Dynamická identifikace typů v C++.
|
|
- Blanka Kolářová
- před 9 lety
- Počet zobrazení:
Transkript
1 Dynamická identifikace typů v C++. Pod pojmem "Dynamická identifikace typů" rozumíme zjišťování typů proměnných, nebo objektů v době běhu programu. Identifikaci typů zajišťuje operátor typeid. Než se ale budeme zabývat tímto operátorem, podívejme se nejprve na třídu type_info. Instance této třídy slouží k uchování informace o typech. Třída type_info Třída je deklarována v hlavičkovém souboru typeinfo. Deklarace se nachází v prostoru jmen std. Instance této třídy v sobě mají informace o typech v době běhu programu. class type_info public: _CRTIMP virtual ~type_info(); _CRTIMP int operator==(const type_info& rhs) const; _CRTIMP int operator!=(const type_info& rhs) const; _CRTIMP int before(const type_info& rhs) const; _CRTIMP const char* name() const; _CRTIMP const char* raw_name() const; private: ; void *_m_data; char _m_d_name[1]; type_info(const type_info& rhs); type_info& operator=(const type_info& rhs); Třída má dvě veřejné metody: const char *name() const bool before(const type_info& arg) const. Obě metody jsou konstantní, tedy nijak nemění vnitřní stav (hodnoty atributů) objektu. Metoda name vrací konstantní řetězec udávající název typu. Setkal jsem se s takovými překladači, které vytvářely programy, ve kterých metoda name sice vracela název typu, ale nikoliv "pěkně" čitelný pro programátora. Jednalo se asi o nějakou vnitřní reprezentaci typu, se kterou nejspíše pracuje linker. Dnes u "solidních" překladačů by se to stát snad už nemělo. Metoda before zjistí, zda parametr má, či nemá být umístěn před daným objektem při řazení typů. Jedná se vlastně o obdobu operátoru <. Vedle těchto metod jsou pro třídu type_info přetíženy operátory == a!=. Všechny veřejné metody jsou konstantní a operátor = i kopírovací konstruktor nelze
2 použít. Oba jsou deklarovány jako soukromé metody. Neexistuje způsob, jak by mohl programátor změnit (korektní cestou) obsah objektu. Operátor typeid Operátor typeid vrací konstantní instanci třídy type_info. Jeho argumentem může být název typu, nebo výraz. V prvním případě bude vrácená instance třídy type_info udávat zadaný typ, ve druhém případě bude udávat typ návratové hodnoty výrazu. Uveďme jednoduchý příklad: #include <iostream> #include <typeinfo> using namespace std; class Trida private: int A,B; ; public: void nastav(int a, int b); void Trida::nastav(int a, int b) A = a; B = b; Trida *funkce() cout << "Volani" << endl; return new Trida;
3 // pokracovani // instance tridy Trida Trida objekt; // nazev typu const char *nazev = typeid(objekt).name(); // operator typeid vraci referenci const type_info &t1 = typeid(objekt); const type_info &t2 = typeid(trida); cout << "Nazev typu objekt: " << nazev << endl; cout << "char < int == " << typeid(char).before(typeid(int)) << endl; if (t2 == t1) // Nebo if ( typeid(objekt) == typeid(trida) ) cout << "OK" << endl; cout << typeid(funkce).name() << endl; /* Typ ukazatel na funkci */ cout << typeid(funkce()).name() << endl; /* Návratová hodnota funkce */ cout << typeid(*funkce()).name() << endl; Výstup programu: V tomto jednoduchém programu jsem předvedl jak pracovat s operátorem typeid a s instancemi třídy type_info. Zajímavé jsou především poslední tři výpisy. V prvním z nich zjišťuji typ identifikátoru funkce, což je ve skutečnosti ukazatel na funkci bez parametrů vracející ukazatel na třídu Třída. V předposledním výpisu zjišťuji návratovou hodnotu funkce. K zavolání funkce nedojde. V mém
4 příkladě k žádné DYNAMICKÉ IDENTIFIKACI NEDOŠLO. Všechny identifikace šlo vyhodnotit již v době překladu a také to při překladu překladač udělal. Chceme-li identifikovat typ nějaké instance v době běhu programu, musí se jednat o instanci polymorfní třídy. Tedy třída musí mít alespoň jednu metodu volanou pozdní vazbou ("virtuální" metodu). Tato metoda v ní samozřejmě nemusí být deklarovaná, třída ji muže i zdědit. Upravme v našem příkladě deklaraci metody nastav takto: virtual void nastav(int a, int b); Chování programu se nyní změní. Řádek cout << typeid(funkce()).name() << endl; se bude chovat stejně. Žádám vlastně o identifikaci ukazatele na třídu Třída. V době překladu nemůže být pochyb o tom, že se bude jednat o tento ukazatel. Jestliže ale tento ukazatel dereferencuji, již budu žádat o identifikaci typu instance polymorfního typu. Zde je situace jiná. Výraz musí být vyhodnocen (Funkce se zavolá.) a poté jej operátor typeid identifikuje pomocí tabulky virtuálních metod. Vše se provede v době, kdy program běží, nikoliv v době, kdy je kompilován. Tento příklad neukazuje nejlépe rozdíly mezi identifikací typů v době kompilace a v době běhu programu. Snažil jsem se jen poukázat na fakt, že v tomto případě bude výraz vyhodnocen. Může se jednat o velmi častý "zdroj" chyb, protože výraz může mít nějaký "vedlejší efekt". Například může změnit globální proměnné, atd... V našem příkladě nastane jiný problém, že ve funkci bude vytvořena instance, která nebude nikdy zlikvidována. Je důležité nezapomenout, že v případě identifikace polymorfního typu vlastně dojde k vyhodnocení výrazu. Nyní vytvořme příklad, který lépe ukáže rozdíl mezi statickou a dynamickou identifikací. #include <iostream> #include <typeinfo> using namespace std; class NadTrida private: int Atribut; public: virtual void nastav(int a); ; class PodTrida : public NadTrida ; void NadTrida::nastav(int a) Atribut = a;
5 // pokracovani NadTrida *a = new NadTrida; NadTrida *b = new PodTrida; // Ukazatel b "ukazuje" na PodTridu if (typeid(*b) == typeid(nadtrida)) cout << "Typ identifikovan v dobe prekladu." << endl; else cout << "Typ identifikovan pri behu programu." << endl; cout << "Ukazatel " << typeid(a).name() << " se odkazuje na " << typeid(*a).name() << endl; cout << "Ukazatel " << typeid(b).name() << " se odkazuje na " << typeid(*b).name() << endl; Výstup programu: Výraz typeid(b) bude vyhodnocen při překladu. Překladač jasně vidí, že b je deklarován jako ukazatel. Nemůže si ale být jistý, že tento ukazatel ukazuje na objekt typu Nadtřída. Nadtřída je totiž polymorfní typ.
6 Odebereme-li v deklaraci metod třídy Nadtřída klíčové slovo virtual (rozhodně si to zkuste), bude překladač předpokládat, že ukazatel na třídu Nadtřída bude ukazovat na instanci třídy Nadtřída. Což ale není pravda. V toto případě překladač identifikuje *b jako instanci třídy Nadtřída a k žádné dynamické identifikaci nedojde. Vše bude rozpoznáno "staticky" při překladu programu. Když dynamická identifikace selže. Nelze-li určit typ objektu, vyvrhne operátor typeid výjimku třídy bad_typeid. Třída bad_typeid je potomkem třídy exception. Bezpečné zjištění typu by tedy vypadalo následovně: (Třídy jsou deklarovány v předchozím příkladu.) // pokracovani NadTrida *p = NULL; try cout << "Typ:" << typeid(*p).name() << endl; catch (std::bad_typeid &e) // Nìjaké ošetøení výjimky. Identifikace typu se nepovedla. cerr << "Odchycena vyjimka" << endl; V některých starších překladačích, které nevyhovují normě se může třída bad_typeid jmenovat Bad_typeid a také nemusí být potomkem třídy exception. Jak vidíme z příkladu, výjimka může být vyvržená například v případě, že jako argument operátoru typeid je NULL, který má být dereferencován.
7 Operátor reinterpret_cast Operátor reinterpret_cast slouží k přetypování spolu nijak nesouvisejících datových typů. Převod ukazatelů na instance nijak nesouvisejících tříd, nebo struktur (bez společného předka). Převody ukazatele na celá čísla a podobně. Operátor reinterpret_cast se používá především při programování na velmi nízké úrovni a jeho chování může být závislé na dané platformě. Uveďme si jednoduchý příklad: #include <iostream> using namespace std; struct Struktura1 short int a; short int b; ; struct Struktura2 int cislo; ; // alokace a inicializace Struktura2 Struktura2 *s2 = new Struktura2; s2->cislo = 255; // pretypovani na Struktura1 Struktura1 *s1 = reinterpret_cast<struktura1*> (s2); cout << s1->a << " " << s1->b << endl; // změna hodnoty struktury s2->cislo = ; cout << s1->a << " " << s1->b << endl; // pretypovani na integer int &c = reinterpret_cast<int&> (*s2); cout << c << endl; Výstup: Jak je zřejmé v mém příkladě předpokládám, že 2*sizeof(short int) == sizeof(int).
8 To ale nemusí být na různých typech počítačů, nebo i na různých operačních systémech pravda. Jak napovídá název operátoru, dojde k změně interpretace nějakého místa v paměti. Je dobré si ještě všimnout, že v mém příkladě ukazatele s1, s2, i reference c se odkazují na stejné místo v paměti. Operátor static_cast Operátor static_cast je v podstatě lepší náhrada operátoru (typ) z jazyka C. Lze jej použít k různým konverzím mezi primitivními datovými typy, pro přetypování z potomka na předka, pro přetypování ukazatelů i referencí z potomka na předka, atd. Operátor static_cast není vhodný pro přetypování z předka na potomka. Příklad: #include <iostream> using namespace std; // primitivni typ lokalni nedynamicka alokace a inicializace int a = 65; // pretypovani na predka char A = static_cast<char>(a); cout << a << " " << A << endl; Výstup: Převádím-li static_cast<cílový typ>(výraz), a u cílového typu existuje bezparametrický konstruktor s parametrem stejného typu jako výraz, bude výsledek vytvořen pomocí něj. Postará se o to operátor static_cast.
9 Bude-li výraz objektového typu (třída) s přetíženým operátorem přetypování na cílový typ, bude použita metoda operátor typ() (přetížený operátor přetypování). Příklad: #include <iostream> using namespace std; class Trida private: int Atribut; public: Trida() Trida(int i):atribut(i) cout << "Konstruktor" << endl; operator int() cout << "Operator (int) " << endl; return Atribut; ; // primitivni typ lokalni nedynamicka alokace a inicializace int a = 65; // pretypovani na tridu o stejne velikosti Trida t = static_cast<trida>(a); // pretypovani z tridy zpet na integer int b = static_cast<int>(t); cout << b << endl; Výstup: Doporučuji všem tento program spustit a podívat se, co vše operátor static_cast provádí. Jak je vidět z příkladu, operátor přetypování z jazyka C je zbytečný, dokonce i když je přetížen. Operátor static_cast přebírá veškerou práci za něj. Jak jsem se již zmínil, static_cast není vhodný pro přetypování předka na potomka. K těmto účelům se hodí následující operátor.
10 Operátor dynamic_cast Operátor dynamic_cast slouží výhradně k přetypovávání ukazatelů, nebo referencí. Z ukazatele lze vytvořit pouze ukazatel a naopak z reference lze vytvořit pouze reference. Operátor dynamic_cast je vhodné použít pro přetypování ukazatele (nebo reference) na předka na ukazatel (referenci) na potomka. Operátor dynamic_cast bezpečně přetypovává polymorfní třídy (Třída obsahující alespoň jednu virtuální metodu.), protože k přetypování dojde až za běhu programu s pomocí dynamické identifikace typů. Nelze-li přetypovat ukazatele, je výsledný ukazatel roven NULL. Nelze-li přetypovat reference je vyvržená výjimka typu bad_cast. Příklad na operátor dynamic_cast: #include <iostream> #include <typeinfo> using namespace std; class Predek private: int A; public: void nastava(int a) A = a; virtual int deja() return A; ; class Potomek : public Predek private: int B; public: void nastavb(int b) B = b; ;
11 // pokracovani // dynamicka alokace predka a potomka s inicializaci Predek *pr = new Predek, *po = new Potomek; pr->nastava(10); po->nastava(20); // ukazatel na potomka Potomek *p; // Ukazatel po ukazuje na potomka, lze s ním pracovat jako s potomkem! if ((p = dynamic_cast<potomek*>(po))!= NULL) cout << "OK" << endl; p->nastavb(10); // Ukazatel pr ukazuje na predka, nelze s ním pracovat jako s potomkem! if ((p = dynamic_cast<potomek*>(pr)) == NULL) cout << "Nelze pretypovat" << endl; try Potomek &ref = dynamic_cast<potomek&>(*po); cout << "Pretypovano" << endl; ref = dynamic_cast<potomek&>(*pr); // Bude vyvolána výjimka. cout << "Pretypovano" << endl; catch (bad_cast& e) // Odchycení výjimky chybného dynamického pretypování referencí. // Chybné pretypování v době behu programu cout << "Nelze pretypovat" << endl; Výstup: Je důležité v takových případech používat operátor dynamic_cast. Zajistí přetypování až v době běhu programu, zajistí také bezpečnost přetypování. Znovu bych chtěl připomenout, že má-li být přetypování předka na potomka v dědičné hierarchii bezpečné, musí dynamic_cast přetypovávat polymorfní typy. Mnoho programátorů dělá
12 velkou chybu, když operátor dynamic_cast ignorují, a používají místo něj přetypování z jazyka C. Takové přetypování není bezpečné. Nevěříte-li, zkuste v mém poslední příkladu všechny operátory dynamic_cast přepsat na (typ), tedy přetypovat ukazatele tak, jak se to dělá v jazyce C. Program vypíše "Nestane se", a na řádku p->nastavb(10); zapíše 10 do nealokované paměti se všemi následky! Tolik tedy pro začátek k přetypování. Předpokládali jsme, že dědičnost v posledním příkladě bude jednoduchá, nikoliv vícenásobná. Ve svých článcích o vícenásobné dědičnosti jsem slíbil, že se ještě vrátím k přetypovávání instancí tříd vzniklých vícenásobnou dědičností. Dnes jsme se seznámili s operátorem dynamic_cast, proto se příště můžeme podívat na použití dynamic_cast při vícenásobné dědičnosti. Tím téma přetypování skončíme a v dalším článku se začneme zabývat šablonami v C++.
13 Přetypování instancí tříd vzniklých vícenásobnou dědičností. Podíváme na některé záludnosti při přetypování instancí tříd vzniklých vícenásobnou dědičností. Vytvořme si tři jednoduché třídy: #include <iostream> using namespace std; class PrvniNadTrida public: virtual void prvni() cout << "Prvni this=" << this << endl; ; class DruhaNadTrida public: virtual void druha() cout << "Druha this=" << this << endl; ; class PodTrida : public PrvniNadTrida, public DruhaNadTrida ; // dynamicka alokace podtridy odvozene od dvou trid PodTrida *pod = new PodTrida; // zobrazeni adres danych ukazatelem this z obouch nadtrid pod->prvni(); pod->druha(); delete pod; Výstup: Obě nadtřídy mají po jedné metodě, které vypíšou adresu, na kterou se odkazuje this. Třetí třída zdědí obě tyto metody po svých předcích. Ve funkci main je uveden první problém. Při spuštění programu zjistíme, že jeden objekt, na který se odkazuje ukazatel pod, má pří volání každé své metody jinou hodnotu implicitního parametru this. Problém spočívá v tom, jak je v C++ implementována vícenásobná dědičnost. Objekt, na který se odkazuje ukazatel pod jsou vlastně dva objekty (Jeden třídy PrvníNadTřída, druhy třídy DruháNadTřída.) za sebou. Nebudu se zde zabývat tématem vícenásobné dědičnosti, jde o téma jiné látky. Zmíněný problém s
14 this není zas tak velkým problémem. Zkrátka každá metoda má "svůj" this a vše funguje. S tímto ale úzce souvisí jiný problém, o kterém se zmíním později. Nejprve ale vytvořme ještě dvě další funkce a změňme funkci main: // změna main funkce a pridany funkce funkce1 a funkce2 void funkce1(druhanadtrida *objekt) cout << "funkce1: parametr " << objekt << endl; objekt->druha(); void funkce2(prvninadtrida *objekt) cout << "funkce2: parametr " << objekt << endl; objekt->prvni(); // dynamicka alokace potomka a zavolani funkci funkce1 a funkce2, které // zobrazi adresy nadtrid pomoci this a ukazatele na predka PodTrida *pod = new PodTrida; funkce1(pod); funkce2(pod); delete pod; Výstup: Vytvořil jsem 2 funkce, které vypíšou adresu, na kterou se odkazuje ukazatel daný jako parametr, a dále v každé funkci se zavolá metoda objektu, na který se parametr funkce odkazuje. Funkce se liší jen typem parametru. Ve funkci main vytvořím instanci třídy PodTřída a zavolám obě funkce. V souladu s principy dědičnosti "na místě, kde je očekáván předek může být potomek" předám oběma funkcím jako parametr ukazatel na instanci třídy PodTřída. Po spuštění zjistíme, že každá funkce dostane jako parametr jiný ukazatel. Překladač při překladu volání funkcí funkce1, funkce2 správně přetypoval parametr na předka. Při přetypování ukazatele (nebo i reference) na instanci třídy vzniklé vícenásobnou dědičností může dojít ke změně samotné adresy, na kterou se ukazatel (reference) odkazuje. Na tento fakt je dobré pamatovat. Je to taková zvláštnost, objekt vlastně ztrácí svou identitu. jak jsem se již v je v kapitolách o vícenásobné dědičnosti zmíňováno. Každý objekt má svou identitu, pomocí níž jej lze jednoznačně odlišit od jakéhokoliv jiného objektu. V C++ je tato identita dána paměťovou adresou objektu, jejíž hodnotu máme v implicitním
15 parametru this. Nemohou existovat dva různé objekty na stejné adrese. Stejně tak nemůže, i když v uvedených příkladech se děje opak, být jeden objekt na více adresách. Při vícenásobné dědičnosti v C++ tomu tak ale je. Při jednoduché dědičnosti žádný takový problém nenastane. Pozměňme pro ilustraci znovu funkci main takto: // po zmene main funkce // dynamicka alokace potomka a inicializace ukazatele // na predky PodTrida *pod = new PodTrida; PrvniNadTrida *prvni = pod; DruhaNadTrida *druhy = pod; // srovnani ukazatelu if ( (void*) prvni!= (void*) druhy) cout << "prvni neni druhy" << endl; delete pod; Výstup: Vytvořil jsem instanci třídy PodTřída, na kterou se odkazuje ukazatel pod. Dále jsem vytvořil dva ukazatele, které "ukazují" na stejný objekt, na který "ukazuje" pod. Nyní chci porovnat, zda ukazatele první a druhy jsou stejné (To znamená, zda ukazují na stejný objekt, nebo-li "Je objekt, na který ukazuje ukazatel první identický s objektem na který ukazuje ukazatel druhý?". Z předchozích dvou řádků plyne, že ano. Přesto po spuštění programu zjistíme, že ne. Právě tato ztráta identity objektu je podle mne velikou nevýhodou vícenásobné dědičnosti v C++. Jak tedy zjistit, zda jsou objekty identické?
16 K tomuto účelu nám slouží operátor dynamic_cast. Používáme-li vícenásobnou dědičnost, můžeme identitu objektů porovnat pomocí "triku" - přetypování na void* pomocí operátoru pro dynamické přetypování. Porovnání má správně vypadat: // dynamicka alokace potomka a inicializace ukazatele // na predky PodTrida *pod = new PodTrida; PrvniNadTrida *prvni = pod; DruhaNadTrida *druhy = pod; // srovnani ukazatelu if (dynamic_cast<void*>(prvni) == dynamic_cast<void*>(druhy)) cout << "Jsou stejne" << endl; else cout << "Nejsou stejne" << endl; delete pod;getchar(); Je třeba si uvědomit, že ve svém předchozím porovnání jsem použil chybné přetypování pomocí operátoru (typ), před kterým jsem v minulém článku varoval. Použití správného operátoru dynamic_cast vyřeší náš problém. Při použití vícenásobné dědičnosti totiž nemusí platit rovnost dynamic_cast<typ*> (ukazatel) == ukazatel. Na tento fakt je nutné pamatovat. Při použití jednoduché dědičnosti žádný problém s identitou nevzniká. Tímto jsme ukončili téma přetypování v C++.
17 Cvičení: Cv. 1. Vytvořte bázové třidy s názvem BaseCl1 a BaseCl2. BaseCl1 má atribut int m_ia a unsigned char m_bv1, m_bv2, m_bv3, m_bv4, BaseCl2 má atribut int m_ib. Nadefinujte virtuální metody GetA(), GetB(), SetA(), SetB(). Metody SetA, SetB nastaví atributy sudým číslem menším nez 10. Vytvořte potomka třídy BaseCl1 s názvem ChildCl1. Implementujte odvozenou metodu SetA. Metoda SetA nastaví atribut lichým číslem větším nez 100. Vytvořte potomka ChildCl2 odvozené od ChildCl1 a BaseCl2 a a vytvořte atribut int m_isum;, vytvořte přístupové metody Compute a Show, které vypočtou součet m_ia a m_ib a výsledek zapíše do m_isum, metoda Show zobrazí sumu, obě nevirtuální. Implementujte odvozenou metodu SetB. Metoda SetB nastaví atribut také lichým číslem větším nez 100. U všech tříd implementujte defaultní konstruktory a destruktory. Cv. 2. Vytvořte projekt, do něho vložte uvedené třídy z cv.1. Vytvořte instanci třídy ChildCl1 pomocí new operátoru s názvem pchild1. Ve třídě ChildCl1 vytvořte metodu SetBytes, která přiřadí hodnotu z m_ia do jednotlivých byte m_bv1, m_bv2, m_bv3, m_bv4 a hodnoty zobrazí, použijte operátor reinterpret_cast. Cv. 3. Pokračujte v projektu, zobrazte informace o třídě/instanci/virtuálních funkcích a nevirtuálních funkcích pomocí struktury type_info. Zobrazte vše. Cv. 4. Přetypujte pchild1 na bázovou třídu pomocí pomocného ukazatele a zjistěte, která virtuální funkce bude zavolána po přetypování. Použijte operátory DYNAMIC_CAST a STATIC_CAST. Ručně otestujte, zda BaseCl1 je předkem ChildCl1. Cv. 5. Pokračujte v minulých cvičeních. Přetypujte pchild1 na potomka ChildCl2. Zkuste přetypovaní pomocí referencí na objekt. Ošetřete zdárnost přetypování. Cv. 6. Vytvořte instanci třídy ChildCl2, vytvořte funkci Compute s argumentem typu void*, funkce provede nastavení hodnot a zobrazení výsledku výpočtu sumy (metody ChildCl2::Compute(), ChildCl2::Show()).
Abstraktní třídy, polymorfní struktury
Karel Müller, Josef Vogel (ČVUT FIT) Abstraktní třídy, polymorfní struktury BI-PA2, 2011, Přednáška 9 1/32 Abstraktní třídy, polymorfní struktury Ing. Josef Vogel, CSc Katedra softwarového inženýrství
Funkční objekty v C++.
Funkční objekty v C++. Funkční objekt je instance třídy, která má jako svou veřejnou metodu operátor (), tedy operátor pro volání funkce. V dnešním článku si ukážeme jak zobecnit funkci, jak používat funkční
Syntaxe vyjímek. #include <iostream> #include <string> using namespace std; // Trida vyjimek class Vyjimka { private:
Vyjímky. Pod pojmem výjimka se rozumí nějaká výjimečná situace, která nastane v dané funkci. V jazyce C i C++ se často používá návratových hodnot funkcí, které vracejí úspěšnost provádění nějaké operace
Programování v C++ 1, 6. cvičení
Programování v C++ 1, 6. cvičení dědičnost, polymorfismus 1 1 Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Zimní semestr 2018/2019 Přehled 1 2 3 Shrnutí minule procvičené
Více o konstruktorech a destruktorech
Více o konstruktorech a destruktorech Více o konstruktorech a o přiřazení... inicializovat objekt lze i pomocí jiného objektu lze provést přiřazení mezi objekty v původním C nebylo možné provést přiřazení
Pokročilé programování v jazyce C pro chemiky (C3220) Operátory new a delete, virtuální metody
Pokročilé programování v jazyce C pro chemiky (C3220) Operátory new a delete, virtuální metody Dynamická alokace paměti Jazyky C a C++ poskytují programu možnost vyžádat si část volné operační paměti pro
Programování v C++ 1, 5. cvičení
Programování v C++ 1, 5. cvičení konstruktory, nevirtuální dědění 1 1 Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Zimní semestr 2018/2019 Přehled 1 2 3 Shrnutí minule procvičené
TŘÍDY POKRAČOVÁNÍ. Události pokračování. Příklad. public delegate void ZmenaSouradnicEventHandler (object sender, EventArgs e);
TŘÍDY POKRAČOVÁNÍ Události pokračování public delegate void ZmenaSouradnicEventHandler (object sender, EventArgs e); class Bod private int x; private int y; public event ZmenaSouradnicEventHandler ZmenaSouradnic;
PB161 Programování v jazyce C++ Přednáška 4
PB161 Programování v jazyce C++ Přednáška 4 Dynamická alokace Kopírovací konstruktor Přetypování v C++ Nikola Beneš 12. října 2015 PB161 přednáška 4: dynamická alokace, kopírovací konstruktor, casting
Mělká a hluboká kopie
Karel Müller, Josef Vogel (ČVUT FIT) Mělká a hluboká kopie BI-PA2, 2011, Přednáška 5 1/28 Mělká a hluboká kopie Ing. Josef Vogel, CSc Katedra softwarového inženýrství Katedra teoretické informatiky, Fakulta
přetížení operátorů (o)
přetížení operátorů (o) - pro vlastní typy je možné přetížit i operátory (tj. definovat vlastní) - pro definici slouží klíčové slovo operator následované typem/znakem operátoru - deklarace pomocí funkčního
Programování v C++ 3, 3. cvičení
Programování v C++ 3, 3. cvičení úvod do objektově orientovaného programování 1 1 Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Zimní semestr 2018/2019 Přehled Dokončení spojového
Množina v C++ (set, multiset).
Množina v C++ (set, multiset). Množina je datová struktura, ve které jsou uloženy nějaké prvky. V množině nesmí být dva stejné prvky. Naopak multimnožina může obsahovat i stejné prvky. Nad množinou lze
Polymorfismus. Časová náročnost lekce: 3 hodiny Datum ukončení a splnění lekce: 30.března
Polymorfismus Cíle lekce Cílem lekce je vysvětlit význam pojmu polymorfismus jako základní vlastnosti objektově orientovaného programování. Lekce objasňuje vztah časné a pozdní vazby a jejich využití.
2) Napište algoritmus pro vložení položky na konec dvousměrného seznamu. 3) Napište algoritmus pro vyhledání položky v binárním stromu.
Informatika 10. 9. 2013 Jméno a příjmení Rodné číslo 1) Napište algoritmus pro rychlé třídění (quicksort). 2) Napište algoritmus pro vložení položky na konec dvousměrného seznamu. 3) Napište algoritmus
Iterátory v C++. int pole[20]; for (int *temp = pole, temp!= &pole[20]; temp++) { *temp = 0;
Iterátory v C++. Iterátor v C++ je vlastně taková obdoba ukazatelů pro kontejnery. Dříve, než se dostaneme k bližšímu vysvětlení pojmu iterátor, ukážeme si jednoduchý příklad, jak pracovat s obyčejným
<surface name="pozadi" file="obrazky/pozadi/pozadi.png"/> ****************************************************************************
zdroje/zdroje.xml
Jazyk C++ II. Dynamické identifikace typů
Jazyk C++ II Dynamické identifikace typů AR 2013/2014 Jazyk C++ II Úvod Jak můžeme zjistit druh objektu, na který ukazuje ukazatel? V případě nemusíme typ objektu znát, pokud se jedná o funkci virtuální,
Virtuální metody - polymorfizmus
- polymorfizmus - potomka lze použít v místě, kde je možné použít předka - v dosud probraných situacích byly vždy volány funkce, které jsou známy již v době překladu. V situaci, kdy v době překladu není
Generické programování
Generické programování Od C# verze 2.0 = vytváření kódu s obecným datovým typem Příklad generická metoda, zamění dva parametry: static void Swap(ref T p1, ref T p2) T temp; temp = p1; p1 = p2; p2 =
Konstruktory a destruktory
Konstruktory a destruktory Nedostatek atributy po vytvoření objektu nejsou automaticky inicializovány hodnota atributů je náhodná vytvoření metody pro inicializaci, kterou musí programátor explicitně zavolat,
PB161 Programování v jazyce C++ Přednáška 4
PB161 Programování v jazyce C++ Přednáška 4 Přetěžování funkcí Konstruktory a destruktory Nikola Beneš 9. října 2017 PB161 přednáška 4: přetěžování funkcí, konstruktory, destruktory 9. října 2017 1 / 20
Vector datový kontejner v C++.
Vector datový kontejner v C++. Jedná se o datový kontejner z knihovny STL jazyka C++. Vektor je šablona jednorozměrného pole. Na rozdíl od "klasického" pole má vector, mnoho užitečných vlastností a služeb.
PB161 Programování v jazyce C++ Přednáška 7
PB161 Programování v jazyce C++ Přednáška 7 Statické položky tříd Základy OOP Nikola Beneš 6. listopadu 2018 PB161 přednáška 7: static, základy OOP 6. listopadu 2018 1 / 21 Klíčové slovo static Znáte z
Jazyk C++ I. Polymorfismus
Jazyk C++ I Polymorfismus AR 2013/2014 Jazyk C++ I Úvod Metody s časnou vazbou jsou překládány jako obyčejné céčkovské funkce. Této metodě je předán jako první implicitní parametr this. Rozdíl mezi obyčejnou
PB161 Programování v jazyce C++ Přednáška 7
PB161 Programování v jazyce C++ Přednáška 7 Statické položky tříd Základy OOP Nikola Beneš 6. listopadu 2018 PB161 přednáška 7: static, základy OOP 6. listopadu 2018 1 / 21 Klíčové slovo static Znáte z
Programování II. Polymorfismus
Programování II Polymorfismus Osnova přednášky Vztah přetížení, překrytí a protected přístupu. Co je polymorfismus? Příklad. Přetížení, překrytí, protected Přetížení x překrytí Přetížením řešíme doplnění
Zpracoval: houzvjir@fel.cvut.cz
Zpracoval: houzvjir@fel.cvut.cz 10. Objektově orientované programování v C++. Přetěţování operátorů, generické funkce a třídy, výjimky, knihovny. (A7B36PJC) Obsah OOP v C++... 2 Pro připomenutí - Základní
Martin Flusser. Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague. October 17, 2016
ZPRO cvičení 2 Martin Flusser Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague October 17, 2016 Outline I 1 Outline 2 Proměnné 3 Proměnné - cvičení 4 Funkce 5 Funkce
Jazyk C++ 1. Blok 3 Objektové typy jazyka C++ Třída. Studijní cíl. Doba nutná k nastudování. Průvodce studiem
Jazyk C++ 1 Blok 3 Objektové typy jazyka C++ Studijní cíl Ve třetím bloku bude představen a rozebrán nejdůležitější objektový typ jazyka C++ a to sice třída. Po absolvování bloku bude student schopen navrhovat
Programování v C++ 2, 4. cvičení
Programování v C++ 2, 4. cvičení statické atributy a metody, konstruktory 1 1 Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Zimní semestr 2018/2019 Přehled Přístupová práva
Dědění, polymorfismus
Programování v jazyce C/C++ Ladislav Vagner úprava Pavel Strnad Dědění. Polymorfismus. Dnešní přednáška Statická a dynamická vazba. Vnitřní reprezentace. VMT tabulka virtuálních metod. Časté chyby. Minulá
Jazyk C++ I. Šablony 2
Jazyk C++ I Šablony 2 AR 2013/2014 Jazyk C++ I Třídy template class TVektor { T *a; int n; static int PocInstanci; public: TVektor(int _n = 0) : n(_n) { a = new T[n]; PocInstanci++; } ~TVektor()
8 Třídy, objekty, metody, předávání argumentů metod
8 Třídy, objekty, metody, předávání argumentů metod Studijní cíl Tento studijní blok má za cíl pokračovat v základních prvcích jazyka Java. Konkrétně bude věnována pozornost třídám a objektům, instančním
Jazyk C++ II. Výjimky
Jazyk C++ II Výjimky AR 2013/2014 Jazyk C++ II Funkce abort Dříve byl obvyklý způsob zavolat metodu abort(). Metoda provádí okamžitě: Vyprázdnění vyrovnávací paměti, Ukončení celého programu, Vrátí číslo
přetížení operátorů (o)
přetížení operátorů (o) - pro vlastní typy je možné přetížit i operátory (tj. definovat vlastní) - pro definici slouží klíčové slovo operator následované typem/znakem operátoru - operátor je speciální
Obsah. Předmluva 13 Zpětná vazba od čtenářů 14 Zdrojové kódy ke knize 15 Errata 15
Předmluva 13 Zpětná vazba od čtenářů 14 Zdrojové kódy ke knize 15 Errata 15 KAPITOLA 1 Úvod do programo vání v jazyce C++ 17 Základní pojmy 17 Proměnné a konstanty 18 Typy příkazů 18 IDE integrované vývojové
C++ přetěžování funkcí a operátorů. Jan Hnilica Počítačové modelování 19
C++ přetěžování funkcí a operátorů 1 Přetěžování funkcí jazyk C++ umožňuje napsat více funkcí se stejným názvem, těmto funkcím říkáme přetížené přetížené funkce se musí odlišovat typem nebo počtem parametrů,
Jazyk C++ I. Polymorfismus
Jazyk C++ I Polymorfismus AR 2013/2014 Jazyk C++ I Operátory Co to vůbec jsou operátory? Na co je používáme? AR 2013/2014 Jazyk C++ I 2 Operátory Můžeme si upravit operátory pro vlastní objektové typy?
map, multimap - Asociativní pole v C++.
map, multimap - Asociativní pole v C++. Jedná se o asociativní pole. V asociativním poli jsou uloženy hodnoty ve tvaru (klíč,hodnota), kde klíč je vlastně "index" prvku. Klíčem může být libovolný objekt,
Programování v C++ VI
Programování v C++ VI Konstruktory, destruktory a dědičnost Konstruktory a dědičnost I když jsme se bavili o dědičnosti, trochu jsme zapomněli na konstruktory to se ale nevyplácí, vzpomeňte si, jak důležitý
Chování konstruktorů a destruktorů při dědění
Dědičnost V objektově orientovaném programování je dědičnost způsob, jak vytvořit novou třídu použitím již existujících definic jiných tříd. Takto vytvořené třídy přebírají vlastnosti a metody svého předka
PŘETĚŽOVÁNÍ OPERÁTORŮ
PŘETĚŽOVÁNÍ OPERÁTORŮ Jazyk C# podobně jako jazyk C++ umožňuje přetěžovat operátory, tj. rozšířit definice některých standardních operátorů na uživatelem definované typy (třídy a struktury). Stejně jako
Standardní algoritmy vyhledávací.
Standardní algoritmy vyhledávací. Vyhledávací algoritmy v C++ nám umožňují vyhledávat prvky v datových kontejnerech podle různých kritérií. Také se podíváme na vyhledávání metodou půlením intervalu (binární
PREPROCESOR POKRAČOVÁNÍ
PREPROCESOR POKRAČOVÁNÍ Chybová hlášení V C# podobně jako v C++ existuje direktiva #error, která způsobí vypsání chybového hlášení překladačem a zastavení překladu. jazyk C# navíc nabízí direktivu #warning,
Připravil: David Procházka. Programovací jazyk C++
17. října 2011, Brno Připravil: David Procházka Práce s výjimkami Programovací jazyk C++ Obecně Strana 2 / 21 Jak se může program zachovat při chybě Dříve byl obvyklý způsob zavolat metodu abort. Metoda
Úvod do programovacích jazyků (Java)
Úvod do programovacích jazyků (Java) Michal Krátký Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programovacích jazyků (Java), 2007/2008 c 2006 2008 Michal Krátký Úvod do programovacích
Dědičnost. Časová náročnost lekce: 3 hodiny Datum ukončení a splnění lekce: 23.března
Dědičnost Cíle lekce Cílem lekce je naučit se pracovat a využívat dědičnosti při návrhu a tvorbě programů. Lekce je zaměřena hlavně na jednoduchou dědičnost. Bude rovněž vysvětlen rozdíl mezi dědičností
Pokročilé programování v jazyce C pro chemiky (C3220) Statické proměnné a metody, šablony v C++
Pokročilé programování v jazyce C pro chemiky (C3220) Statické proměnné a metody, šablony v C++ Globální konstantní proměnné Konstantní proměnné specifikujeme s klíčovým slovem const, tyto konstantní proměné
Ukazka knihy z internetoveho knihkupectvi www.kosmas.cz
Ukazka knihy z internetoveho knihkupectvi www.kosmas.cz Upozornění pro čtenáře a uživatele této knihy Všechna práva vyhrazena. Žádná část této tištěné či elektronické knihy nesmí být reprodukována a šířena
Jazyk C++, některá rozšíření oproti C
Karel Müller, Josef Vogel (ČVUT FIT) Jazyk C++, některá rozšíření oproti C BI-PA2, 2011, Přednáška 1 1/22 Jazyk C++, některá rozšíření oproti C Ing. Josef Vogel, CSc Katedra softwarového inženýrství Katedra
Michal Krátký. Úvod do programovacích jazyků (Java), 2006/2007
Úvod do programovacích jazyků (Java) Michal Krátký 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programovacích jazyků (Java), 2006/2007 c 2006 Michal Krátký Úvod do programovacích jazyků
Standardní algoritmy v C++.
Standardní algoritmy v C++. Standardní algoritmy jsou součástí STL. Jedná se o spoustu užitečných šablon funkcí, které za nás naprogramoval někdo jiný. Na nás je jen, abychom je používali. Také si ukážeme
PB přednáška (12. října 2015)
PB161 3. přednáška (12. října 2015) Poznámky k domácímu úkolu Dynamická alokace Statická vs. dynamická alokace statická alokace na zásobníku (stack) deklarace uvnitř bloku (lokální proměnné) automatické
Úvod Třídy Rozhraní Pole Konec. Programování v C# Hodnotové datové typy, řídící struktury. Petr Vaněček 1 / 39
Programování v C# Hodnotové datové typy, řídící struktury Petr Vaněček 1 / 39 Obsah přednášky Referenční datové typy datové položky metody přístupové metody accessory, indexery Rozhraní Pole 2 / 39 Třídy
C++ Akademie SH. 2. Prom nné, podmínky, cykly, funkce, rekurze, operátory. Michal Kvasni ka. 20. b ezna Za áte níci C++
C++ Akademie SH 2. Prom nné, podmínky, cykly, funkce, rekurze, operátory Za áte níci C++ 20. b ezna 2011 Obsah 1 Prom nné - primitivní typy Celá ísla ƒísla s pohyblivou desetinnou árkou, typ bool 2 Podmínka
Programování v C++ 1, 1. cvičení
Programování v C++ 1, 1. cvičení opakování látky ze základů programování 1 1 Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Zimní semestr 2018/2019 Přehled 1 2 Shrnutí procvičených
Pokročilé programování v jazyce C pro chemiky (C3220) Pokročilá témata jazyka C++
Pokročilé programování v jazyce C pro chemiky (C3220) Pokročilá témata jazyka C++ Prostory jmen U programů mohou někdy nastat kolize mezi jmény (tříd, funkcí, globálních proměnných atd.) pokud v různých
10. března 2015, Brno Připravil: David Procházka. Programovací jazyk C++
10. března 2015, Brno Připravil: David Procházka Práce s výjimkami Programovací jazyk C++ K čemu slouží výjimky Strana 2 / 25 Obsah přednášky 1 K čemu slouží výjimky 2 Vytváření výjimek 3 Speciální případy
Dynamicky vázané metody. Pozdní vazba, virtuální metody
Dynamicky vázané metody Pozdní vazba, virtuální metody Motivace... class TBod protected: float x,y; public: int vrat_pocet_bodu() return 1; ; od třídy TBod odvodíme: class TUsecka: public TBod protected:
typová konverze typová inference
Seminář Java Programování v Javě II Radek Kočí Fakulta informačních technologií VUT Únor 2008 Radek Kočí Seminář Java Programování v Javě (2) 1/ 36 Téma přednášky Rozhraní: použití, dědičnost Hierarchie
24. listopadu 2013, Brno Připravil: David Procházka
24. listopadu 2013, Brno Připravil: David Procházka Dědičnost Základy objektového návrhu Časná a pozdní vazba Strana 2 / 22 Obsah přednášky 1 Časná a pozdní vazba 2 Rozhraní pro dědičnost 3 Konstruktory
SYSTÉMOVÉ PROGRAMOVÁNÍ Cvičení č.1
SYSTÉMOVÉ PROGRAMOVÁNÍ Cvičení č.1 Autor: Ing. Michal Bližňák Témata cvičení: Bleskový úvod do C++ Rozdíly mezi C a C++ Základním rozdílem mezi C a C++ samozřejmě je, že C++ je na rozdíl od tradičního
Zpracoval: houzvjir@fel.cvut.cz
Zpracoval: houzvjir@fel.cvut.cz 9. Datový typ ukazatel, přetěžování funkcí, typ reference, vstup a výstup, třídy, staticky vázané metody, dědění, dynamicky vázané metody, abstraktní třídy, polymorfní datové
C++ objektově orientovaná nadstavba programovacího jazyka C
C++ objektově orientovaná nadstavba programovacího jazyka C (1. část) Josef Dobeš Katedra radioelektroniky (13137), blok B2, místnost 722 dobes@fel.cvut.cz 5. května 2014 České vysoké učení technické v
Teoretické minimum z PJV
Teoretické minimum z PJV Pozn.: následující text popisuje vlastnosti jazyka Java zjednodušeně pouze pro potřeby výuky. Třída Zavádí se v programu deklarací třídy což je část programu od klíčových slov
PROGRAMOVÁNÍ V C++ URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH ROSTISLAV FOJTÍK
PROGRAMOVÁNÍ V C++ URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH ROSTISLAV FOJTÍK ČÍSLO OPERAČNÍHO PROGRAMU: CZ.1.07 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST OPATŘENÍ:
ZPRO v "C" Ing. Vít Hanousek. verze 0.3
verze 0.3 Hello World Nejjednoduší program ukazující vypsání textu. #include using namespace std; int main(void) { cout
1. Dědičnost a polymorfismus
1. Dědičnost a polymorfismus Cíl látky Cílem této kapitoly je představit klíčové pojmy dědičnosti a polymorfismu. Předtím však je nutné se seznámit se základními pojmy zobecnění neboli generalizace. Komentář
Michal Krátký. Úvod do programovacích jazyků (Java), 2006/2007
Úvod do programovacích jazyků (Java) Michal Krátký Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programovacích jazyků (Java), 2006/2007 c 2006 Michal Krátký Úvod do programovacích jazyků
Programování v C++, 2. cvičení
Programování v C++, 2. cvičení 1 1 Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Zimní semestr 2018/2019 Přehled 1 Operátory new a delete 2 3 Operátory new a delete minule
III/2 Inovace a zkvalitnění výuky prostřednictvím ICT
Číslo a název šablony Číslo didaktického materiálu Druh didaktického materiálu Autor Jazyk Téma sady didaktických materiálů Téma didaktického materiálu Vyučovací předmět Cílová skupina (ročník) Úroveň
Úvod do programovacích jazyků (Java)
Úvod do programovacích jazyků (Java) Michal Krátký Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programovacích jazyků (Java), 2007/2008 c 2006 2008 Michal Krátký Úvod do programovacích
Dědičnost (inheritance)
Dědičnost (inheritance) Úvod Umožňuje objektům převzít (zdědit) členy jiných objektů a pouze je rozšířit o Auto: lze odvodit Vztah je osobní auto, cisterna jsou auta Základní pojmy Bázová třída (rodič)
Programování v jazyce C a C++
Programování v jazyce C a C++ Příklad na tvorbu třídy Richter 1 4. prosince 2017 1 Ing. Richter Miloslav, Ph.D., UAMT FEKT VUT Brno Dvourozměrné pole pomocí tříd Zadání Navrhněte a napište třídu pro realizace
Pokročilé programování v jazyce C pro chemiky (C3220) Třídy v C++
Pokročilé programování v jazyce C pro chemiky (C3220) Třídy v C++ Třídy v C++ Třídy jsou uživatelsky definované typy podobné strukturám v C, kromě datových položek (proměnných) však mohou obsahovat i funkce
Seminář Java II p.1/43
Seminář Java II Seminář Java II p.1/43 Rekapitulace Java je case sensitive Zdrojový kód (soubor.java) obsahuje jednu veřejnou třídu Třídy jsou organizovány do balíků Hierarchie balíků odpovídá hierarchii
IB111 Programování a algoritmizace. Objektově orientované programování (OOP)
IB111 Programování a algoritmizace Objektově orientované programování (OOP) OP a OOP Objekt Kombinuje data a funkce a poskytuje určité rozhraní. OP = objektové programování Vše musí být objekty Např. Smalltalk,
PB161 Programování v jazyce C++ Přednáška 8
.. PB161 Programování v jazyce C++ Přednáška 8 Výjimky Správa prostředků (RAII) Nikola Beneš 9. listopadu 2015 PB161 přednáška 8: výjimky, RAII 9. listopadu 2015 1 / 24 . PB161 přednáška 8: výjimky, RAII
PB161 Programování v jazyce C++ Přednáška 9
PB161 Programování v jazyce C++ Přednáška 9 Právo friend Přetěžování operátorů Nikola Beneš 16. listopadu 2015 PB161 přednáška 9: friend, přetěžování operátorů 16. listopadu 2015 1 / 30 Reklama PB173 Tematicky
Počítačové laboratoře bez tajemství aneb naučme se učit algoritmizaci a programování s využitím robotů CZ.1.07/1.3.12/04.0006
Počítačové laboratoře bez tajemství aneb naučme se učit algoritmizaci a programování s využitím robotů CZ.1.07/1.3.12/04.0006 Lekce 1 Jazyk Java Tento projekt je spolufinancován Evropským sociálním fondem
Programování v C++ 1, 14. cvičení
Programování v C++ 1, 14. cvičení výpustka, přetěžování funkcí, šablony funkcí 1 1 Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Zimní semestr 2018/2019 Přehled 1 2 funkcí
Programování v C++ 1, 17. cvičení
Programování v C++ 1, 17. cvičení výjimky 1 1 Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Zimní semestr 2018/2019 Přehled 1 2 Shrnutí minule procvičené látky Binární vyhledávací
IUJCE 07/08 Přednáška č. 4. v paměti neexistuje. v paměti existuje
Konstanty I možnosti: přednostně v paměti neexistuje žádný ; o preprocesor (deklarace) #define KONSTANTA 10 o konstantní proměnná (definice) const int KONSTANTA = 10; příklad #include v paměti
Základy programování (IZP)
Základy programování (IZP) Jedenácté počítačové cvičení Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 612 66 Brno - Královo Pole Gabriela Nečasová, inecasova@fit.vutbr.cz
Základy programování (IZP)
Základy programování (IZP) Deváté počítačové cvičení Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 612 66 Brno - Královo Pole Petr Veigend, iveigend@fit.vutbr.cz 27.11.2017,
Jazyk C++ I. Šablony
Jazyk C++ I Šablony AR 2013/2014 Jazyk C++ I Úvod Zatím známe programovací styly: Strukturované programování, Objektově orientované programovaní. AR 2013/2014 Jazyk C++ I 2 Příklady void Print(const int&
IRAE 07/08 Přednáška č. 1
Úvod do předmětu OOP Objekt Proč OOP? Literatura, osnova předmětu viz. cvičení Základní prvek OOP sw inženýrství = model reálných objektů (věcí) člověk, auto, okno (ve windows), slovník, = model abstraktní
1. Programování proti rozhraní
1. Programování proti rozhraní Cíl látky Cílem tohoto bloku je seznámení se s jednou z nejdůležitější programátorskou technikou v objektově orientovaném programování. Tou technikou je využívaní rozhraní
Zápis programu v jazyce C#
Zápis programu v jazyce C# Základní syntaktická pravidla C# = case sensitive jazyk rozlišuje velikost písmen Tzv. bílé znaky (Enter, mezera, tab ) ve ZK překladač ignoruje každý příkaz končí ; oddělovač
Základy C++ I. Jan Hnilica Počítačové modelování 18
Základy C++ I 1 Přechod z C na C++ jazyk C++ je nadmnožinou jazyka C z hlediska syntaxe se jedná o velmi podobné jazyky, spolu s dalšími jazyky "céčkovské" rodiny, jako je např. C# každý platný program
Programování v jazyce C a C++
Programování v jazyce C a C++ Richter 1 Petyovský 2 1. března 2015 1 Ing. Richter Miloslav, Ph.D., UAMT FEKT VUT Brno 2 Ing. Petyovský Petr, UAMT FEKT VUT Brno C++ Stručná charakteristika Nesdíĺı normu
Programování v C++ 2, 7. cvičení
Programování v C++ 2, 7. cvičení spojový seznam 1 1 Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Zimní semestr 2018/2019 Přehled 1 2 Shrnutí minule procvičené látky Dědění
1 Nejkratší cesta grafem
Bakalářské zkoušky (příklady otázek) podzim 2014 1 Nejkratší cesta grafem 1. Uvažujte graf s kladným ohodnocením hran (délka). Definujte formálně problém hledání nejkratší cesty mezi dvěma uzly tohoto
Práce s polem a pamětí
3 Práce s polem a pamětí Inicializace jednorozměrného pole Jednorozměrné pole lze inicializovat přímo v deklaraci. int array[length] = {1, 5, 8, 9; array1d Prvky pole umístíte do složených závorek a oddělíte
Soubor jako posloupnost bytů
Soubory Soubor je množina údajů uložená ve vnější paměti počítače, obvykle na disku Pro soubor jsou typické tyto operace. otevření souboru čtení údaje zápis údaje uzavření souboru Přístup k údajům (čtení
NMIN201 Objektově orientované programování 1 / :36:09
NMIN201 Objektově orientované programování 1 / 26 8.10.2013 15:36:09 Objekty Svět se skládá z objektů! konkrétní x abstraktní hmatatelné x nehmatatelné (letadlo) x (chyba v programu) Objekty mohou obsahovat
NPRG031 Programování II 1 / :25:46
NPRG031 Programování II 1 / 26 28. 2. 2018 11:25:46 Objekty Svět se skládá z objektů! konkrétní x abstraktní hmatatelné x nehmatatelné (letadlo) x (chyba v programu) Objekty mohou obsahovat jiné objekty
Programování II. Návrh programu I 2018/19
Programování II Návrh programu I 2018/19 Osnova přednášky Co víme? Objektový návrh programu. Příklad. Co víme? Třída Třída je popisem objektů se společnými vlastnostmi. class private:
Projekt Obrázek strana 135
Projekt Obrázek strana 135 14. Projekt Obrázek 14.1. Základní popis, zadání úkolu Pracujeme na projektu Obrázek, který je ke stažení na http://java.vse.cz/. Po otevření v BlueJ vytvoříme instanci třídy