Lasery historie. Stručná historie laserů
|
|
- Šimon Sedláček
- před 8 lety
- Počet zobrazení:
Transkript
1 Lasery historie Stručná historie laserů 1897 Vývoj Fabry-Perotova interefrometru, který se užívá jako optický rezonátor ve většině laserů Albert Einstein na základě termodynamických a statistických úvah předpovídá možnost stimulované emise A. Kastler objevil možnost optického čerpání (vyvolání excitovaných stavů atomů optickou cestou) Townes a Schawlow uvedli do provozu první maser kvantový zesilovač pracující v parách čpavku a s využitím stimulované emise zesilující záření v oboru mikrovln. Jako rezonátor používá uzavřenou vodivou dutinu. Maser má vynikající frekvenční stabilitu, slouží jako časový normál, ale jiné použití v praxi nenašel.
2 Lasery historie Townes a Schawlow dokazují možnost rozšířit frekvenční pásmo maseru do oblasti světla, ale s otevřeným (Fabry- Perotovým) rezonátorem T. Mainman poprvé získává emisi laserového světla a to z umělého rubínového krystalu (Al 2 O 3 dopovaný chromem). podzim 1960 Ali Javan konstruuje plynový He-Ne laser s kontinuálním provozem Výkonový CO 2 laser s kontinuálním provozem, polovodičový laser A dále následuje exponenciální nárůst nejrůznějších druhů laserů trvající do dneška nejnověji laserů v oblasti nanotechnologií (kvantové tečky). Frekvenční rozsah laserů dosahuje od vzdáleného IR až k tvrdému ultrafialovému záření.
3 Lasery historie Dosahované výkony jsou od zlomků mw (kontinuální lasery) až do oblasti petawatů (10 15 W - výkon v pulzech o trvání femtosekund). Je důležité připomenout, že až do roku 1960 probíhal vývoj laseru v oblasti základního výzkumu, cílem nebyl nový zdroj světla, ale spíše důkaz že to jde. Po spuštění laserů nebylo zpočátku vůbec zřejmé, k čemu může být laser užitečný. Až v rukou techniků a technologů se proměnil v nástroj, který zásadním způsobem ovlivnil a ovlivňuje nejen techniku, ale prakticky všechny vědní obory. Mimořádně rozšířil také komunikační možnosti a pomohl k vytvoření nových záznamových medií. Vynález laseru tak způsobil celosvětovou integraci technologické společnosti s ohromným dopadem i do oblasti ekonomicko-sociální.
4 Tři hlavní části laserů - aktivní prostředí - pevná, kapalná látka nebo plyn, v nichž může docházet k inverzní populaci energetických stavů a tím k zesilování světla cestou stimulované emise. - optický rezonátor - Optickým rezonátorem se rozumí dutina obklopená odrazovými plochami, v níž je pasivní dielektrické prostředí. Odrazy záření v rezonátoru se využívají k dosažení inverzní populace. Nejjednodušším příkladem optického rezonátoru je soustava dvou rovnoběžných rovinných zrcadel. - zdroj energie zdroj napájející výboj v plynových laserech, výbojka nebo LED pro napájení pevnolátkových laserů, zdroj proudu pro polovodičové lasery.
5 Základní pojmy atomové a molekulové fyziky Laserové záření pochází buď z přechodů elektronů v elektronovém obalu atomu nebo ze změn energetického stavu molekul. Energie elektronů je kvantována, určují ji kvantová čísla n, l, m, s. Na obrázku je základní schéma energie elektronu v atomu vodíku, tj. v závislosti na hlavním kvantovém čísle n. Všimněte si, že energie je záporná - jde o vazební energii, s rostoucím n energie roste. V dalších úvahách půjde vždy jen o změny energetického stavu a pro jednoduchost volíme nejnižší energii jako nulovou hladinu energie, tj. energie excitovaných stavů jsou kladné.
6 Význam kvantových čísel Kvantové číslo název hodnoty význam n hlavní n = 1, 2, určuje energii a velikost orbitalu l vedlejší l = 0, 1, 2,, n 1 určuje tvar orbitalu m magnetic ké m = 0, ±1,, ±l určuje orientaci orbitalu v prostoru s spinové s = ± ½ určuje moment hybnosti elektronu
7 Kromě hlavního čísla určují energetické stavy elektronů i ostatní kvantová čísla energetické hladiny jsou rozštěpeny do jemnějších struktur. Uvažujme soustavu atomů nebo molekul: Pouze při teplotách blížících se k nule mají elektrony energii základního stavu říkáme, že je obsazena pouze nulová hladina. Při teplotách vyšších se v izolované soustavě elektrony budí do vyšších energetických stavů v důsledků tepelných kmitů mřížky v pevných látkách či nárazy molekul v plynném prostředí. Kvantitativně se obsazení hladin řídí Boltzmannovou statistikou. Jestliže porovnáváme okamžité počty elektronů N m a N n na hladinách s energií s energií E m a E n, platí N N m n e E E kt m n
8 Jestliže za vztažnou hladinu bereme základní stav, tj. E m = 0, řídí se obsazení vyšších hladin vztahem E n k T Nn e. Tento stav je ovšem dynamický, neustále dochází k sestupu elektronů na nižší energetické hladiny a současně jsou jiné elektrony excitovány do vyšších hladin. Tyto změny se řídí pravidly kvantové mechaniky, změny energie jsou kvantovány. Při změnách energetických stavů se mění kvantová čísla popisující stav elektronů. Kvantová mechanika ale stanovila pravidla, kterými se řídí změny kvantových čísel. Z nich vyplývá, že zatímco většina změn je dovolená, existují kombinace změn kvantových čísel, které jsou zakázány. Těmto výrokům ale musíme rozumět v řeči kvantové mechaniky: Pravděpodobnost dovolených změn se blíží jistotě, zakázané přechody mají pravděpodobnost podstatně nižší, tj. dojde k nim za podstatně delší čas.
9 V soustavě která má energetické stavy takové, že všechny přechody mezi nimi jsou dovolené, se obsazení hladin řídí Boltzmannovou statistikou. V soustavě, v níž jsou některé přechody zakázané, je obsazení hladin odlišné. Na hladinách s dovolenými přechody setrvávají elektrony jen několik nanosekund (říkáme, že doba života na hladině je řádově 10-8 sekundy), zatímco doba života na hladinách se zakázaným přechodem je podstatně delší od milisekund až po několik minut. Jestliže je např. přechod mezi hladinami E j a E k ( E j >E k ) zakázaný, platí N N j k e E j E. k T k Pak říkáme, že došlo k inverzní populaci stavů nebo ke stavu se zápornou termodynamickou teplotou. Tyto stavy se také nazývají metastabilní.
10 Není-li soustava atomů nebo molekul izolovaná, mohou být excitované stavy elektronů vyvolávané nejen tepelnými účinky, ale i dalšími vlivy, např. světlem, dopadem nabitých částic, ultrazvukem, mechanickým namáháním nebo chemickými reakcemi. Jako příklad z praxe uveďme světlo zářivek. Zářivky jsou trubice naplněné plynem pod takovým tlakem, aby v něm bylo možné vyvolat doutnavý výboj. Vnitřní stěny zářivky jsou pokryty luminofory. Tento typ látek obsahuje molekuly s dovolenými i zakázanými přechody, jejichž energie jsou v intervalu 2 4 ev, což odpovídá viditelnému světlu. Je-li zářivka v provozu, hoří v ní doutnavý výboj, elektrony a ionty z ionizovaného plynu dopadají na luminofor, excitují jej a luminofor září světlem vyvolaným převážně dovolenými přechody elektronů. Vypneme-li zdroj výboje, zářivka téměř okamžitě zhasne (skončí dovolené přechody), ale ve tmě můžeme ještě několik minut pozorovat slabé světélkování luminoforu způsobené právě přeskoky elektronů ze zakázaných přechodů.
11 Již v roce 1912 prokázal A. Einstein, že přechod elektronů z metastabilních stavů lze vyvolat interakcí látky s fotony s energií odpovídající zakázanému přechodu. Na obr a) je schéma spontánní (samovolné) emise. Elektron excitovaný interakcí s fotonem z hladiny E 1 na E 2 obr.b) nesetrvá na vyšší metastabilní hladině po celou dobu života, ale je průchodem fotonu vhodné energie přinucen k seskoku na nižší hladinu. Došlo tak ke stimulované emisi. Oba fotony mají stejnou frekvenci, fázi, polarizaci i směr. Záření s těmito vlastnostmi se nazývá koherentní.
12 Aktivní prostředí jako základní součást laseru je plyn, kapalina nebo pevná látka obsahující atomy nebo molekuly s metastabilními energetickými hladinami. Aktivní prostředí získává energii z vnějšího zdroje (světlo, chemická reakce, elektrický proud apod.). Jednoduchý dvouhladinový systém podle předchozího obrázku je nepoužitelný emitované koherentní záření by se absorbovalo tím, že by excitovalo elektrony do vyšší hladiny a neudržovala by se nezbytná inverzní populace stavů. Lasery proto používají tříhladinové nebo čtyřhladinové systémy.
13 Absorbovaná energie převádí elektrony na nejvyšší hladinu E 3, z níž nezářivým přechodem (srážkami) sestupují na metastabilní hladinu E 2. Laserovým přechodem (stimulovanou emisí) přechází na hladinu E 1. Tříhladinový systém je méně účinný, protože část energie ze stimulované emise se spotřebuje na absorpci vyvolávající zpětný přechod na vyšší hladinu. Velká většina laserů proto pracuje se čtyřhladinovým aktivním prostředím. Po laserovém přechodu z metastabilní hladiny E 2 na nestabilní hladinu E 1 dochází k rychlému vyprázdnění této hladiny na hladinu E 0 a tak se udržuje nezbytná vysoká úroveň degenerace mezi E 2 a E 1. Protože hladina E 1 je prakticky prázdná, nemůže docházet k narušení degenerace absorpcí stimulovaného záření přechodem E 1 E 2.
14 Požadavky na aktivní prostředí - opticky průzračné pro budící záření i pro generované laserové záření, - opticky homogenní, - chemicky stabilní v podmínkách provozu laserů, - tepelná odolnost a stabilita, - technologicky vyrobitelné, - přijatelná ekonomická náročnost.
15 Plynové lasery Jako příklad uvedeme HeNe laser. Jeho aktivní prostředí je tvořeno směsí helia a neonu v poměru asi 1:10. Inverzní populace stavů je dosaženo u atomů neonu tímto způsobem: V doutnavém výboji se atomy He excitují srážkami s elektrony na hladiny 2S 0 a 2S 1 a energie těchto hladin se srážkami předává na téměř stejně vysoké metastabilní hladiny 2s a 3s atomů Ne. Stimulovaná emise vyvolává přechody na nestabilní hladiny 3p a 2p. Ty se rychle vyprazdňují spontánními přechody na 1s, ze které se energie předává stěnám trubice.
16 Schéma HeNe laseru
17 Pevnolátkové lasery U pevnolátkových iontových krystalů je základním materiálem matrice, která musí splňovat dříve uvedené požadavky na optické vlastnosti a dále musí být opracovatelná, leštitelná do vysoké optické kvality a mechanicky pevná. Těmto požadavkům vyhovují : krystaly, skla a keramika. Nejčastěji užívané materiály : Krystalické materiály : - oxidy nejčastěji užívaný je safír Al 2 O 3 s ionty chromu Cr +3 nebo Ti +3 - granáty sloučeniny typu A 3 B 5 O 12 nebo A 3 B 2 (BO 4 ) 3, kde A : yttrium nebo některý lanthanid B: Al, Ga, Fe, In, Cr nejznámější je yttritohlinitý granát Y 3 Al 5 O 12 (YAG) používaný s aktivními ionty neodymu. Nd: Y 3 Al 5 O 12, dále ytrittogalitý granát YGAG nebo gadolinitogalitý granát (GdGaG).
18 - alumináty : yttritoarthoaluminát YAlO 3 ( YALO nebo YAP) - fluoridy, - tungstáty, molybdáty, vanadáty a beryláty. Skla Snadnější výroba, jednodušší opracování, lze vyrábět větší rozměry. Nevýhodou menší tepelná vodivost. Obvyklý aktivant : neodym Aktivátory požadavky : - co nejužší spektrální čára na laserovém přechodu, - vysoký kvantový výtěžek buzení (= vysoká účinnost čerpání), - silné absorpční pásy zesilující buzení.
19 Tyto požadavky vymezují používané prvky na prvky s nezaplněnými vnitřními slupkami elektronového obalu, což jsou: - tranzitní (přechodové) kovy Fe a Cr, - prvky vzácných zemin (Sm, Nd, Er atd.), - aktinidy uran. Nejčastěji se používají prvky vzácných zemin, protože jejich spektrum v monokrystalech je velice blízké spektru osamocených atomů tj. poloha energetických hladin jen slabě závisí na typu krystalu. Mají intenzivní pásy absorpce a velice úzké spektrální čáry. Metody výroby krystalů pro pevnolátkové lasery Krystaly se vyrábí několika technologiemi tavením základní suroviny spolu s aktivátorem. Výroba je náročná na čistotu a dodržení technologických parametrů.
20 Lasery na bázi YAG Nejčastěji se užívá jako dopant neodym : Nd: Y 3 Al 5 O 12 Čistý krystal granátu splňuje výše uvedené požadavky na optické vlastnosti prostředí. Neodymové ionty v krystalu vytvářejí aktivní prostředí díky konfiguraci hladin podle schématu. Přechod z hladiny 4 F na hladinu 4 I je zakázaný a při vnějším buzení se na hladině 4 F vytváří inverzní populace elektronů. K buzení se dříve používaly xenonové výbojky, dnes převažuje buzení světlem diodových polí, případně laserových diod napojených na krystal otpickými vlákny.
21 Typická vlnová délka záření emitovaného z Nd:YAG laseru je 1064,1 nm. S menší účinností však může emitovat i záření o vlnových délkách 940, 1120, 1320 a 1440 nm. V závislosti na časovém průběhu buzení může generovat záření jak v impulsním, tak i v kontinuálním režimu. Maximální výkon v kontinuálním režimu dosahuje několika stovek wattů (problémy s chlazením). V impulsním režimu se délka impulsu může v závislosti na druhu modulace jakosti rezonátoru pohybovat v rozmezí od mikrosekund až po jednotky pikosekund. Nd:YAG má díky vysokému výkonu a vhodné vlnové délce řadu uplatnění. Hojně je užíván v technologii, např. pro vrtání, svařování, žíhání, řezání a značkování. Dále své uplatnění nalezl i v medicíně, vědě, biologii a ve vojenských aplikacích.
22 Přehled materiálů používaných pro pevnolátkové lasery
23 Polovodičové lasery Aktivním prostředím polovodičových laserů je polovodičový materiál, ve kterém jsou aktivními částicemi nerovnovážné elektrony a díry, tj. volné nosiče náboje. Zářivý přechod neexistuje mezi diskrétními hladinami, ale mezi dovolenými energetickými pásy. Obsazení pásů se rovněž řídí Boltzmannovou statistikou a pro dosažení stimulované emise je třeba dosáhnout inverzní populace stavů. Toho se dosahuje injekcí nosičů náboje přechodem P-N. Vhodným polovodičovým materiálem bohužel není křemík, ale materiály typu GaP, GaAs, InP apod. V polovodičovém aktivním prostředí lze dosáhnout velkého optického zesílení a proto mohou být rozměry laserů mnohem menší než u ostatních typů délka rezonátoru 0,05 až 1 mm.
Zdroje optického záření
Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon
Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.
Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.
Laserové technologie v praxi I. Přednáška č.2. Základní konstrukční součásti laserů. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011
Laserové technologie v praxi I. Přednáška č.2 Základní konstrukční součásti laserů Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Konstrukce laseru 1 - Aktivní prostředí 2 - Čerpací zařízení 3 - Optický
Lasery optické rezonátory
Lasery optické rezonátory Optické rezonátory Optickým rezonátorem se rozumí dutina obklopená odrazovými plochami, v níž je pasivní dielektrické prostředí. Rezonátor je nezbytnou součástí laseru, protože
MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5
MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5 Ondřej Votava J. Heyrovský Institute of Physical Chemistry AS ČR Opakování z minula Light Amplifier by Stimulated
Něco o laserech. Ústav fyzikální elektroniky Přírodovědecká fakulta Masarykovy univerzity 13. května 2010
Něco o laserech Ústav fyzikální elektroniky Přírodovědecká fakulta Masarykovy univerzity 13. května 2010 Pár neuspořádaných faktů LASER = Light Amplification by Stimulated Emission of Radiation Zdroj dobře
Úvod do laserové techniky
Úvod do laserové techniky Látka jako soubor kvantových soustav Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze petr.koranda@gmail.com 18. září 2018 Světlo jako elektromagnetické
Optoelektronika. elektro-optické převodníky - LED, laserové diody, LCD. Elektronické součástky pro FAV (KET/ESCA)
Optoelektronika elektro-optické převodníky - LED, laserové diody, LCD Elektro-optické převodníky žárovka - nejzákladnější EO převodník nevhodné pro optiku široké spektrum vlnových délek vhodnost pro EO
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Polovodičové zdroje fotonů Přehledový učební text Roman Doleček Liberec 2010 Materiál vznikl v rámci projektu ESF
Light Amplification by Stimulated Emission of Radiation.
20. Lasery Asi 40 let po zveřejnění Einsteinovy práce o stimulované emisi vyzkoušeli princip v oblasti mikrovln (tzv. maser) ruští fyzikové N. G. Basov a A. M. Prochorov a americký fyzik C. H. Townes.
PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka.
PSK1-14 Název školy: Autor: Anotace: Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Optické zdroje a detektory Vzdělávací oblast: Informační a komunikační technologie Předmět:
Průmyslové lasery pro svařování
Průmyslové lasery pro svařování (studijní text k předmětu SLO/UMT1) Připravila: Hana Šebestová V současné době se vyrábí řada typů laserů. Liší se svou konstrukcí, poskytovaným výkonem, účinností i charakterem
Lasery. Biofyzikální ústav LF MU. Projekt FRVŠ 911/2013
Lasery Biofyzikální ústav LF MU Elektromagnetické spektrum http://cs.wikipedia.org/wiki/soubor:elmgspektrum.png http://cs.wikipedia.org/wiki/ Soubor:Spectre.svg Bezkontaktní termografie 2 Součásti laseru
1. Zdroje a detektory optického záření
1. Zdroje a detektory optického záření 1.1. Zdroje optického záření výkon a jeho časový průběh spektrální charakteristika a její stabilita v čase koherenční vlastnosti 1.1.1. Tepelné zdroje velmi malá
Měření charakteristik pevnolátkového infračerveného Er:Yag laseru
Měření charakteristik pevnolátkového infračerveného Er:Yag laseru Ondřej Ticháček, PORG, ondrejtichacek@gmail.com Abstrakt: Úkolem bylo proměření základních charakteristik záření pevnolátkového infračerveného
Svařování LASEREM. doc. Ing. Jaromír Moravec, Ph.D
Svařování LASEREM doc. Ing. Jaromír Moravec, Ph.D Spontánní emise M. Planck (1900) kvantová teorie. Záření je tvořeno malými částečkami energie tzv. kvanty, přičemž energie každého kvanta je úměrná kmitočtu
Automatizace výrobních procesů ve strojírenství a řemesel, CZ.1.07/1.1.30/01.0038, Přednáška - KA 5
LASER A JEHO FYZIKÁLNÍ PODSTATA Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ.1.07/1.1.30/01.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň
ATOM VODÍKU MODEL : STOJÍCÍ BODOVÉ JÁDRO A ELEKTRON VZÁJEMNĚ ELEKTROSTATICKY INTERAGUJÍCÍ SCHRÖDINGEROVA ROVNICE PRO PŘÍPAD POTENCIÁLNÍ ENERGIE.
ATOMY + MOLEKULY ATOM VODÍKU MODEL : STOJÍCÍ BODOVÉ JÁDRO A ELEKTRON VZÁJEMNĚ ELEKTROSTATICKY INTERAGUJÍCÍ SCHRÖDINGEROVA ROVNICE H ˆψ = Eψ PRO PŘÍPAD POTENCIÁLNÍ ENERGIE Vˆ = Ze 2 4πε o r ŘEŠENÍ HLEDÁME
CZ.1.07/1.1.30/01.0038
Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ.1.07/1.1.30/01.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň Monitorovací indikátor: 06.43.10
ATOMOVÁ SPEKTROMETRIE
ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.
Molekulová spektroskopie 1. Chemická vazba, UV/VIS
Molekulová spektroskopie 1 Chemická vazba, UV/VIS 1 Chemická vazba Silová interakce mezi dvěma atomy. Chemické vazby jsou soudržné síly působící mezi jednotlivými atomy nebo ionty v molekulách. Chemická
R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika
Fyzika pro střední školy II 84 R10 F Y Z I K A M I K R O S V Ě T A R10.1 Fotovoltaika Sluneční záření je spojeno s přenosem značné energie na povrch Země. Její velikost je dána sluneční neboli solární
ATOMOVÁ SPEKTROMETRIE
ATOMOVÁ SPEKTROMETRIE doc. Ing. David MILDE, Ph.D. tel.: 585634443 E-mail: david.milde@upol.cz (c) -017 Doporučená literatura Černohorský T., Jandera P.: Atomová spektrometrie. Univerzita Pardubice 1997.
Plazmové metody. Základní vlastnosti a parametry plazmatu
Plazmové metody Základní vlastnosti a parametry plazmatu Atom je základní částice běžné hmoty. Částice, kterou již chemickými prostředky dále nelze dělit a která definuje vlastnosti daného chemického prvku.
Opakování: shrnutí základních poznatků o struktuře atomu
11. Polovodiče Polovodiče jsou krystalické nebo amorfní látky, jejichž elektrická vodivost leží mezi elektrickou vodivostí kovů a izolantů a závisí na teplotě nebo dopadajícím optickém záření. Elektrické
Otruba, Novotný LASERY ZÁKLADY. Vítězslav Otruba, Karel Novotný
Otruba, Novotný 1 LASERY ZÁKLADY Vítězslav Otruba, Karel Novotný 2 Laserový systém Asterix Praha (PALS Prague Asterix Laser System) 3 LASERY LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION Spektrální
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY 1 Fyzikální základy spektrálních metod Monochromatický zářivý tok 0 (W, rozměr m 2.kg.s -3 ): Absorbován ABS Propuštěn Odražen zpět r Rozptýlen s Bilance toků 0 = +
Netradiční světelné zdroje
Ing. Jiří Kubín, Ph.D. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247, který je spolufinancován
Charakteristiky laseru vytvářejícího světelné impulsy o délce několika pikosekund
Charakteristiky laseru vytvářejícího světelné impulsy o délce několika pikosekund H. Picmausová, J. Povolný, T. Pokorný Gymnázium, Česká Lípa, Žitavská 2969; Gymnázium, Brno, tř. Kpt. Jaroše 14; Gymnázium,
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Koherentní zesilovače záření Učební text Ing. Bc. Michal Malík Ing. Bc. Jiří Primas Liberec 2011 Materiál vznikl
Laserové technologie v praxi I. Přednáška č.4. Pevnolátkové lasery. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011
Laserové technologie v praxi I. Přednáška č.4 Pevnolátkové lasery Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Dělení pevnolátkových laserů podle druhu matrice a dopantu Matrice (nosič): Dopant: Alexandrit
Obchodní akademie, Vyšší odborná škola a Jazyková škola s právem státní jazykové zkoušky Uherské Hradiště
Název školy Obchodní akademie, Vyšší odborná škola a Jazyková škola s právem státní jazykové zkoušky Uherské Hradiště Název DUMu LASER Autor Mgr. Emilie Kubíčková Datum 16. 2. 2014 Stupeň atypvzdělávání
Měření šířky zakázaného pásu polovodičů
Měření šířky zakázaného pásu polovodičů Úkol : 1. Určete šířku zakázaného pásu ze spektrální citlivosti fotorezistoru pro šterbinu 1,5 mm. Na monochromátoru nastavujte vlnovou délku od 200 nm po 50 nm
- Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl. - fluorescence - fosforescence
ROZPTYLOVÉ a EMISNÍ metody - Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl - fluorescence - fosforescence Ramanova spektroskopie Každá čára Ramanova spektra je svými vlastnostmi závislá
16. Franck Hertzův experiment
16. Franck Hertzův experiment Zatímco zahřáté těleso vysílá spojité spektrum elektromagnetického záření, mají např. zahřáté páry kovů nebo plyny, v nichž probíhá elektrický výboj, spektrum čárové. V uvedených
V nejnižším energetickém stavu valenční elektrony úplně obsazují všechny hladiny ve valenčním pásu, nemohou zprostředkovat vedení proudu.
POLOVODIČE Vlastní polovodiče Podle typu nosiče náboje dělíme polovodiče na vlastní (intrinsické) a příměsové. Příměsové polovodiče mohou být dopované typu N (majoritními nosiči volného náboje jsou elektrony)
VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH
VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH Jan Hruška TV-FYZ Ahoj, tak jsme tady znovu a pokusíme se Vám vysvětlit problematiku vedení elektrického proudu v látkách. Co je to vlastně elektrický proud? Na to
DOUTNAVÝ VÝBOJ. 1. Vlastnosti doutnavého výboje 2. Aplikace v oboru plazmové nitridace
DOUTNAVÝ VÝBOJ 1. Vlastnosti doutnavého výboje 2. Aplikace v oboru plazmové nitridace Doutnavý výboj Připomeneme si voltampérovou charakteristiku výboje v plynech : Doutnavý výboj Připomeneme si, jaké
Úloha č. 1: CD spektroskopie
Přírodovědecké fakulta Masarykovy univerzity v Brně Předmět: Jméno: Praktikum z astronomie Andrea Dobešová Obor: Astrofyzika ročník: II. semestr: IV. Název úlohy Úloha č. 1: CD spektroskopie Úvod: Koho
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno 1 Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Struktura
Emise vyvolaná působením fotonů nebo částic
Emise vyvolaná působením fotonů nebo částic PES (fotoelektronová spektroskopie) XPS (rentgenová fotoelektronová spektroskopie), ESCA (elektronová spektroskopie pro chemickou analýzu) UPS (ultrafialová
Struktura elektronového obalu
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Struktura elektronového obalu Představy o modelu atomu se vyvíjely tak, jak se zdokonalovaly možnosti vědy
Fluorescence (luminiscence)
Fluorescence (luminiscence) Patří mezi luminiscenční metody fotoluminiscence. Luminiscence efekt, kdy excitované molekuly či atomy vyzařují světlo při přechodu z excitovaného do základního stavu. Podle
Plynové lasery pro průmyslové využití
Laserové technologie v praxi I. Přednáška č.3 Plynové lasery pro průmyslové využití Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Využití plynových laserů v průmyslových aplikacích Atomární - He-Ne
MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice přednášky 4-7
MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice přednášky 4-7 Ondřej Votava J. Heyrovský Institute of Physical Chemistry AS ČR Co vás v příštích třech týdnech čeká: Dnes Za týden
DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj
DOUTNAVÝ VÝBOJ Další technologie využívající doutnavý výboj Plazma doutnavého výboje je využíváno v technologiích depozice povlaků nebo modifikace povrchů. Jedná se zejména o : - depozici povlaků magnetronovým
Úvod do moderní fyziky. lekce 3 stavba a struktura atomu
Úvod do moderní fyziky lekce 3 stavba a struktura atomu Vývoj představ o stavbě atomu 1904 J. J. Thomson pudinkový model atomu 1909 H. Geiger, E. Marsden experiment s ozařováním zlaté fólie alfa částicemi
Úloha 15: Studium polovodičového GaAs/GaAlAs laseru
Petra Suková, 2.ročník, F-14 1 Úloha 15: Studium polovodičového GaAs/GaAlAs laseru 1 Zadání 1. Změřte současně světelnou i voltampérovou charakteristiku polovodičového laseru. Naměřenézávislostizpracujtegraficky.Stanovteprahovýproud
Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm
Rtg. záření: Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Vznik rtg. záření: 1. Rtg. záření se spojitým spektrem vzniká při prudkém zabrzdění urychlených elektronů.
Maturitní témata fyzika
Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený
Laserové technologie v praxi I. Přednáška č.1. Fyzikální princip činnosti laserů. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011
Laserové technologie v praxi I. Přednáška č. Fyzikální princip činnosti laserů Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 0 LASER kvantový generátor světla Fyzikální princip činnosti laserů LASER zkratka
Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO
1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu
Fotonické nanostruktury (nanofotonika)
Základy nanotechnologií KEF/ZANAN Fotonické nanostruktury (nanofotonika) Jan Soubusta 4.11. 2015 Obsah 1. ÚVOD 2. POHLED DO MIKROSVĚTA 3. OD ELEKTRONIKY K FOTONICE 4. FYZIKA PRO NANOFOTONIKU 5. PERIODICKÉ
Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK
Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Fyzika atomu - model atomu struktura elektronového obalu atomu z hlediska energie atomu - stavba atomového jádra; základní nukleony
Katedra fyzikální elektroniky
Postavte si laserový zaměřovač Katedra fyzikální elektroniky Richard Švejkar 2018 1 Stručný úvod do laserové techniky Laserové záření nachází v dnešní době využití ve většině oblastí lidské činnosti -
Cvičení z fyziky 2013-2014. Lasery. Jan Horáček (jan.horacek@seznam.cz) 19. ledna 2014
Gymnázium, Brno, Vídeňská 47 Cvičení z fyziky 2013-2014 1. seminární práce Lasery Jan Horáček (jan.horacek@seznam.cz) 19. ledna 2014 1 Obsah 1 Úvod 3 2 Cíle laseru 3 3 Kvantové jevy v laseru 3 3.1 Model
Luminiscence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence. chemicky (chemiluminiscence)
Luminiscence Luminiscence emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence chemicky (chemiluminiscence) teplem (termoluminiscence) zvukem (sonoluminiscence)
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: Lasery - druhy
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Lasery - druhy Laser je tvořen aktivním prostředím, rezonátorem a zdrojem energie. Zdrojem energie, který může
r W. Shockley, J. Bardeen a W. Brattain, zahájil epochu polovodičové elektroniky, která se rozvíjí dodnes.
r. 1947 W. Shockley, J. Bardeen a W. Brattain, zahájil epochu polovodičové elektroniky, která se rozvíjí dodnes. 2.2. Polovodiče Lze je definovat jako látku, která má elektronovou bipolární vodivost, tj.
Elektronový obal atomu
Elektronový obal atomu Vlnění o frekvenci v se může chovat jako proud částic (kvant - fotonů) o energii E = h.v Částice pohybující se s hybností p se může chovat jako vlna o vlnové délce λ = h/p Kde h
Glass temperature history
Glass Glass temperature history Crystallization and nucleation Nucleation on temperature Crystallization on temperature New Applications of Glass Anorganické nanomateriály se skelnou matricí Martin Míka
Molekuly. Vazby, přechody mezi energetickými hladinami, laser
Molekuly Vazby, přechody mezi energetickými hladinami, laser 2 Interakce mezi atomy Je zprostředkována elektromagnetickou interakcí (jedna ze čtyř základních fyzikálních interakcí). Ve většině případů
Vybrané spektroskopické metody
Vybrané spektroskopické metody a jejich porovnání s Ramanovou spektroskopií Předmět: Kapitoly o nanostrukturách (2012/2013) Autor: Bc. Michal Martinek Školitel: Ing. Ivan Gregora, CSc. Obsah přednášky
Laserová technika prosince Katedra fyzikální elektroniky.
Laserová technika 1 Aktivní prostředí Šíření rezonančního záření dvouhladinovým prostředím Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program
Barevné principy absorpce a fluorescence
Barevné principy absorpce a fluorescence Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr 27.9.2007 2 1 Světlo je elektromagnetické vlnění Skládá se z elektrické složky a magnetické
Stručný úvod do spektroskopie
Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,
Základy fyziky laserového plazmatu. Lekce 1 -lasery
Základy fyziky laserového plazmatu Lekce 1 -lasery Co je světlo a co je laser? Laser(akronym Light Amplification by Stimulated EmissionofRadiation česky zesilování světla stimulovanou emisí záření) Je
λ hc Optoelektronické součástky Fotorezistor, Laserová dioda
Optoelektronické součástky Fotorezistor, Laserová dioda Úvod Optoelektronické součástky jsou založeny na interakci optického záření s elektricky nabitými částicemi v polovodičích. Vztah mezi energií fotonů
Luminiscence. Luminiscence. Fluorescence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) chemicky (chemiluminiscence)
Luminiscence Luminiscence emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence chemicky (chemiluminiscence) teplem (termoluminiscence) zvukem (sonoluminiscence)
INSTRUMENTÁLNÍ METODY
INSTRUMENTÁLNÍ METODY ACH/IM David MILDE, 2014 Dělení instrumentálních metod Spektrální metody (MILDE) Separační metody (JIROVSKÝ) Elektroanalytické metody (JIROVSKÝ) Ostatní: imunochemické, radioanalytické,
ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ
ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ (c) -2008, ACH/IM BLOKOVÉ SCHÉMA: (a) emisní metody (b) absorpční metody (c) luminiscenční metody U (b) monochromátor často umístěn před kyvetou se vzorkem. Části
SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ; (c) David MILDE,
SEKTRÁLNÍ METODY Ing. David MILDE, h.d. Katedra analytické chemie Tel.: 585634443; E-mail: david.milde@upol.cz (c) -2008 oužitá a doporučená literatura Němcová I., Čermáková L., Rychlovský.: Spektrometrické
5. Vedení elektrického proudu v polovodičích
5. Vedení elektrického proudu v polovodičích - zápis výkladu - 26. až 27. hodina - A) Stavba látky a nosiče náboje Atom: základní stavební částice; skládá se z atomového jádra (protony a neutrony) a atomového
Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Energie elektronů v atomech nabývá diskrétních hodnot energetické hladiny.
Polovodičové lasery Energie elektronů v atomech nabývá diskrétních hodnot energetické hladiny. Energetické hladiny tvoří pásy Nejvyšší zaplněný pás je valenční, nejbližší vyšší energetický pás dovolených
37 MOLEKULY. Molekuly s iontovou vazbou Molekuly s kovalentní vazbou Molekulová spektra
445 37 MOLEKULY Molekuly s iontovou vazbou Molekuly s kovalentní vazbou Molekulová spektra Soustava stabilně vázaných atomů tvoří molekulu. Podle počtu atomů hovoříme o dvoj-, troj- a více atomových molekulách.
13. Spektroskopie základní pojmy
základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
ELEKTRONOVÝ OBAL ATOMU. kladně nabitá hmota. elektron
MODELY ATOMU ELEKTRONOVÝ OBAL ATOMU Na základě experimentálních výsledků byly vytvořeny různé teorie o struktuře atomu, tzv. modely atomu. Thomsonův model: Roku 1897 se jako první pokusil o popis stavby
Látka jako soubor kvantových soustav
Opakování pojmů Látka jako soubor kvantovýh soustav - foton - kvantování energie - kvantová soustava systém vázanýh části (atom, molekula, iont), jehož energie je kvantována - základní stav kvantové soustavy
MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA
MAKRO- A MIKRO- MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA STAV... (v dřívějším okamţiku)...... info o vnějším působení STAV... (v určitém okamţiku) ZÁKLADNÍ INFO O... (v tomto okamţiku) VŠCHNY DALŠÍ
Spektrometrické metody. Luminiscenční spektroskopie
Spektrometrické metody Luminiscenční spektroskopie luminiscence molekul a pevných látek šířka spektrální čar a doba života luminiscence polarizace luminiscence korekce luminiscenčních spekter vliv aparatury
České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská. Příloha formuláře C OKRUHY
Příloha formuláře C OKRUHY ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM Obor: Studijní program: Aplikace přírodních věd Základy fyziky kondenzovaných látek 1. Vazebné síly v kondenzovaných látkách
Optické spektroskopie 1 LS 2014/15
Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)
Studium strukturálních změn při laserovém obrábění ocelí. Bc. Martin Petrůj
Studium strukturálních změn při laserovém obrábění ocelí Bc. Martin Petrůj Diplomová práce 2016 Příjmení a jméno: Petrůj Martin Obor: Technologická zařízení P R O H L Á Š E N Í Prohlašuji, že beru na
Úvod do spektrálních metod pro analýzu léčiv
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz
Elektřina a magnetizmus polovodiče
DUM Základy přírodních věd DUM III/2-T3-11 Téma: polovodiče Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý a Mgr. Josef Kormaník VÝKLAD Elektřina a magnetizmus polovodiče Obsah POLOVODIČ...
2 Nd:YAG laser buzený laserovou diodou
2 Nd:YAG laser buzený laserovou diodou 15. května 2011 Základní praktikum laserové techniky Zpracoval: Vojtěch Horný Datum měření: 12. května 2011 Pracovní skupina: 1 Ročník: 3. Naměřili: Vojtěch Horný,
Fotonické nanostruktury (alias nanofotonika)
Základy nanotechnologií KEF/ZANAN Fotonické nanostruktury (alias nanofotonika) Jan Soubusta 27.10. 2017 Obsah 1. ÚVOD 2. POHLED DO MIKROSVĚTA 3. OD ELEKTRONIKY K FOTONICE 4. FYZIKA PRO NANOFOTONIKU 5.
KOMPLEXY EUROPIA(III) LUMINISCENČNÍ VLASTNOSTI A VYUŽITÍ V ANALYTICKÉ CHEMII. Pavla Pekárková
KOMPLEXY EUROPIA(III) LUMINISCENČNÍ VLASTNOSTI A VYUŽITÍ V ANALYTICKÉ CHEMII Pavla Pekárková Katedra analytické chemie, Přírodovědecká fakulta, Masarykova univerzita, Kotlářská 2, 611 37 Brno E-mail: 78145@mail.muni.cz
Inovace a zkvalitnění výuky prostřednictvím ICT. Obrábění. Název: Téma: Fyzikální metody obrábění 1. Ing. Kubíček Miroslav. Autor:
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Inovace a zkvalitnění výuky prostřednictvím ICT Obrábění Téma: Fyzikální metody obrábění 1 Autor: Ing. Kubíček
Základy spektroskopie a její využití v astronomii
Ing. Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Základy spektroskopie a její využití v astronomii Hvězdárna Valašské Meziříčí, p. o. Krajská hvezdáreň v Žiline Světlo x záření Jak vypadá spektrum?
Úvod do laserové techniky
Úvod do laserové techniky Laser Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze jan.sulc@fjfi.cvut.cz 29. října 2012 Světlo a jeho interakce s hmotou opakování Světlo = elektromagnetická
STEJNOSMĚRNÝ PROUD Samostatný výboj TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
STEJNOSMĚRNÝ PROUD Samostatný výboj TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Plyny jsou tvořeny elektricky neutrálními molekulami. Proto jsou za
ATOMOVÉ JÁDRO. Nucleus Složení: Proton. Neutron 1 0 n částice bez náboje Proton + neutron = NUKLEON PROTONOVÉ číslo: celkový počet nukleonů v jádře
ATOM 1 ATOM Hmotná částice Dělit lze: Fyzikálně ANO Chemicky Je z nich složena každá látka Složení: Atomové jádro (protony, neutrony) Elektronový obal (elektrony) NE Elektroneutrální částice: počet protonů
Jádro se skládá z kladně nabitých protonů a neutrálních neutronů -> nukleony
Otázka: Atom a molekula Předmět: Chemie Přidal(a): Dituse Atom = základní stavební částice všech látek Skládá se ze 2 částí: o Kladně nabité jádro o Záporně nabitý elektronový obal Jádro se skládá z kladně
Diskutujte, jak široký bude pás spojený s fosforescencí versus fluorescencí. Udělejte odhad v cm -1.
S použitím modelu volného elektronu (=částice v krabici) spočtěte vlnovou délku a vlnočet nejdlouhovlnějšího elektronového přechodu u molekuly dekapentaenu a oktatetraenu. Diskutujte polohu absorpčního
Laserová technika 1. Rychlostní rovnice pro Q-spínaný laser. 22. prosince Katedra fyzikální elektroniky.
Laserová technika 1 Aktivní prostředí Rychlostní rovnice pro Q-spínaný laser Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program přednášek
POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II
POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II FOTOELEKTRICKÝ JEV VNĚJŠÍ FOTOELEKTRICKÝ JEV na intenzitě záření závisí jen množství uvolněných elektronů, ale nikoliv energie jednotlivých elektronů energie elektronů
Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014
Laser je řístroj, který generuje elektromagnetické záření monochromatické, směrované (s malou rozbíhavostí), koherentní, vysoce energetické, výkonné, s velkým jasem Základní konstrukční součásti evnolátkového
Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření
Elektromagnetické záření lineárně polarizované záření Cirkulárně polarizované záření Levotočivé Pravotočivé 1 Foton Jakékoli elektromagnetické vlnění je kvantováno na fotony, charakterizované: Vlnovou