optoelektronických součástek Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III. Úloha č. 5 Název: Charakteristiky optoelektronických součástek Pracoval: Lukáš Vejmelka obor (kruh) FMUZV (73) dne 3.3.2014

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT

Více

Technická diagnostika Termodiagnostika Ing. Jan BLATA, Ph.D. Kat. 340, VŠB-TU Ostrava Ostrava 2014

Technická diagnostika Termodiagnostika Ing. Jan BLATA, Ph.D. Kat. 340, VŠB-TU Ostrava Ostrava 2014 Fakulta strojní VŠB TUO Technická diagnostika Termodiagnostika Ing. Jan BLATA, Ph.D. Kat. 340, VŠB-TU Ostrava Ostrava 2014 Vanová křivka Termodiagnostika Vyhodnocování technického stavu za pomoci sledování

Více

Konstrukční lepidla. Pro náročné požadavky. Proč používat konstrukční lepidla Henkel? Lepení:

Konstrukční lepidla. Pro náročné požadavky. Proč používat konstrukční lepidla Henkel? Lepení: Konstrukční lepidla Pro náročné požadavky Proč používat konstrukční lepidla Henkel? Sortiment konstrukčních lepidel společnosti Henkel zahrnuje širokou nabídku řešení pro různé požadavky a podmínky, které

Více

Aplikovaná optika. Optika. Vlnová optika. Geometrická optika. Kvantová optika. - pracuje s čistě geometrickými představami

Aplikovaná optika. Optika. Vlnová optika. Geometrická optika. Kvantová optika. - pracuje s čistě geometrickými představami Aplikovaná optika Optika Geometrická optika Vlnová optika Kvantová optika - pracuje s čistě geometrickými představami - zanedbává vlnovou a kvantovou povahu světla - elektromagnetická teorie světla -světlo

Více

Mikrovlnný senzor pro extrémní provozní podmínky

Mikrovlnný senzor pro extrémní provozní podmínky Mikrovlnný senzor pro extrémní provozní podmínky V článku je představen nový typ senzoru pro měření polohy hladiny na principu vedených mikrovlnných impulsů (TDR), který lze používat při provozním tlaku

Více

VÝROBA TENZOMETRŮ A SNÍMAČŮ

VÝROBA TENZOMETRŮ A SNÍMAČŮ VÝROBA TENZOMETRŮ A SNÍMAČŮ Vyrábíme snímače osazené polovodičovými nebo kovovými tenzometry pro měření sil, hmotnosti, tlaku, kroutícího momentu, zrychlení. Dodáváme polovodičové křemíkové tenzometry,

Více

Nauka o materiálu. Přednáška č.11 Neželezné kovy a jejich slitiny

Nauka o materiálu. Přednáška č.11 Neželezné kovy a jejich slitiny Nauka o materiálu Rozdělení neželezných kovů a slitin Jako kritérium pro rozdělení do skupin se volí teplota tání s př přihlédnutím na další vlastnosti (hustota, chemická stálost..) Neželezné kovy s nízkou

Více

Palivo. Teplo. Distribuce Ztráty Teplo r účinnost rozvodů tepla. Spotřebitelé

Palivo. Teplo. Distribuce Ztráty Teplo r účinnost rozvodů tepla. Spotřebitelé Ztráty tepelných zařízení, tepelných rozvodů a vyhodnocování účinnosti otopných systémů Roman Vavřička ČVUT v Praze, Fakulta strojní Roman.Vavricka@ Roman.Vavricka @fs.cvut.cz Účinnost přeměny energie

Více

Laboratorní úloha č. 4 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH VLASTNOSTÍ PNEUMATICKÝCH A ODPOROVÝCH TEPLOMĚRŮ

Laboratorní úloha č. 4 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH VLASTNOSTÍ PNEUMATICKÝCH A ODPOROVÝCH TEPLOMĚRŮ Laboratorní úloha č 4 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH VLASTNOSTÍ PNEUMATICKÝCH A ODPOROVÝCH TEPLOMĚRŮ 1 Teoretický úvod Pro laboratorní a průmyslové měření teploty kapalných a plynných medií v rozsahu

Více

Exclusive Boiler Green Závěsný kondenzační kotel s integrovaným zásobníkem 60 l z oceli INOX

Exclusive Boiler Green Závěsný kondenzační kotel s integrovaným zásobníkem 60 l z oceli INOX Exclusive Boiler Green Závěsný kondenzační kotel s integrovaným zásobníkem 60 l z oceli INOX Katalog výrobků ÚČINNOST podle normy 92/42/CEE ROKY ZÁRUKA MODEL: Exclusive Boiler Green 30 B.S.I. Dvoufunkční

Více

6. Měření veličin v mechanice tuhých a poddajných látek

6. Měření veličin v mechanice tuhých a poddajných látek 6. Měření veličin v mechanice tuhých a poddajných látek Pro účely měření mechanických veličin (síla, tlak, mechanický moment, změna polohy, rychlost změny polohy, amplituda, frekvence a zrychlení mechanických

Více

Zapojení teploměrů. Zadání. Schéma zapojení

Zapojení teploměrů. Zadání. Schéma zapojení Zapojení teploměrů V této úloze je potřeba zapojit elektrickou pícku a zahřát na požadovanou teplotu, dále zapojit dané teploměry dle zadání a porovnávat jejich dynamické vlastnosti, tj. jejich přechodové

Více

Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1

Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Číslo projektu Číslo materiálu Název školy CZ.1.07/1.5.00/34.0394 VY_32_INOVACE_15_OC_1.01 Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Autor Tématický celek Ing. Zdenka

Více

Úvod do moderní fyziky. lekce 9 fyzika pevných látek (vedení elektřiny v pevných látkách)

Úvod do moderní fyziky. lekce 9 fyzika pevných látek (vedení elektřiny v pevných látkách) Úvod do moderní fyziky lekce 9 fyzika pevných látek (vedení elektřiny v pevných látkách) krystalické pevné látky pevné látky, jejichž atomy jsou uspořádány do pravidelné 3D struktury zvané mřížka, každý

Více

Vnější autodiagnostika Ing. Vlček Doplňkový text k publikaci Jednoduchá elektronika pro obor Autoelektrikář, Autotronik, Automechanik

Vnější autodiagnostika Ing. Vlček Doplňkový text k publikaci Jednoduchá elektronika pro obor Autoelektrikář, Autotronik, Automechanik Vnější autodiagnostika Ing. Vlček Doplňkový text k publikaci Jednoduchá elektronika pro obor Autoelektrikář, Autotronik, Automechanik Moderní automobily jsou vybaveny diagnostikou zásuvkou, která zajišťuje

Více

Výroba páry - kotelna, teplárna, elektrárna Rozvod páry do místa spotřeby páry Využívání páry v místě spotřeby Vracení kondenzátu do místa výroby páry

Výroba páry - kotelna, teplárna, elektrárna Rozvod páry do místa spotřeby páry Využívání páry v místě spotřeby Vracení kondenzátu do místa výroby páry Úvod Znalosti - klíč k úspěchu Materiál přeložil a připravil Ing. Martin NEUŽIL, Ph.D. SPIRAX SARCO spol. s r.o. V Korytech (areál nádraží ČD) 100 00 Praha 10 - Strašnice tel.: 274 00 13 51, fax: 274 00

Více

"vinutý program" (tlumivky, odrušovací kondenzátory a filtry), ale i odporové trimry jsou

vinutý program (tlumivky, odrušovací kondenzátory a filtry), ale i odporové trimry jsou Společnost HARLINGEN převzala počátkem roku 2004 část výroby společnosti TESLA Lanškroun, a.s.. Jde o technologii přesných tenkovrstvých rezistorů a tenkovrstvých hybridních integrovaných obvodů, jejichž

Více

Senzorika a senzorické soustavy

Senzorika a senzorické soustavy Senzorika a senzorické soustavy Snímače mechanických napětí, síly, kroutícího momentu a hmotnosti Tato publikace vznikla jako součást projektu CZ.04.1.03/3.2.15.2/0285 Inovace VŠ oborů strojního zaměření,

Více

MaR. zpravodaj. Obsah. www.jsp.cz. JSP Měření a regulace. Měříme průtok: software OrCal 1.1... 2. škrticí orgány clony a dýzy... 3

MaR. zpravodaj. Obsah. www.jsp.cz. JSP Měření a regulace. Měříme průtok: software OrCal 1.1... 2. škrticí orgány clony a dýzy... 3 JSP Měření a regulace Obsah Měříme průtok: software OrCal 1.1... 2 škrticí orgány clony a dýzy... 3 Představujeme: nedestruktivní testování materiálů NT sondy... 4 oporučujeme: osvědčené produkty z JSP

Více

Maturitní okruhy Fyzika 2015-2016

Maturitní okruhy Fyzika 2015-2016 Maturitní okruhy Fyzika 2015-2016 Mgr. Ladislav Zemánek 1. Fyzikální veličiny a jejich jednotky. Měření fyzikálních veličin. Zpracování výsledků měření. - fyzikální veličiny a jejich jednotky - mezinárodní

Více

1. Úvod, odhad nejistot měření, chyba metody. 2. Přístroje pro měření proudu, napětí a výkonu - přehled; měřicí zesilovače;

1. Úvod, odhad nejistot měření, chyba metody. 2. Přístroje pro měření proudu, napětí a výkonu - přehled; měřicí zesilovače; . Úvod, odhad nejistot měření, chyba metody řesnost měření Základní kvantitativní charakteristika nejistoty měření Výpočet nejistoty údaje číslicových přístrojů Výpočet nejistoty nepřímých měření ozšířená

Více

ELEKTRICKÝ PROUD V POLOVODIČÍCH

ELEKTRICKÝ PROUD V POLOVODIČÍCH LKTRIKÝ ROUD V OLOVODIČÍH 1. olovodiče olovodiče mohou snadno měnit svůj odpor. Mohou tak mít vlastnosti jak vodičů tak izolantů, což záleží například na jejich teplotě, osvětlení, příměsích. Odpor mění

Více

Programovatelné převodníky pro snímače teploty

Programovatelné převodníky pro snímače teploty JSP Měření a regulace Programovatelné převodníky pro snímače teploty TEPLOTA PŘEVODNÍKY TLAK HLADINA PRŮTOK PŘÍSTROJE KOMUNIKACE ARMATURY www.jsp.cz ANALÝZA JSP Měření a regulace JSP, s.r.o. je přední

Více

VEDENÍ ELEKTRICKÉHO PROUDU V KOVECH

VEDENÍ ELEKTRICKÉHO PROUDU V KOVECH I N V E S T I C E D O O Z V O J E V Z D Ě L Á V Á N Í VEDENÍ ELEKTICKÉHO POD V KOVECH. Elektrický proud (I). Zdroje proudu elektrický proud uspořádaný pohyb volných částic s elektrickým nábojem mezi dvěma

Více

Keramika. Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. K. Daďourek 2008

Keramika. Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. K. Daďourek 2008 Keramika Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. K. Daďourek 2008 Tuhost a váha materiálů Keramika má největší tuhost z technických materiálů Keramika je lehčí než kovy, ale

Více

Možnosti kalibrace dotykových sond pro měření teploty povrchu

Možnosti kalibrace dotykových sond pro měření teploty povrchu Možnosti kalibrace dotykových sond pro povrchu V článku je diskutována problematika povrchu se zvláštním zřetelem na obecně používané principy a popsán nový kalibrační blok zkonstruovaný pro účely kalibrace

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úlohač.8 Název: Kalibrace odporového teploměru a termočlánku- fázové přechody Pracoval: Lukáš Ledvina stud.skup.17 24.3.2009

Více

KURZ. průvarového bodového svařování obalenou elektrodou ČSN 050705 - ZP 111 9 W11. 1. Princip průvarového bodového svařování obalenou elektrodou.

KURZ. průvarového bodového svařování obalenou elektrodou ČSN 050705 - ZP 111 9 W11. 1. Princip průvarového bodového svařování obalenou elektrodou. KURZ průvarového bodového svařování obalenou elektrodou ČSN 050705 - ZP 111 9 W11 1. Princip průvarového bodového svařování obalenou elektrodou. Průvarová technologie umožňuje bodové spojení tenkých ocelových

Více

Stanovení vodní páry v odpadních plynech proudících potrubím

Stanovení vodní páry v odpadních plynech proudících potrubím Vysoká škola chemicko-technologická v Praze Ústav plynárenství, koksochemie a ochrany ovzduší Technická 5, 166 28 Praha 6 Stanovení vodní páry v odpadních plynech proudících potrubím Semestrální projekt

Více

NOVÁ ALPHA2 NOVÁ DEFINICE SPOLEHLIVOSTI A ÚČINNOSTI. Oběhové čerpadlo pro soustavy vytápění, chlazení a klimatizace

NOVÁ ALPHA2 NOVÁ DEFINICE SPOLEHLIVOSTI A ÚČINNOSTI. Oběhové čerpadlo pro soustavy vytápění, chlazení a klimatizace NOVÁ ALPA NOVÁ DEFINICE SPOLELIVOSTI A ÚČINNOSTI Oběhové čerpadlo pro soustavy vytápění, chlazení a klimatizace ALPA ROZLOŽENÝ POLED od všeho ještě více Kompaktní provedení poskytuje nadstandardní výkon

Více

LEPENÉ SPOJE. 1, Podstata lepícího procesu

LEPENÉ SPOJE. 1, Podstata lepícího procesu LEPENÉ SPOJE Nárůst požadavků na technickou úroveň konstrukcí se projevuje v poslední době intenzivně i v oblasti spojování materiálů, kde lepení je často jedinou spojovací metodou, která nenarušuje vlastnosti

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická BAKALÁŘSKÁ PRÁCE. 2009 Ladislav Vincenc

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická BAKALÁŘSKÁ PRÁCE. 2009 Ladislav Vincenc ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická BAKALÁŘSKÁ PRÁCE 2009 Ladislav Vincenc ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Katedra měření Měřicí převodník teplota

Více

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika Fyzika pro střední školy II 84 R10 F Y Z I K A M I K R O S V Ě T A R10.1 Fotovoltaika Sluneční záření je spojeno s přenosem značné energie na povrch Země. Její velikost je dána sluneční neboli solární

Více