Dolování asociačních pravidel
|
|
- Aneta Vítková
- před 9 lety
- Počet zobrazení:
Transkript
1 Dolování asociačních pravidel Miloš Trávníček UIFS FIT VUT v Brně
2 Obsah přednášky 1. Proces získávání znalostí 2. Asociační pravidla 3. Dolování asociačních pravidel 4. Algoritmy pro dolování asociačních pravidel 5. Analýza získaných výsledků 6. Ukázková aplikace v SAS Enterprise Miner
3 Proces získávání znalostí Netriviální získávání implicitních, dosud neznámých, pochopitelných a potenciálně užitečných znalostí Znalost = pravidla, omezení, pravidelnost Několik kroků celého procesu: Stanovení cílů Integrace, výběr a předzpracování dat Výběr dolovacích prostředků Získání znalostí Interpretace výsledků
4 Definice pojmů Dolování v relačních datech Relační tabulka R=(H, R B ), kde H je záhlaví relační tabulky a B je její tělo Tělo relační tabulky = množina n-ticn řádků R B (t) = {r 1, r 2,..., r m (t)}, Doména atributu = množina skalárních hodnot téhož typu, jichž může atribut nabýt
5 Definice pojmů Typy atributu (podle velikosti domény D i ) Kategorický = doména atributu je konečná Kvantitativní = doména atributu je nekonečná Booleovský = atribut nabývá hodnot false x true Transakční databáze Pokud pro domény všech atributů platí, že jsou booleovského typu
6 Asociační pravidla Snaha zjistit mezi položkami takový vztah, že přítomnost jedné nebo více položek implikuje přítomnost jiných položek v téže transakci Definice: A B kde A,B jsou vzájemně disjunktní množiny položek z množiny I (= databáze)
7 Asociační pravidla Motivace získávání asociačních pravidel Úloha Analýza nákupního košíku Snažíme se zjistit závislosti mezi jednotlivými prodejními položkami (př. asoc.. pravidla: pokud si zákazník kupuje mléko, zpravidla si koupí chleba ) Využití výsledků pro rozmisťování zboží, vytváření nabídkových katalogů, marketingové rozhodování apod.
8 Asociační pravidla Metriky pro asociační pravidla Podpora (support) pravidlo A B platí s podporou supp,, pokud supp*100% řádků v relační tabulce obsahuje položky reprezentované predikáty z obou stran asociačního pravidla = frekvence výskytu pravidla v databázi Spolehlivost (confidence) - pravidlo A B má spolehlivost c, pokud c*100% řádků v relační tabulce obsahující položky z A obsahuje také položky z B = síla implikace v asociačním pravidle
9 Nalezení asociačních pravidel Silná pravidla pravidla s vysokou (předem určenou) hodnotou a spolehlivostí Cíl nalézt taková pravidla, která jsou silná Dolování asociačních pravidel = nalezení silných pravidel
10 Nalezení asociačních pravidel Dva kroky procesu nalezení asociačních pravidel: 1. Generování frekventovaných vzorů = nalezení predikátů, které mají podporu vyšší, než je zadaná minimální podpora = nalezení silných množin 2. Generování asociačních pravidel = vygenerování asoc.. pravidel s využitím silných množin = odstranění pravidel, jejichž spolehlivost (confidence)) nedosahuje předem určené minimální hodnoty (minconf( minconf)
11 Nalezení asociačních pravidel Definice frekventovaného vzoru fp. frekventovaný vzor, konjunkce predikátů tvaru a 1 a 2 a n (konjunkce predikátů),, kde jednotlivé predikáty odpovídají hodnotám určitého počtu řádků, v případě kvantitativních atributů musí být hodnota uvnitř určitého intervalu FP. množina frekventovaných vzorů s(x).. podpora FP = {fp s(fp fp) minsup}
12 Nalezení asociačních pravidel Definice silných asociačních pravidel ar asociační pravidlo tvaru A B, kde A, B jsou konjunkce predikátů tvaru a 1 a 2 a n c(ar) spolehlivost pravidla s(ar) podpora pravidla Poté je množina silných pravidel AR definována jako: AR = {ar{ c(ar ar) minconf s(ar ar) minsup}
13 Nalezení asociačních pravidel Faktory, určující výkon dolovacího algoritmu: Efektivita generování frekventovaných vzorů Časová a paměťová náročnost generování frekventovaných vzorů Druhý krok (generování( asociačních pravidel) je jednoduchý a nemá v konečném důsledku větší vliv na výkon dolovacího algoritmu
14 Algoritmy pro dolování asociačních pravidel Základem algoritmus nalezení velkých množin tzv. kandidátů,, založený na průchodu databází, určování možných kandidátů a počítání jejich podpory (support)( Apriori AprioriTID ukládají se kandidáti na frekventované množiny, kteří jsou v transakci obsaženi AprioriItemset ukládají se i transakce, v nichž jsou kandidáti obsaženi (formou vektoru binárních čísel, vyjadřujících přítomnost/nepřítomnost kandidáta v transakci)
15 Algoritmus APRIORI Algoritmus prochází postupně databázi a počítá podporu pro kandidáty V každém kroku generování tzv. kandidátů a poté kontrola minimální podpory. V dalším kroku vznik kandidátů o velikosti o jednu větší, než v předchozím kroku atd. Konec při nenalezení kandidátů dané velikosti Funkce AprioriGen generuje všechny možné k-k množiny (kandidáty) z frekventovaných množin a poté vylučuje z výběru ty množiny, jejichž některá podmnožina není frekventovaná ( podpora k-množiny k nemůže být větší, než podpora její podmnožiny )
16 Algoritmus APRIORI Výpočet podpory pro všechny prvky z množiny C 1 for (k=2;;k++) begin L k -1={ kandidáti z C k-1, kteří mají podporu vyšší než minimální} if (množina L k-1 je prázdná) break C k =AprioriGen(L k-1 ); for each (transakce t) begin C t = subset(c k, t); t for each (kandidáti c C t ) zvyš o 1 podporu kandidáta c end; end.
17 Další typy asociačních pravidel Víceúrovňová asociační pravidla nad položkami v transakcích je definována konceptuální hierarchie, která je sdružuje do tzv. konceptů (jablko, pomeranč = ovoce) Asociační pravidla založená na omezeních Zobecněná asociační pravidla
18 Ukázka v aplikaci SAS Enterprise Miner Sociologický průzkum Výběr cvičných dat, úprava souboru dat, definování proměnných Určení požadovaného výsledku Sestavení flow diagramu Generování výstupů Určení vhodných asociačních pravidel
19 Definice problému Máme rozsáhlý soubor statistických dat, zobrazující údaje o mužích středního věku (získáno ze studie STULONG, viz. euromise.vse.cz/stulong/index. /index.php) Chceme zjistit, které faktory nejvíce ovlivňují zvýšenou hladinu cholesterolu u některých jedinců v tomto věku Prosté zobrazení dat např. do grafu by v tomto případě nebylo dostatečně vypovídající Jako vedlejší produkt můžeme také zjistit například souvislost se sociálním postavením a životním stylem, věkem apod.
20 Úprava dat Vstupní data je nutno upravit do podoby nákupního košíku, jeden záznam tedy bude vypadat následujícím způsobem: ID Položka kouri 21 a vice let stari let cigaret cholesterol normalni mirna aktivita pije prilezitostne sedi v praci vedouci zenaty
21 Import dat
22 Nastavení uzlu Association
23 Flow diagram
24 Výsledná pravidla
25 Analýza výsledků mirna aktivita & castecne nezavisly pracovn ne kurak & kouri 0 roku & jiny pracovnik ==> E EXP_CONFCONFSUPP LIFTCOUNTRULE 3 72,05 76,25 17,22 1, ==> chole ste rol normalni 4 72,05 75,32 8,19 1, chole s te rol normalni 4 26,89 34,69 4,80 1,29 mirna aktivita & kouri 21 a vice let & cigaret ==> zvyseny cholesterol 4 26,89 35,53 5,72 1,32 ze naty & kouri 21 a vice le t & cigare t 81 ==> zvyse ny chole ste rol 4 26,89 35,41 6,42 1,32 zenaty & mirna aktivita & cigaret ==> 91 zvys e ny chole s te rol 4 26,89 34,29 4,23 1,28 ze naty & pije prile zitos tne & cigare t 60 ==> zvyse ny chole ste rol 4 26,89 37,50 4,23 1,39 zenaty & se di v praci & cigaret ==> 60 zvys e ny chole s te rol 4 26,89 31,75 4,73 1,18 ze naty & kouri 21 a vice le t & 21 a vice 67 cigaret ==> zvyseny cholesterol
26 Dotazy
Asociační pravidla. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p
Asociační pravidla Informační a komunikační technologie ve zdravotnictví Definice pojmů Stavový prostor S je množina uzlů(stavů), kde cílem je najít stav splňující danou podmínku g. Formálně je problém
Základy vytěžování dat
Základy vytěžování dat předmět A7Bb36vyd Vytěžování dat Filip Železný, Miroslav Čepek, Radomír Černoch, Jan Hrdlička katedra kybernetiky a katedra počítačů ČVUT v Praze, FEL Evropský sociální fond Praha
Získávání znalostí z databází. Alois Kužela
Získávání znalostí z databází Alois Kužela Obsah související pojmy datové sklady, získávání znalostí asocianí pravidla 2/37 Úvod získávání znalostí z dat, dolování (z) dat, data mining proces netriviálního
Tvorba asociačních pravidel a hledání. položek
Tvorba asociačních pravidel a hledání častých skupin položek 1 Osnova Asociace Transakce Časté skupiny položek Apriori vlastnost podmnožin Asociační pravidla Aplikace 2 Asociace Nechť I je množina položek.
hledání zajímavých asociací i korelací ve velkém množství dat původně pro transakční data obchodní transakce analýza nákupního košíku
Asociační pravidla Asociační pravidla hledání zajímavých asociací i korelací ve velkém množství dat původně pro transakční data obchodní transakce analýza nákupního košíku podpora rozhodování Analýza nákupního
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INFORMAČNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INFORMATION SYSTEMS ZÍSKÁVÁNÍ ZNALOSTÍ
Asociační i jiná. Pravidla. (Ch )
Asociační i jiná Pravidla (Ch. 14 +...) Učení bez učitele Nemáme cílovou třídu Y, G; máme N pozorování což jsou p-dimenzionální vektory se sdruženou pravděpodobností chceme odvozovat vlastnosti. Pro málo
Databázové systémy. * relační kalkuly. Tomáš Skopal. - relační model
Databázové systémy Tomáš Skopal - relační model * relační kalkuly Osnova přednášky relační kalkuly doménový n-ticový Relační kalkuly využití aparátu predikátové logiky 1. řádu pro dotazování rozšíření
Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group
Vytěžování dat Miroslav Čepek, Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme
Dolování v objektových datech. Ivana Rudolfová
Dolování v objektových datech Ivana Rudolfová Relační databáze - nevýhody První normální forma neumožňuje vyjádřit vztahy A je podtypem B nebo vytvořit struktury typu pole nebo množiny SQL omezení omezený
Úvod do dobývání. znalostí z databází
POROZUMĚNÍ 4iz260 Úvod do DZD Úvod do dobývání DOMÉNOVÉ OBLASTI znalostí z databází VYUŽITÍ VÝSLEDKŮ POROZUMĚNÍ DATŮM DATA VYHODNO- CENÍ VÝSLEDKŮ MODELOVÁNÍ (ANALYTICKÉ PROCEDURY) PŘÍPRAVA DAT Ukázka slidů
Radim Navrátil. Robust 24. ledna 2018
Analýza nákupního košíku - historie a současnost Radim Navrátil Ústav matematiky a statistiky Přírodovědecká fakulta MU, Brno Robust 24. ledna 2018 Radim Navrátil (ÚMS Brno) Analýza nákupního košíku Robust
Databázové systémy. Ing. Radek Holý
Databázové systémy Ing. Radek Holý holy@cvut.cz Literatura: Skripta: Jeřábek, Kaliková, Krčál, Krčálová, Kalika: Databázové systémy pro dopravní aplikace Vydavatelství ČVUT, 09/2010 Co je relační databáze?
Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence
APLIKACE UMĚLÉ INTELIGENCE Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence Aplikace umělé inteligence - seminář ING. PETR HÁJEK, PH.D. ÚSTAV SYSTÉMOVÉHO INŽENÝRSTVÍ A INFORMATIKY
Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) 9. dubna 2009. Filip Železný (ČVUT) Vytěžování dat 9.
Vytěžování dat Filip Železný Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) 9. dubna 2009 Filip Železný (ČVUT) Vytěžování dat 9. dubna 2009 1 / 22 Rozhodovací pravidla Strom lze převést
Základy business intelligence. Jaroslav Šmarda
Základy business intelligence Jaroslav Šmarda Základy business intelligence Business intelligence Datový sklad On-line Analytical Processing (OLAP) Kontingenční tabulky v MS Excelu jako příklad OLAP Dolování
Profitabilita klienta v kontextu Performance management
IBM Technical specialist team Pre Sale 26/10/2010 Profitabilita klienta v kontextu Performance management Co všechno řadíme do PM? Automatická data Běžný reporting Pokročilé statistické modely Včera What
Stále větší množství dat uložených v databázích Neustále generujeme data Obchodní a bankovní transakce
Stále větší mžství dat uložených v databázích Neustále generujeme data Obchodní a bankovní transakce Biologická, astromická data atd Ukládáme stále více dat Úvod do problematiky Databázové techlogie jsou
Kritéria hodnocení praktické maturitní zkoušky z databázových systémů
Kritéria hodnocení praktické maturitní zkoušky z databázových systémů Otázka č. 1 Datový model 1. Správně navržený ERD model dle zadání max. 40 bodů teoretické znalosti konceptuálního modelování správné
METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1
METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 DOLOVÁNÍ V DATECH (DATA MINING) OBJEVUJE SE JIŽ OD 60. LET 20. ST. S ROZVOJEM POČÍTAČOVÉ TECHNIKY DEFINICE PROCES VÝBĚRU, PROHLEDÁVÁNÍ A MODELOVÁNÍ
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
Nové metody plánování a řízení zakázky v praxi - Infor LN. Pavel Dezort
Nové metody plánování a řízení zakázky v praxi - Infor LN Pavel Dezort Agenda Úvod Hlavní plán a jeho využitelnost pro zakázkovou výrobu Koncept STO Standard To Order Metody plánování dodávek (Push x Pull)
ANALÝZA NÁKUPNÍHO KOŠÍKU SEMINÁŘ
ANALÝZA NÁKUPNÍHO KOŠÍKU SEMINÁŘ 18.11.2012 Radim Tvardek, Petr Bulava, Daniel Mašek U&SLUNO a.s. I Sadová 28 I 702 00 Ostrava I Czech Republic PŘEDPOKLADY PRO ANALÝZU NÁKUPNÍHO KOŠÍKU 18.11.2012 Daniel
Operátory ROLLUP a CUBE
Operátory ROLLUP a CUBE Dotazovací jazyky, 2009 Marek Polák Martin Chytil Osnova přednášky o Analýza dat o Agregační funkce o GROUP BY a jeho problémy o Speciální hodnotový typ ALL o Operátor CUBE o Operátor
Databáze v MS ACCESS
1 z 14 19.1.2014 18:43 Databáze v MS ACCESS Úvod do databází, návrh databáze, formuláře, dotazy, relace 1. Pojem databáze Informací se data a vztahy mezi nimi stávají vhodnou interpretací pro uživatele,
Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů.
Modely datové Existují různé úrovně pohledu na data. Nejvyšší úroveň je úroveň, která zachycuje pouze vztahy a struktury dat samotných. Konceptuální model - E-R model. Další úrovní je logická úroveň Databázové
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
Databázové systémy. Přednáška 1
Databázové systémy Přednáška 1 Vyučující Ing. Martin Šrotýř, Ph.D. K614 Místnost: K311 E-mail: srotyr@fd.cvut.cz Telefon: 2 2435 9532 Konzultační hodiny: Dle domluvy Databázové systémy 14DATS 3. semestr
M4 PDF rozšíření. Modul pro PrestaShop. http://www.presta-addons.com
M4 PDF rozšíření Modul pro PrestaShop http://www.presta-addons.com Obsah Úvod... 2 Vlastnosti... 2 Jak modul funguje... 2 Zdroje dat... 3 Šablony... 4 A. Označení šablon... 4 B. Funkce Smarty... 5 C. Definice
Dobývání znalostí z databází (MI-KDD) Přednáška číslo 4 Asociační pravidla
Dobývání znlostí z dtbází (MI-KDD) Přednášk číslo 4 Asociční prvidl (c) prof. RNDr. Jn Ruch, CSc. KIZI, Fkult informtiky sttistiky VŠE zimní semestr 2011/2012 Evropský sociální fond Prh & EU: Investujeme
Informační systémy pro podporu rozhodování
Informační systémy pro rozhodování Informační systémy pro podporu rozhodování 5 Jan Žižka, Naděžda Chalupová Ústav informatiky PEF Mendelova universita v Brně Asociační pravidla Asociační pravidla (sdružovací
Marketingová komunikace. 2. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK1aPH/N9KMK1bPH (um1a1ph/um1b1ph)
Marketingová komunikace Kombinované studium Skupina N9KMK1aPH/N9KMK1bPH (um1a1ph/um1b1ph) 2. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Minulé soustředění úvod
Logické operace. Datový typ bool. Relační operátory. Logické operátory. IAJCE Přednáška č. 3. může nabýt hodnot: o true o false
Logické operace Datový typ bool může nabýt hodnot: o true o false Relační operátory pravda, 1, nepravda, 0, hodnoty všech primitivních datových typů (int, double ) jsou uspořádané lze je porovnávat binární
Tvorba asociačních pravidel a hledání častých skupin položek
Tvorba asociačních pravidel a hledání častých skupin položek 1 Osnova Asociace a transakce Časté skupiny položek Apriori vlastnost podmnožin Asociační pravidla Aplikace 2 Příklad transakcí TID Products
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů)
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů) Autor: Vladimir Vapnik Vapnik, V. The Nature of Statistical Learning Theory.
xrays optimalizační nástroj
xrays optimalizační nástroj Optimalizační nástroj xoptimizer je součástí webového spedičního systému a využívá mnoho z jeho stavebních bloků. xoptimizer lze nicméně provozovat i samostatně. Cílem tohoto
Získávání dat z databází 1 DMINA 2010
Získávání dat z databází 1 DMINA 2010 Získávání dat z databází Motto Kde je moudrost? Ztracena ve znalostech. Kde jsou znalosti? Ztraceny v informacích. Kde jsou informace? Ztraceny v datech. Kde jsou
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Asociační pravidla Doc. RNDr. Iveta Mrázová, CSc.
Dobývání znalostí z textů text mining
Dobývání znalostí z textů text mining Text mining - data mining na nestrukturovaných textových dokumentech 2 možné přístupy: Předzpracování dat + běžné algoritmy pro data mining Speciální algoritmy pro
4IT218 Databáze. 4IT218 Databáze
4IT218 Databáze Osmá přednáška Dušan Chlapek (katedra informačních technologií, VŠE Praha) 4IT218 Databáze Osmá přednáška Normalizace dat - dokončení Transakce v databázovém zpracování Program přednášek
KMA/PDB. Karel Janečka. Tvorba materiálů byla podpořena z prostředků projektu FRVŠ č. F0584/2011/F1d
KMA/PDB Prostorové databáze Karel Janečka Tvorba materiálů byla podpořena z prostředků projektu FRVŠ č. F0584/2011/F1d Sylabus předmětu KMA/PDB Úvodní přednáška Základní terminologie Motivace rozdíl klasické
Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1
Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu
Dolování z textu. Martin Vítek
Dolování z textu Martin Vítek Proč dolovat z textu Obrovské množství materiálu v nestrukturované textové podobě knihy časopisy vědeckéčlánky sborníky konferencí internetové diskuse Proč dolovat z textu
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATOVÝCH SKLADŮ KNOWLEDGE DISCOVERY OVER DATA WAREHOUSES
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INFORMAČNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INFORMATION SYSTEMS ZÍSKÁVÁNÍ ZNALOSTÍ
Chybějící atributy a postupy pro jejich náhradu
Chybějící atributy a postupy pro jejich náhradu Jedná se o součást čištění dat Čistota dat je velmi důležitá, neboť kvalita dat zásadně ovlivňuje kvalitu výsledků, které DM vyprodukuje, neboť platí Garbage
Hledání prostorových asociačních pravidel v prostorových databázích. Discovery of Spatial Association Rules in Geographic Information Databases
Hledání prostorových asociačních pravidel v prostorových databázích Lukáš Janák Zdroj: Discovery of Spatial Association Rules in Geographic Information Databases Krzysztof Koperski, Jiawei Han Simon Fraser
Booleova algebra. ZákonyBooleovy algebry Vyjádření logických funkcí
Booleova algebra ZákonyBooleovy algebry Vyjádření logických funkcí pravdivostní tabulka logický výraz seznam indexů vstupních písmen mapa vícerozměrná krychle 30-1-13 O. Novák 1 Booleova algebra Booleova
Vícerozměrné statistické metody
Vícerozměrné statistické metody Vícerozměrné statistické rozdělení a testy, operace s vektory a maticemi Jiří Jarkovský, Simona Littnerová FSTA: Pokročilé statistické metody Vícerozměrné statistické rozdělení
Analytické procedury v systému LISp-Miner
Dobývání znalostí z databází MI-KDD ZS 2011 Přednáška 8 Analytické procedury v systému LISp-Miner Část II. (c) 2011 Ing. M. Šimůnek, Ph.D. KIZI, Fakulta informatiky a statistiky, VŠE Praha Evropský sociální
KIV/ZIS cvičení 1. Martin Kryl
KIV/ZIS cvičení 1 Martin Kryl Údaje o cvičícím Martin Kryl Kancelář: UC326 Konzultační hodiny Úterý 10:00 11:00 Středa 13:00 14:00 E-mail: kryl@kiv.zcu.cz Stránky předmětu Na Courseware Moje předměty Základy
Metody tvorby ontologií a sémantický web. Martin Malčík, Rostislav Miarka
Metody tvorby ontologií a sémantický web Martin Malčík, Rostislav Miarka Obsah Reprezentace znalostí Ontologie a sémantický web Tvorba ontologií Hierarchie znalostí (D.R.Tobin) Data jakékoliv znakové řetězce
Binární soubory (datové, typované)
Binární soubory (datové, typované) - na rozdíl od textových souborů data uložena binárně (ve vnitřním tvaru jako v proměnných programu) není čitelné pro člověka - všechny záznamy téhož typu (může být i
1 Linearní prostory nad komplexními čísly
1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)
Michal Burda. 27. ledna Abstrakt
Získávání znalostí z databází - Asociační pravidla Michal Burda 27. ledna 2004 Abstrakt Získávání asociačních pravidel z dat je jedním z významných oborů Data Miningu. Hledají se pomocí něj zajímavé vztahy
ŘÍKÁME, ŽE FUNKCE JE ČÁSTEČNĚ SPRÁVNÁ (PARTIALLY CORRECT), POKUD KDYŽ JE SPLNĚNA PRECONDITION
ŘÍKÁME, ŽE FUNKCE JE ČÁSTEČNĚ SPRÁVNÁ (PARTIALLY CORRECT), POKUD KDYŽ JE SPLNĚNA PRECONDITION FUNKCE PŘI JEJÍM ZAVOLÁNÍ, JEJÍ POSTCONDITION JE SPLNĚNA PŘI NÁVRATU Z FUNKCE (POKUD NASTANE) OBECNĚ FUNKCE
4. NP-úplné (NPC) a NP-těžké (NPH) problémy
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA 4. NP-úplné (NPC) a NP-těžké (NPH) problémy Karpova redukce
Moderní systémy pro získávání znalostí z informací a dat
Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:
Databázové a informační systémy Informační systém prodejny nábytku. Jakub Kamrla, KAM087
Databázové a informační systémy Informační systém prodejny nábytku Jakub Kamrla, KAM087 1. část Funkční a nefunkční požadavky 1. K čemu má systém sloužit Jedná se o informační systém pro jednu nejmenovanou
DOBÝVÁNÍ ZNALOSTÍ Z DATABÁZÍ
DOBÝVÁNÍ ZNALOSTÍ Z DATABÁZÍ Úvod a oblasti aplikací Martin Plchút plchut@e-globals.net DEFINICE A POJMY Netriviální extrakce implicitních, ch, dříve d neznámých a potenciáln lně užitečných informací z
Sedm základních nástrojů řízení jakosti
Sedm základních nástrojů řízení jakosti Není nic tak naprosto zbytečného, jako když se dobře dělá něco, co by se nemělo dělat vůbec. Peter Drucker Kontrolní tabulky Vývojové diagramy Histogramy Diagramy
Marketingová komunikace. 2. a 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3aph)
Marketingová komunikace Kombinované studium Skupina N9KMK3PH (vm3aph) 2. a 3. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Co nás čeká: 2. soustředění 16.1.2009
Customer Provider Relationship Monitoring by Association Analyse Means
Sledování vztahu zákazníka a poskytovatele prostředky asociační analýzy Customer Provider Relationship Monitoring by Association Analyse Means Naděžda Chalupová, Arnošt Motyčka Mendelova zemědělská a lesnická
Projekt LISp-Miner. M. Šimůnek
Projekt LISp-Miner http://lispminer.vse.cz M. Šimůnek Obsah Systém LISp-Miner Vývoj systému v dlouhém období ETree-Miner Project LISp-Miner 2 Systém LISp-Miner Metoda GUHA (od roku 1966) předchozí implementace
Sémantika predikátové logiky
Sémantika predikátové logiky pro analýzu sémantiky potřebujeme nejprve specifikaci jazyka (doména, konstanty, funkční a predikátové symboly) příklad: formální jazyk s jediným binárním predikátovým symbolem
TÉMATICKÝ OKRUH Softwarové inženýrství
TÉMATICKÝ OKRUH Softwarové inženýrství Číslo otázky : 24. Otázka : Implementační fáze. Postupy při specifikaci organizace softwarových komponent pomocí UML. Mapování modelů na struktury programovacího
Pracovní text a úkoly ke cvičením MF002
Pracovní text a úkoly ke cvičením MF002 Ondřej Pokora, PřF MU, Brno 11. března 2013 1 Brownův pohyb (Wienerův proces) Základním stavebním kamenem simulací náhodných procesů popsaných pomocí stochastických
2. RBF neuronové sítě
2. RBF neuronové sítě Kapitola pojednává o neuronových sítích typu RBF. V kapitole je popsána základní struktura tohoto typu neuronové sítě. Poté následuje definice a charakteristika jednotlivých radiálně
Informační systémy 2006/2007
13 Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní, Katedra automatizační techniky a řízení Informační systémy 2006/2007 Ivan Kedroň 1 Obsah Analytické nástroje SQL serveru. OLAP analýza
Databázové systémy BIK-DBS
Databázové systémy BIK-DBS Ing. Ivan Halaška katedra softwarového inženýrství ČVUT FIT Thákurova 9, m.č. T9:311 ivan.halaska@fit.cvut.cz Stránka předmětu: https://edux.fit.cvut.cz/courses/bi-dbs/parttime/start
Obsah přednášky. Databázové systémy RDBMS. Fáze návrhu RDBMS. Coddových 12 pravidel. Coddových 12 pravidel
Obsah přednášky Databázové systémy Konceptuální model databáze Codd a návrh relační databáze fáze návrhu pojem konceptuální model základní pojmy entity, relace, atributy, IO kardinalita, 2 historie: RDBMS
Business Intelligence
Business Intelligence Skorkovský KAMI, ESF MU Principy BI zpracování velkých objemů dat tak, aby výsledek této akce manažerům pomohl k rozhodování při řízení procesů výsledkem zpracování musí být relevantní
Kapitola 7: Návrh relačních databází. Nástrahy relačního návrhu. Příklad. Rozklad (dekompozice)
- 7.1 - Kapitola 7: Návrh relačních databází Nástrahy návrhu relačních databází Dekompozice (rozklad) Normalizace použitím funkčních závislostí Nástrahy relačního návrhu Návrh relačních databází vyžaduje
Obsah. Začínáme programovat v Ruby on Rails 9. Úvod 11. 1. Vítejte v Ruby 15. O autorovi 9 Poděkování 9
Začínáme programovat v Ruby on Rails 9 O autorovi 9 Poděkování 9 Úvod 11 Komu je kniha určena 11 Jak je kniha uspořádána 11 Co ke knize potřebujete 12 Konvence 12 Zdrojový kód 13 Poznámka redakce českého
Databázové systémy úvod
Databázové systémy úvod Michal Valenta Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze c Michal Valenta, 2016 BI-DBS, LS 2015/16 https://edux.fit.cvut.cz/courses/bi-dbs/
Vytěžování znalostí z dat
Pavel Kordík, Jan Motl (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 1 1/29 Vytěžování znalostí z dat Pavel Kordík, Jan Motl Department of Computer Systems Faculty of Information Technology
2. Numerické výpočty. 1. Numerická derivace funkce
2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž
Katedra kybernetiky, FEL, ČVUT v Praze.
Strojové učení a dolování dat přehled Jiří Kléma Katedra kybernetiky, FEL, ČVUT v Praze http://ida.felk.cvut.cz posnova přednášek Přednáška Učitel Obsah 1. J. Kléma Úvod do předmětu, učení s a bez učitele.
Kritéria hodnocení praktické maturitní zkoušky z databázových systémů
Kritéria hodnocení praktické maturitní zkoušky z databázových systémů Otázka č. 1 Datový model 1. Správně navržený ERD model dle zadání max. 40 bodů teoretické znalosti konceptuálního modelování správné
Primární klíč, cizí klíč, referenční integrita, pravidla normalizace, relace
Téma 2.2 Primární klíč, cizí klíč, referenční integrita, pravidla normalizace, relace Obecný postup: Každá tabulka databáze by měla obsahovat pole (případně sadu polí), které jednoznačně identifikuje každý
Statistické zpracování naměřených experimentálních dat za rok 2012
Statistické zpracování naměřených experimentálních dat za rok 2012 Popis dat: Experimentální data byla získána ze tří měřících sloupů označených pro jednoduchost názvy ZELENA, BILA a RUDA. Tyto měřící
7.3 Diagramy tříd - základy
7.3 Diagramy tříd - základy - popisuje typy objektů a statické vztahy mezi nimi Objednávka -datumpřijetí -předplacena -číslo -cena +vyřiď() +uzavři() {if Objednávka.zákazník.charakteristika = 'nejistý'
Kanbanové metody řízení dodávek v Infor ERP LN. Pavel Dezort
Kanbanové metody řízení dodávek v Infor ERP LN Pavel Dezort Agenda Úvod a všeobecný přehled Metody řízení dodávek Dodací systém KANBAN Dodací systém Řízeno objednávkou / Jednotlivě Dodací systém TPOP (Časově
Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/ Množiny, funkce
Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018 2. Množiny, funkce MNOŽIN, ZÁKLDNÍ POJMY Pojem množiny patří v matematice ke stěžejním. Nelze jej zavést ve formě definice pomocí
Dotazovací jazyky I. Datová krychle. Soběslav Benda
Dotazovací jazyky I Datová krychle Soběslav Benda Obsah Úvod do problematiky Varianty přístupu uživatelů ke zdrojům dat OLTP vs. OLAP Datová analýza Motivace Vytvoření křížové tabulky Datová krychle Teorie
Maturitní témata z matematiky
Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy
Úvod do zpracování signálů
1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování
Zhodnocení architektury podniku. Jiří Mach 28. 8. 2014
Zhodnocení architektury podniku Jiří Mach 28. 8. 2014 Obsah Zhodnocení architektury podniku Zahájení projektu Metodika/framework Harmonogram projektu 1. fáze: vytvoření popisu AS-IS stavu 2. fáze: analýza
Výroková a predikátová logika - VII
Výroková a predikátová logika - VII Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VII ZS 2018/2019 1 / 15 Platnost (pravdivost) Platnost ve struktuře
3 Co je algoritmus? 2 3.1 Trocha historie... 2 3.2 Definice algoritmu... 3 3.3 Vlastnosti algoritmu... 3
Obsah Obsah 1 Program přednášek 1 2 Podmínky zápočtu 2 3 Co je algoritmus? 2 3.1 Trocha historie............................ 2 3.2 Definice algoritmu.......................... 3 3.3 Vlastnosti algoritmu.........................
7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
7.3 Diagramy tříd - základy
7.3 Diagramy tříd - základy - popisuje typy objektů a statické vztahy mezi nimi Objednávka -datumpřijetí -předplacena -číslo -cena +vyřiď() +uzavři() {if Objednávka.zákazník.charakteristika = 'nejistý'
Úvod do databázových systémů 6. cvičení
Vysoká škola báňská Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Úvod do databázových systémů 6. cvičení Ing. Petr Lukáš petr.lukas@nativa.cz Ostrava, 2012 Modelování databází [1]
Informační systémy 2008/2009. Radim Farana. Obsah. Obsah předmětu. Požadavky kreditového systému. Relační datový model, Architektury databází
1 Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní, Katedra automatizační techniky a řízení 2008/2009 Radim Farana 1 Obsah Požadavky kreditového systému. Relační datový model, relace, atributy,
Vytěžování znalostí z dat
Pavel Kordík, Jan Motl (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2011, Cvičení 13 1/10 Vytěžování znalostí z dat Pavel Kordík, Jan Motl Department of Computer Systems Faculty of Information Technology
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
Metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
Obecná informatika. Matematicko-fyzikální fakulta Univerzity Karlovy v Praze. Podzim 2012
Obecná informatika Přednášející Putovních přednášek Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Podzim 2012 Přednášející Putovních přednášek (MFF UK) Obecná informatika Podzim 2012 1 / 18
RELACE, OPERACE. Relace
RELACE, OPERACE Relace Užití: 1. K popisu (evidenci) nějaké množiny objektů či jevů, které lze charakterizovat pomocí jejich vlastnostmi. Entita je popsána pomocí atributů. Ty se vybírají z domén. Různé
Diagramy tříd - základy
Diagramy tříd - základy - popisuje typy objektů a statické vztahy mezi nimi Objednávka Zákazník -datumpřijetí -předplacena -číslo -cena +vyřiď() +uzavři() {if Objednávka.zákazník.charakteristika = 'nejistý'
Relační DB struktury sloužící k optimalizaci dotazů - indexy, clustery, indexem organizované tabulky
Otázka 20 A7B36DBS Zadání... 1 Slovníček pojmů... 1 Relační DB struktury sloužící k optimalizaci dotazů - indexy, clustery, indexem organizované tabulky... 1 Zadání Relační DB struktury sloužící k optimalizaci
CATEGORY MANAGEMENT v praxi ústavní lékárny
CATEGORY MANAGEMENT v praxi ústavní lékárny Ing.Martin Frano 16. OTC Konference 24.10.2013 Význam CM v prostředí ústavní lékárny Tlak na finanční výkonnost lékárny (pokles na Rx) Záchyt nemocničních pacientů