Úvod do dobývání. znalostí z databází

Rozměr: px
Začít zobrazení ze stránky:

Download "Úvod do dobývání. znalostí z databází"

Transkript

1 POROZUMĚNÍ 4iz260 Úvod do DZD Úvod do dobývání DOMÉNOVÉ OBLASTI znalostí z databází VYUŽITÍ VÝSLEDKŮ POROZUMĚNÍ DATŮM DATA VYHODNO- CENÍ VÝSLEDKŮ MODELOVÁNÍ (ANALYTICKÉ PROCEDURY) PŘÍPRAVA DAT Ukázka slidů M. Šimůnek

2 Fáze DZD podle CRISP-DM POROZUMĚNÍ DOMÉNOVÉ OBLASTI VYUŽITÍ VÝSLEDKŮ POROZUMĚNÍ DATŮM DATA VYHODNO- CENÍ VÝSLEDKŮ PŘÍPRAVA DAT MODELOVÁNÍ (ANALYTICKÉ PROCEDURY) 4iz260 ukázka slidů 2

3 Hegelovská spirála 4iz260 POROZUMĚNÍ DOMÉNOVÉ OBLASTI VYUŽITÍ VÝSLEDKŮ POROZUMĚNÍ DATŮM DATA VYHODNO- CENÍ VÝSLEDKŮ PŘÍPRAVA DAT MODELOVÁNÍ (ANALYTICKÉ PROCEDURY) 4iz260 ukázka slidů 3

4 Pracnost a důležitost fází VYUŽITÍ VÝSLEDKŮ POROZUMĚNÍ DOMÉNOVÉ OBLASTI POROZUMĚNÍ DATŮM DISKUZE S MAJITELEM DAT CÍLE, SMYSL A CENA ANALÝZY, BUDOVÁNÍ DŮVĚRY (25 %) DATA VYHODNO- CENÍ VÝSLEDKŮ MODELOVÁNÍ (ANALYTICKÉ PROCEDURY) PŘÍPRAVA DAT DŮVĚRA VE VÝSLEDKY? PODSTOUPÍ RIZIKO UVEDENÍ DO PRAXE? (25 %) DATA PROBLÉMY SE ZÍSKÁNÍM DAT A JEJICH POPISU (5 %) CO VÝSLEDKY ZNAMENAJÍ? JAK POUŽÍT? (20 %) ČIŠTĚNÍ A PŘEDZPRA- COVÁNÍ DAT (20 %) 4iz260 ukázka slidů 4 MODE- LOVÁNÍ (5 %)

5 Princip GUHA procedury Analyzovaná data Jednoduchá definice potenciálně zajímavých vztahů Generování a verifikace jednotlivých vztahů Všechny prosté vztahy (pravdivé v datech a nevyplývající z jednodušších) 4iz260 ukázka slidů 5

6 Data Výuková data Hotel Libovolným způsobem zjistěte nějakou základní charakteristiku dat nějakou vypočtenou charakteristiku něco zajímavého v datech Časový limit: 10 minut 4iz260 ukázka slidů 6

7 Základní obrazovka LM Workspace Titulek s názvem metabáze Číslo verze Záložky aktuálně otevřených oken Strom s názvy aktuálně otevřených záložek, členěný dle fází DZD Pracovní plocha s aktuálně vybraným oknem 4iz260 ukázka slidů 7

8 Údaje o sloupci 4iz260 ukázka slidů 8 Datový typ Statistické hodnoty min, max, průměr Graf hodnot pouze pro číselné hodnoty možné proložení trendu (polynom n-tého řádu) Výčet hodnot a jejich četnost zobrazení i jako graf možné proložení trendu (polynom n-tého řádu)

9 Scatter (XY) Plot Bodový graf hodnot ve dvou (numerických) sloupcích DB tabulky např. měsíc (osa X), teplota (osa Y) Možné omezit pouze na záznamy s danou kategorií vybraného předzpracovaného atributu DenTydne= Pátek 4iz260 ukázka slidů 9

10 Analýza hlavních komponent Technika redukce dimenzí mnoharozměrných (numerických) dat Principal Component Analysis (PCA) PCA se snaží nalézt takové zobrazení (natočení) mraku dat, aby byly nejlépe vidět odlišnosti a případné shluky při redukci na dvě hlavní komponenty možné zobrazit jako 2D graf 4iz260 ukázka slidů 10

11 Interpretace jedné varianty shlukování (PCA), shluky Zobrazení XY grafu s výsledky PCA viz Interactive analysis Výrazné odlišení třetího shluku Setosa (zeleně, úplně dole) První dva shluky mají k sobě relativně blízko 4iz260 ukázka slidů 11

12 Zobrazení hypotézy (stromu) Možnosti procházení jako u interaktivní analýzy Zobrazení detailu uzlu Další záložky text a data Převod stromu na rozhodovací pravidla 4iz260 ukázka slidů 12

13 Rozdělení věku v celých datech: CF Contingency analysis Rozdělení věku hostů s nástupem v pátek větší rozdíly v zastoupení jednotlivých věkových skupin výrazněji převažuje věková skupina 55 až 65 let 4iz260 ukázka slidů 13

14 KL Contingency analysis (2) Celková cena versus počet nocí na celých datech pouze pro Počet osob= 1 Přibližně funkční závislost 4iz260 ukázka slidů 14

15 Booleovské atributy Logický výraz můžeme rozhodnout o platnosti či neplatnosti v daných datech Základní booleovský atribut A(α), kde A je více-kategoriální atribut a α je libovolná neprázdná podmnožina jeho kategorií Město( Praha), Město( Praha, Brno), Národnost( CZ, SK) nabývá hodnoty TRUE (platí) pro daný řádek matice, když hodnota patří do jedné z uvedených kategorií Odvozený booleovský atribut odvozený ze základních booleovských atributů pomocí logických spojek (konjunkce), (disjunkce) a (negace) Měsíc( únor..květen) Národnost( CZ, SK ) [Věk( 20;50 ) Typ_Návštěvy( služební )] Den( Po, St) 4iz260 ukázka slidů 15

16 Koeficienty cyklická sekvence Jako sekvence, ale i přes konec Počet variant počet_kategorií Cyklické sekvence délky 1 Den(Po ) Den(Út ) Den(St ) Den(Čt ) Den(Pá ) Den(So ) Den(Ne ) Cyklické sekvence délky 2 Den(Po,Út ) Den(Út,St ) Den(St,Čt ) Den(Čt,Pá ) Den(Pá,So ) Den(So,Ne ) Den(Po,Ne ) Cyklické sekvence délky 3 Den(Po,Út,St ) Den(Út,St,Čt ) Den(St,Čt,Pá ) Den(Čt,Pá,So ) Den(Pá,So,Ne ) Den(Po,So,Ne ) Den(Po,Út,Ne ) 4iz260 ukázka slidů 16

17 Asociační pravidlo příklad (1) PočetNocí( 7) Měsíc( květen) 0.94, 47 Národnost( AT) Je-li délka pobytu týden (sedm dní) a zároveňjde o pobytu začínajícív květnupotomv 94 % případůje host rakouskénárodnosti. Pobytůsplňujících předpoklad i závěr je celkem 47. předpokladtyp vztahu sílavztahua zastoupenívztahu závěr Typ vztahu dán 4ft-kvantifikátorem kvantifikátor Fundovaná implikace (FUI) implikační kvantifikátor Síla a zastoupení vztahu vypočteno ze čtyřpolní tabulky 4iz260 ukázka slidů 17

18 Čtyřpolní tabulka četností (1) a: počet záznamů splňujících jak ϕ (antecedent), tak ψ (sukcedent) b: počet záznamů splňujících ϕ a nesplňujících ψ Μ PočetNocí( 7) Měsíc( květen) (PočetNocí( 7) Měsíc( květen)) Národnost( AT) Národnost( AT) c: počet záznamů nesplňujících ϕ a splňujících ψ d: počet záznamů nesplňujících ϕ ani ψ a/(a+b) = 47/(47+3) = 47/50 = 0,94 U fundované implikace na hodnotách c a d nezáleží! 4iz260 ukázka slidů 18

19 Interpretace výsledků Ukázka Věk( 25;35)) Typ( rekreace) Cena( <7500) 71,4 %, 25 Den( Ne,Po,Út) pro hosty mezi 25 a 35 lety na rekreaci v ceně do 7,5 tisíce platí, že přijedou v neděli, v pondělí nebo v úterý takových hostů je 25 z celkového počtu 35 z této podmnožiny. Takže platnost pravidla v analyzovaných datech je 71,4 %. Posteriorní pravděpodobnost (obecná platnost) se dá očekávat v rozmezí 70,3 % ± 22.2 p.b. (3 směrodatná odchylka 7,4 p.b.). Rozpětí je značné zejména kvůli nízkému počtu takových případů v analyzovaných datech Majiteli hotelu doporučujeme XXX a pro případ opakování této analýzy v budoucnu navrhujeme rozšířit velikost analyzovaných dat 4iz260 ukázka slidů 19

Analytické procedury v systému LISp-Miner

Analytické procedury v systému LISp-Miner Dobývání znalostí z databází MI-KDD ZS 2011 Přednáška 8 Analytické procedury v systému LISp-Miner Část II. (c) 2011 Ing. M. Šimůnek, Ph.D. KIZI, Fakulta informatiky a statistiky, VŠE Praha Evropský sociální

Více

Vysoká škola ekonomická. Katedra informačního a znalostního inženýrství. Fakulta informatiky a statistiky. Systém LISp-Miner

Vysoká škola ekonomická. Katedra informačního a znalostního inženýrství. Fakulta informatiky a statistiky. Systém LISp-Miner Vysoká škola ekonomická Katedra informačního a znalostního inženýrství Fakulta informatiky a statistiky Systém LISp-Miner Stručný popis určený pro posluchače kurzů Metod zpracování informací verse 20.

Více

Asociační pravidla (metoda GUHA)

Asociační pravidla (metoda GUHA) Vysoká škola báňská Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra informatiky Asociační pravidla (metoda GUHA) Ing. Michal Burda () Získávání znalostí z dat Brno, 27. ledna

Více

Dobývání znalostí z databází (MI-KDD) Přednáška číslo 5 Zajímavé dvojice podmnožin objektů, procedura SD4ft-Miner

Dobývání znalostí z databází (MI-KDD) Přednáška číslo 5 Zajímavé dvojice podmnožin objektů, procedura SD4ft-Miner Dobývání znalostí z databází (MI-KDD) Přednáška číslo 5 Zajímavé dvojice podmnožin objektů, procedura SD4ft-Miner (c) prof. RNDr. Jan Rauch, CSc. KIZI, Fakulta informatiky a statistiky VŠE zimní semestr

Více

Výroková logika - opakování

Výroková logika - opakování - opakování ormální zavedení Výroková formule: Máme neprázdnou nejvýše spočetnou množinu A výrokových proměnných. 1. Každá proměnná je výroková formule 2. Když α, β jsou formule, potom ( α), (α β), (α

Více

DOBÝVÁNÍ ZNALOSTÍ Z DATABÁZÍ PŘÍKLADY APLIKACÍ V KARDIOLOGICKÝCH DATECH Jan Rauch

DOBÝVÁNÍ ZNALOSTÍ Z DATABÁZÍ PŘÍKLADY APLIKACÍ V KARDIOLOGICKÝCH DATECH Jan Rauch DOBÝVÁNÍ ZNALOSTÍ Z DATABÁZÍ PŘÍKLADY APLIKACÍ V KARDIOLOGICKÝCH DATECH Jan Rauch Anotace: Příspěvek obsahuje základní informace o dobývání znalostí jakožto důležité disciplíně informatiky a ukazuje příklady

Více

Excel - pokračování. Př. Porovnání cestovních kanceláří ohraničení tabulky, úprava šířky sloupců, sestrojení grafu

Excel - pokračování. Př. Porovnání cestovních kanceláří ohraničení tabulky, úprava šířky sloupců, sestrojení grafu Excel - pokračování Př. Porovnání cestovních kanceláří ohraničení tabulky, úprava šířky sloupců, sestrojení grafu Př. Analýza prodeje CD základní jednoduché vzorce karta Domů Př. Skoky do dálky - funkce

Více

Dolování asociačních pravidel

Dolování asociačních pravidel Dolování asociačních pravidel Miloš Trávníček UIFS FIT VUT v Brně Obsah přednášky 1. Proces získávání znalostí 2. Asociační pravidla 3. Dolování asociačních pravidel 4. Algoritmy pro dolování asociačních

Více

LISp-Miner: systém pro získávání znalostí z dat 1

LISp-Miner: systém pro získávání znalostí z dat 1 LISp-Miner: systém pro získávání znalostí z dat 1 Petr Berka, Jan Rauch, Milan Šimůnek VŠE Praha Nám. W. Churchilla 4, Praha 3 e-mail: {berka,rauch,simunek}@vse.cz Abstrakt. Systém LISp-Miner je otevřený

Více

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ Metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných

Více

Asociační i jiná. Pravidla. (Ch )

Asociační i jiná. Pravidla. (Ch ) Asociační i jiná Pravidla (Ch. 14 +...) Učení bez učitele Nemáme cílovou třídu Y, G; máme N pozorování což jsou p-dimenzionální vektory se sdruženou pravděpodobností chceme odvozovat vlastnosti. Pro málo

Více

Bakalářská matematika I

Bakalářská matematika I do předmětu Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Podmínky absolvování předmětu Zápočet Zkouška 1 účast na přednáškách alespoň v minimálním rozsahu,

Více

Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE

Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Miron Tegze Procedura SDKL-Miner pro dobývání znalostí z databází Katedra softwarového inženýrství Vedoucí diplomové práce: doc.

Více

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných

Více

Grafy opakování a prohloubení Při sestrojování grafu označíme tabulku a na kartě Vložit klikneme na zvolený graf

Grafy opakování a prohloubení Při sestrojování grafu označíme tabulku a na kartě Vložit klikneme na zvolený graf Pátek 30. září Grafy opakování a prohloubení Při sestrojování grafu označíme tabulku a na kartě Vložit klikneme na zvolený graf Nástroje grafu (objeví se při označeném grafu) - 3 záložky návrh, rozložení,

Více

Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α

Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α 1. JAZYK ATEATIKY 1.1 nožiny nožina je souhrn objektů určitých vlastností, které chápeme jako celek. ZNAČENÍ. x A x A θ A = { { a, b a A = B A B 0, 1 2 a, a,..., a n x patří do množiny A x nepatří do množiny

Více

Projekt LISp-Miner. M. Šimůnek

Projekt LISp-Miner.   M. Šimůnek Projekt LISp-Miner http://lispminer.vse.cz M. Šimůnek Obsah Systém LISp-Miner Vývoj systému v dlouhém období ETree-Miner Project LISp-Miner 2 Systém LISp-Miner Metoda GUHA (od roku 1966) předchozí implementace

Více

PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO KATEDRA INFORMATIKY DIPLOMOVÁ PRÁCE. Analýza dat ze studentských dotazníků Bc.

PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO KATEDRA INFORMATIKY DIPLOMOVÁ PRÁCE. Analýza dat ze studentských dotazníků Bc. PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO KATEDRA INFORMATIKY DIPLOMOVÁ PRÁCE Analýza dat ze studentských dotazníků 2013 Bc. Tomáš Matonoha Anotace Data mining je proces získávání netriviálních a dříve

Více

Kontingenční tabulky. (Analýza kategoriálních dat)

Kontingenční tabulky. (Analýza kategoriálních dat) Kontingenční tabulky (Analýza kategoriálních dat) Agenda Standardní analýzy dat v kontingenčních tabulkách úvod, KT, míry diverzity nominálních veličin, některá rozdělení chí kvadrát testy, analýza reziduí,

Více

Dobývání znalostí z databází MI-KDD ZS 2011 Přednáška 2. Projekt LISp-Miner.

Dobývání znalostí z databází MI-KDD ZS 2011 Přednáška 2. Projekt LISp-Miner. Dobývání znalostí z databází MI-KDD ZS 2011 Přednáška 2 Projekt LISp-Miner http://lispminer.vse.cz (c) 2011 Ing. M. Šimůnek, Ph.D. KIZI, Fakulta informatiky a statistiky, VŠE Praha Evropský sociální fond

Více

Příprava dat v softwaru Statistica

Příprava dat v softwaru Statistica Příprava dat v softwaru Statistica Software Statistica obsahuje pokročilé nástroje pro přípravu dat a tvorbu nových proměnných. Tyto funkcionality přinášejí značnou úsporu času při přípravě datového souboru,

Více

4.2 Syntaxe predikátové logiky

4.2 Syntaxe predikátové logiky 36 [070507-1501 ] 4.2 Syntaxe predikátové logiky V tomto oddíle zavedeme syntaxi predikátové logiky, tj. uvedeme pravidla, podle nichž se tvoří syntakticky správné formule predikátové logiky. Význam a

Více

OSOBNÍ ANGAŽOVANOST SOCIÁLNÍHO PRACOVNÍKA

OSOBNÍ ANGAŽOVANOST SOCIÁLNÍHO PRACOVNÍKA OSOBNÍ ANGAŽOVANOST SOCIÁLNÍHO PRACOVNÍKA Tomáš Kocyan OBSAH PREZENTACE Představení výzkumu Popis analyzovaných dat Analýza Asociace Fundovaná implikace Interpretace výsledků Rozhodovací stromy Výběr atributů

Více

Matematická logika. Rostislav Horčík. horcik

Matematická logika. Rostislav Horčík.  horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 15 Sémantická věta o dedukci Věta Pro

Více

EXPERIMENTÁLNÍ GUHA PROCEDURY

EXPERIMENTÁLNÍ GUHA PROCEDURY Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Tomáš Kuchař EXPERIMENTÁLNÍ GUHA PROCEDURY Katedra softwarového inženýrství Vedoucí diplomové práce: Doc. RNDr. Jan Rauch, CSc.

Více

Zápočtová práce STATISTIKA I

Zápočtová práce STATISTIKA I Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru

Více

DATABÁZE MS ACCESS 2010

DATABÁZE MS ACCESS 2010 DATABÁZE MS ACCESS 2010 KAPITOLA 5 PRAKTICKÁ ČÁST TABULKY POPIS PROSTŘEDÍ Spuštění MS Access nadefinovat název databáze a cestu k uložení databáze POPIS PROSTŘEDÍ Nahoře záložky: Soubor (k uložení souboru,

Více

Tabulka 1. Výběr z datové tabulky

Tabulka 1. Výběr z datové tabulky 1. Zadání domácího úkolu Vyberte si datový soubor obsahující alespoň jednu kvalitativní a jednu kvantitativní proměnnou s alespoň 30 statistickými jednotkami (alespoň 30 jednotlivých údajů). Zdroje dat

Více

0. ÚVOD - matematické symboly, značení,

0. ÚVOD - matematické symboly, značení, 0. ÚVOD - matematické symboly, značení, číselné množiny Výroky Výrok je každé sdělení, u kterého lze jednoznačně rozhodnout, zda je či není pravdivé. Každému výroku lze proto přiřadit jedinou pravdivostní

Více

Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška:

Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška: Přednášky: Mgr. Radek Výrut, Matematika I katedra matematiky, UL-605, rvyrut@kma.zcu.cz tel.: 377 63 2658 Zkouška: Písemná část zkoušky - příklady v rozsahu zápočtových prací Ústní část zkoušky - základní

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2015/2016 1 / 18 Základní syntax Jazyk Výroková logika je logikou

Více

Základní pojmy matematické logiky

Základní pojmy matematické logiky KAPITOLA 1 Základní pojmy matematické logiky Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. 1. Výroková logika Co je

Více

Místo pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu

Místo pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu VÝROKOVÁ LOGIKA Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. Co je výrok nedefinujejme, pouze si řekneme, co si pod

Více

Získávání znalostí z dat

Získávání znalostí z dat Získávání znalostí z dat Informační a komunikační technologie ve zdravotnictví Získávání znalostí z dat Definice: proces netriviálního získávání implicitní, dříve neznámé a potencionálně užitečné informace

Více

Lokální a globální analytické zprávy o výsledcích DZD

Lokální a globální analytické zprávy o výsledcích DZD Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Zdeněk Reischig Lokální a globální analytické zprávy o výsledcích DZD KATEDRA SOFTWAROVÉHO INŽENÝRSTVÍ Vedoucí diplomové práce:

Více

Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group

Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Vytěžování dat Miroslav Čepek, Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2013/2014 1 / 20 Základní syntax Jazyk Výroková logika je logikou

Více

Nová GUHA-procedura ETree-Miner v systému LISp-Miner

Nová GUHA-procedura ETree-Miner v systému LISp-Miner Nová GUHA-procedura ETree-Miner v systému LISp-Miner Milan Šimůnek Laboratoř pro inteligentní systémy Praha Fakulta informatiky a statistiky, VŠE Praha nám. W. Churchilla 4, 130 67 Praha 3 simunek@vse.cz

Více

Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce

Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce Marie Duží marie.duzi@vsb.cz 1 Úvod do teoretické informatiky (logika) Naivní teorie množin Co je to množina? Množina je soubor prvků

Více

Analýza dat na PC I.

Analýza dat na PC I. CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika

Více

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.

Více

Předzpracování dat. Lenka Vysloužilová

Předzpracování dat. Lenka Vysloužilová Předzpracování dat Lenka Vysloužilová 1 Metodika CRISP-DM (www.crisp-dm.org) Příprava dat Data Preparation příprava dat pro modelování selekce příznaků výběr relevantních příznaků čištění dat získávání

Více

Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence

Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence APLIKACE UMĚLÉ INTELIGENCE Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence Aplikace umělé inteligence - seminář ING. PETR HÁJEK, PH.D. ÚSTAV SYSTÉMOVÉHO INŽENÝRSTVÍ A INFORMATIKY

Více

vhodná pro strojové dokazování (Prolog) metoda založená na vyvracení: dokazuje se nesplnitelnost formulí

vhodná pro strojové dokazování (Prolog) metoda založená na vyvracení: dokazuje se nesplnitelnost formulí Rezoluce: další formální systém vhodná pro strojové dokazování (Prolog) metoda založená na vyvracení: dokazuje se nesplnitelnost formulí pracujeme s formulemi v nkf (též klauzulárním tvaru), ale používáme

Více

Databázové systémy. * relační kalkuly. Tomáš Skopal. - relační model

Databázové systémy. * relační kalkuly. Tomáš Skopal. - relační model Databázové systémy Tomáš Skopal - relační model * relační kalkuly Osnova přednášky relační kalkuly doménový n-ticový Relační kalkuly využití aparátu predikátové logiky 1. řádu pro dotazování rozšíření

Více

Třídění statistických dat

Třídění statistických dat 2.1 Třídění statistických dat Všechny muže ve městě rozdělíme na 2 skupiny: A) muži, kteří chodí k holiči B) muži, kteří se holí sami Do které skupiny zařadíme holiče? prof. Raymond M. Smullyan, Dr. Math.

Více

Charakteristiky kategoriálních veličin. Absolutní četnosti (FREQUENCY)

Charakteristiky kategoriálních veličin. Absolutní četnosti (FREQUENCY) Charakteristiky kategoriálních veličin Absolutní četnosti (FREQUENCY) Charakteristiky kategoriálních veličin Relativní četnosti Charakteristiky kategoriálních veličin Relativní četnosti Charakteristiky

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Excel tabulkový procesor

Excel tabulkový procesor Pozice aktivní buňky Excel tabulkový procesor Označená aktivní buňka Řádek vzorců zobrazuje úplný a skutečný obsah buňky Typ buňky řetězec, číslo, vzorec, datum Oprava obsahu buňky F2 nebo v řádku vzorců,

Více

Algoritmy a struktury neuropočítačů ASN P6

Algoritmy a struktury neuropočítačů ASN P6 Algoritmy a struktury neuropočítačů ASN P6 Syntéza neuronových sítí Optimalizace struktury Klestění neuronové sítě Výběr vstupních dat Syntéza neuronových sítí kanonické N je počet neuronů N=N krit dělení

Více

Michal Burda. 27. ledna Abstrakt

Michal Burda. 27. ledna Abstrakt Získávání znalostí z databází - Asociační pravidla Michal Burda 27. ledna 2004 Abstrakt Získávání asociačních pravidel z dat je jedním z významných oborů Data Miningu. Hledají se pomocí něj zajímavé vztahy

Více

Základy logiky a teorie množin

Základy logiky a teorie množin Pracovní text k přednášce Logika a teorie množin (I/2007) 1 1 Struktura přednášky Matematická logika 2 Výroková logika Základy logiky a teorie množin Petr Pajas pajas@matfyz.cz Predikátová logika 1. řádu

Více

Výpočet na gridu a LM TaskPooler

Výpočet na gridu a LM TaskPooler Dobývání znalostí z databází MI-KDD ZS 2011 Přednáška 10 Výpočet na gridu a LM TaskPooler v systému LISp-Miner (c) 2011 Ing. M. Šimůnek, Ph.D. KIZI, Fakulta informatiky a statistiky, VŠE Praha Evropský

Více

Výroková a predikátová logika - III

Výroková a predikátová logika - III Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/2018 1 / 16 2-SAT 2-SAT Výrok je v k-cnf, je-li v CNF a

Více

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009)

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009) Střední průmyslová škola Jihlava tř. Legionářů 1572/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Strojírenství (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje

Více

Úloha č. 2 - Kvantil a typická hodnota. (bodově tříděná data): (intervalově tříděná data): Zadání úlohy: Zadání úlohy:

Úloha č. 2 - Kvantil a typická hodnota. (bodově tříděná data): (intervalově tříděná data): Zadání úlohy: Zadání úlohy: Úloha č. 1 - Kvantily a typická hodnota (bodově tříděná data): Určete typickou hodnotu, 40% a 80% kvantil. Tabulka hodnot: Varianta Četnost 0 4 1 14 2 17 3 37 4 20 5 14 6 7 7 11 8 20 Typická hodnota je

Více

Matematická analýza 1

Matematická analýza 1 Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod

Více

Reporting. Ukazatele je možno definovat nad libovolnou tabulkou Helios Orange, která je zapsána v nadstavbě firmy SAPERTA v souboru tabulek:

Reporting. Ukazatele je možno definovat nad libovolnou tabulkou Helios Orange, která je zapsána v nadstavbě firmy SAPERTA v souboru tabulek: Finanční analýza Pojem finanční analýza Finanční analýza umožňuje načítat data podle dimenzí a tyto součty dlouhodobě vyhodnocovat. Pojem finanční analýza není nejpřesnější, protože ukazatele mohou být

Více

Popisná statistika. Komentované řešení pomocí MS Excel

Popisná statistika. Komentované řešení pomocí MS Excel Popisná statistika Komentované řešení pomocí MS Excel Vstupní data Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů,

Více

Lineární zobrazení. 1. A(x y) = A(x) A(y) (vlastnost aditivity) 2. A(α x) = α A(x) (vlastnost homogenity)

Lineární zobrazení. 1. A(x y) = A(x) A(y) (vlastnost aditivity) 2. A(α x) = α A(x) (vlastnost homogenity) 4 Lineární zobrazení Definice: Nechť V a W jsou vektorové prostory Zobrazení A : V W (zobrazení z V do W nazýváme lineárním zobrazením, pokud pro všechna x V, y V a α R platí 1 A(x y = A(x A(y (vlastnost

Více

UNIVERZITA PARDUBICE. 4.4 Aproximace křivek a vyhlazování křivek

UNIVERZITA PARDUBICE. 4.4 Aproximace křivek a vyhlazování křivek UNIVERZITA PARDUBICE Licenční Studium Archimedes Statistické zpracování dat a informatika 4.4 Aproximace křivek a vyhlazování křivek Mgr. Jana Kubátová Endokrinologický ústav V Praze, leden 2012 Obsah

Více

TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE

TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Studentská 2 461 17 Liberec 1 SEMESTRÁLNÍ PRÁCE STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÝCH ŠETŘENÍ Gabriela Dlasková, Veronika Bukovinská Sára Kroupová, Dagmar

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření Počet stran: 10 Datum odevzdání: 13. 5. 2016 Pavel Kubát Obsah Úvod... 3 1 Charakterizujte

Více

Analýza hlavních komponent

Analýza hlavních komponent Analýza hlavních komponent Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz J. Neubauer, J. Michálek (Katedra ekonometrie UO) Analýza

Více

10. Techniky formální verifikace a validace

10. Techniky formální verifikace a validace Fakulta informačních technologií MI-NFA, zimní semestr 2011/2012 Jan Schmidt EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI 10. Techniky formální verifikace a validace 1 Simulace není

Více

Evropský zemědělský fond pro rozvoj venkova: Evropa investuje do venkovských oblastí. v cestovním ruchu P3. Pavel Petr Petr.USII@upce.

Evropský zemědělský fond pro rozvoj venkova: Evropa investuje do venkovských oblastí. v cestovním ruchu P3. Pavel Petr Petr.USII@upce. Využití informačních technologií v cestovním ruchu P3 Pavel Petr Petr.USII@upce.cz 1 Obsah kurzu Princip vyhledávání Definování vyhledávacích požadavků Vyhledávací nástroje Zdroje informací Nástroje pro

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2017/2018 1 / 17 Předběžnosti Základní pojmy n-ární relace a funkce

Více

Sémantika výrokové logiky. Alena Gollová Výroková logika 1/23

Sémantika výrokové logiky. Alena Gollová Výroková logika 1/23 Výroková logika Alena Gollová Výroková logika 1/23 Obsah 1 Formule výrokové logiky 2 Alena Gollová Výroková logika 2/23 Formule výrokové logiky Výrok je oznamovací věta, o jejíž pravdivosti lze rozhodnout.

Více

ANOVA. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie

ANOVA. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie ANOVA Semestrální práce Licenční studium Galileo Interaktivní statistická analýza dat Brno 2015 Ing. Petra Hlaváčková, Ph.D.

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Získávání dat z databází 1 DMINA 2010

Získávání dat z databází 1 DMINA 2010 Získávání dat z databází 1 DMINA 2010 Získávání dat z databází Motto Kde je moudrost? Ztracena ve znalostech. Kde jsou znalosti? Ztraceny v informacích. Kde jsou informace? Ztraceny v datech. Kde jsou

Více

QAD Business Intelligence

QAD Business Intelligence QAD Business Intelligence Vladimír Bartoš, Pavel Němec Konzultanti 13.6.2012 Komponenty QAD BI Analytické tabule pro podporu rozhodování Spolupráce uživatelů nad analyzovanými daty Reporty Generátor analytických

Více

Katedra kybernetiky, FEL, ČVUT v Praze.

Katedra kybernetiky, FEL, ČVUT v Praze. Strojové učení a dolování dat přehled Jiří Kléma Katedra kybernetiky, FEL, ČVUT v Praze http://ida.felk.cvut.cz posnova přednášek Přednáška Učitel Obsah 1. J. Kléma Úvod do předmětu, učení s a bez učitele.

Více

Úvod do logiky (VL): 11. Ověřování, zda je formule tautologií metodou protipříkladu

Úvod do logiky (VL): 11. Ověřování, zda je formule tautologií metodou protipříkladu Jiří Raclavský (214): Úvod do logiky: klasická výroková logika Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.7/2.2./28.216, OPVK) Úvod

Více

Matematika pro informatiky KMA/MATA

Matematika pro informatiky KMA/MATA Matematika pro informatiky KMA/MATA Informace k předmětu Mgr. Přemysl Rosa rosapr00@pf.jcu.cz, J349 Konzultační hodiny v ZS: úterý 10-11, čtvrtek 15-16 nebo individuálně po předchozí domluvě aktivní účast

Více

RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.

RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 7 Jak hodnotit vztah spojitých proměnných

Více

Logika. 2. Výroková logika. RNDr. Luděk Cienciala, Ph. D.

Logika. 2. Výroková logika. RNDr. Luděk Cienciala, Ph. D. Logika 2. Výroková logika RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216, Logika:

Více

Statistické zpracování naměřených experimentálních dat za rok 2012

Statistické zpracování naměřených experimentálních dat za rok 2012 Statistické zpracování naměřených experimentálních dat za rok 2012 Popis dat: Experimentální data byla získána ze tří měřících sloupů označených pro jednoduchost názvy ZELENA, BILA a RUDA. Tyto měřící

Více

Booleovská algebra. Booleovské binární a unární funkce. Základní zákony.

Booleovská algebra. Booleovské binární a unární funkce. Základní zákony. Booleovská algebra. Booleovské binární a unární funkce. Základní zákony. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz

Více

Obsah. Kapitola 1. Kapitola 2. Kapitola 3. Úvod 9

Obsah. Kapitola 1. Kapitola 2. Kapitola 3. Úvod 9 Obsah Úvod 9 Kapitola 1 Business Intelligence, datové sklady 11 Přechod od transakčních databází k analytickým..................... 13 Kvalita údajů pro analýzy................................................

Více

MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

MATEMATICKÁ STATISTIKA.   Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým

Více

Odhad parametrů N(µ, σ 2 )

Odhad parametrů N(µ, σ 2 ) Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný

Více

Míry podobnosti, základy fuzzy matematiky

Míry podobnosti, základy fuzzy matematiky Evropský sociální fond Investujeme do vaší budoucnosti Míry podobnosti, základy fuzzy matematiky Matematika pro informatiky, FIT ČVUT Martin Holeňa, 9. týden LS 2010/2011 O čem to bude? Přehled vzdáleností

Více

Pracovní adresář. Nápověda. Instalování a načtení nového balíčku. Importování datového souboru. Práce s datovým souborem

Pracovní adresář. Nápověda. Instalování a načtení nového balíčku. Importování datového souboru. Práce s datovým souborem Pracovní adresář getwd() # výpis pracovního adresáře setwd("c:/moje/pracovni") # nastavení pracovního adresáře setwd("c:\\moje\\pracovni") # nastavení pracovního adresáře Nápověda?funkce # nápověda pro

Více

2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat

2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat 2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi,

Více

Popis zobrazení pomocí fuzzy logiky

Popis zobrazení pomocí fuzzy logiky Popis zobrazení pomocí fuzzy logiky diplomová práce Ján Fröhlich KM, FJFI, ČVUT 23. dubna 2009 Ján Fröhlich ( KM, FJFI, ČVUT ) Popis zobrazení pomocí fuzzy logiky 23. dubna 2009 1 / 25 Obsah 1 Úvod Základy

Více

Základy teorie pravděpodobnosti

Základy teorie pravděpodobnosti Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie

Více

Analýza dat z dotazníkových šetření

Analýza dat z dotazníkových šetření Analýza dat z dotazníkových šetření Cvičení 6. Rozsah výběru Př. Určete minimální rozsah výběru pro proměnnou věk v souboru dovolena, jestliže 95% interval spolehlivost průměru proměnné nemá být širší

Více

Základy popisné statistiky. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek

Základy popisné statistiky. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek Základy popisné statistiky Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi, výhodami, nevýhodami a vlastní sadou využitelných statistických metod -od binárních

Více

Predikátová logika. Teoretická informatika Tomáš Foltýnek

Predikátová logika. Teoretická informatika Tomáš Foltýnek Predikátová logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz strana 2 Opakování z minulé přednášky Z čeho se skládá jazyk výrokové logiky? Jaká jsou schémata pro axiomy VL? Formulujte

Více

Datové modelování II

Datové modelování II Datové modelování II Atributy Převod DM do schématu SŘBD Dotazovací jazyk SQL Multidimenzionální modelování Principy Doc. Miniberger, BIVŠ Atributy Atributem entity budeme rozumět název záznamu či informace,

Více

4ft-Miner pro začátečníky Získávání znalostí z databází

4ft-Miner pro začátečníky Získávání znalostí z databází 4ft-Miner pro začátečníky Získávání znalostí z databází Dobývání znalostí z databází (DZD) Knowledge Discovery in (from) Databases (KDD) Data Mining (DM) Materiál pro posluchače kurzů IZI211 Metody zpracování

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška první Miroslav Kolařík Zpracováno dle učebního textu prof. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Co a k čemu je logika? 2 Výroky a logické spojky

Více

Vybrané přístupy řešení neurčitosti

Vybrané přístupy řešení neurčitosti Vybrané přístupy řešení neurčitosti Úvod do znalostního inženýrství, ZS 2015/16 8-1 Faktory jistoty Jedná se o přístup založený na ad hoc modelech Hlavním důvodem vzniku tohoto přístupu je omezení slabin

Více

Popisná statistika kvantitativní veličiny

Popisná statistika kvantitativní veličiny StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali

Více

Formální systém výrokové logiky

Formální systém výrokové logiky Formální systém výrokové logiky 1.Jazyk výrokové logiky Nechť P = {p,q,r, } je neprázdná množina symbolů, které nazýváme prvotní formule. Symboly jazyka L P výrokové logiky jsou : a) prvky množiny P, b)

Více

Úvod do vícerozměrných metod. Statistické metody a zpracování dat. Faktorová a komponentní analýza (Úvod do vícerozměrných metod)

Úvod do vícerozměrných metod. Statistické metody a zpracování dat. Faktorová a komponentní analýza (Úvod do vícerozměrných metod) Úvod do vícerozměrných metod Statistické metody a zpracování dat Faktorová a komponentní analýza (Úvod do vícerozměrných metod) Petr Dobrovolný O řadě jevů či procesů máme k dispozici ne jeden statistický

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika Teorie pravděpodobnosti popisuje vznik náhodných dat, zatímco matematická statistika usuzuje z dat na charakter procesů, jimiž data vznikla. NÁHODNOST - forma existence látky,

Více

1 Tabulky Příklad 3 Access 2010

1 Tabulky Příklad 3 Access 2010 TÉMA: Vytvoření tabulky v návrhovém zobrazení Pro společnost Naše zahrada je třeba vytvořit databázi pro evidenci objednávek o konkrétní struktuře tabulek. Do databáze je potřeba ještě přidat tabulku Platby,

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více