BUŇKA. Kozorožec kavkazský Capra caucasica ZOO Toronto, Biologie 3, 2014/2015, Eva Bártová, Ivan Literák
|
|
- Marcel Jelínek
- před 10 lety
- Počet zobrazení:
Transkript
1 BUŇKA Kozorožec kavkazský Capra caucasica ZOO Toronto, 2010 Biologie 3, 2014/2015, Eva Bártová, Ivan Literák
2 BUNĚČNÁ TEORIE základ vědeckého pohledu na život: BUNĚČNÁ TEORIE TEORIE EVOLUCE hierarchická organizace živých soustav BUŇKA zásadní hierarchická úroveň ZÁKLADNÍ a MINIMÁLNÍ jednotka schopná života chemický základ podobný, tvar a funkce značně odlišné buněčná teorie = bez buňky neexistuje život ovlivňování životních dějů člověkem (lékařství, zemědělství, biotechnologie) přes zásahy do buňky studium buněčných organel, přenosu genetické informace, evoluce buněk
3 HISTORICKY Antony van LEEUWENHOEK ( ) Holanďan, mikroskopem pozoroval bakterie, prvoky, krvinky, spermie Robert HOOKE: Londýn, Micrographia: korek se skládá z malých komůrek (buněk), základní jednotka rostlinné tkáně je cellula, pozoroval i živé buňky R. J. Henri DUTROCHET Francouz, buňka je základní jednotkou metabolismu, studium rostlinné buňky považován za objevitele rostlinné buňky 1837 Jan Evangelista PURKYNĚ Histiogeniae Mathias J. SCHLEIDEN (německý botanik) Theodor SCHWANN (německý zoolog) Mikroskopická studia o shodě ve struktuře a růstu živočichů a rostlin Rudolf VIRCHOW: Omnis cellula e cellula
4 Jan Evangelista PURKYNĚ + jeho žák Gabriel Gustav VALENTIN (narozen ve Vratislavi v německé židovské rodině) 1833 Francouzskou akademie věd vyhlásila soutěž téma: Existuje analogie vnitřní struktury rostlin a živočichů? - anonym, rukopis (= Valentin, Purkyně): Histiogeniae plantarum atque animalium inter se comparatae (latinsky, 1019 stran 40 obrazových tabulí) - popis principiální analogie v základní stavbě rostlin a živočichů - jsou tvořeny z malých strukturálních elementů zrníček = buněk buňka je základní stavební jednotkou živých tkání všech organismů Dílo zasláno do mezinárodní soutěže1835 získalo 1. cenu 1837 zkráceno a odevzdáno do tisku, ale nebylo(!) publikováno 1939 rukopis objeven v pařížském archivu Navíc: 1835 G.G. Valentin: Handbuch der Entwicklungsgeschichte des Menschen (Učebnice embryologie člověka)
5 Buňky v rostlinných a živočišných tkáních
6 BUŇKA minimální STRUKTURNÍ jednotka živých soustav její subsystémy nemohou samostatně žít všechny vyšší systémy jsou složeny z buněk minimální FUNKČNÍ jednotka živých soustav její subsystémy vykonávají pouze dílčí funkce, integrací těchto subsystémů na úrovni buňky se vytvoří živý systém (složitější živé systémy jsou složeny z buněk) minimální jednotka REPRODUKCE živých soustav dělení buňky je jedinou formou reprodukce živých soustav buňka jako systém smyslem procesů probíhajících v buňce (cílové chování buňky) je: uchování její existence (systém se sebeudržováním) její reprodukce (systém s autoreprodukcí) buňka je systém otevřený, který udržuje stacionární stav své organizovanosti (potřeba energie!)
7 ZÁKLADNÍ PŘEDPOKLADY EXISTENCE BUŇKY 1. TOK LÁTEK příjem, chemická přeměna (metabolismus) a výdej látek buňkou využití látek pro sebe nebo ve prospěch celého mnohobuněčného organismu 2. TOK ENERGIE absorpce energie z okolí, její přeměna na volnou energii, využití volné energie, odvod tepla nebo chemických látek s obsahem energie jen volná energie může vykonávat práci pro existenci buňky je nutný neustálý příliv energie do buňky při přeměně energie v buňce se část energie vždy mění v neušlechtilou tepelnou energii, která nemůže práci vykonávat ( - viz druhá termodynamická věta) buňka udržuje termodynamický stacionární stav po kolapsu stacionárního stavu se organizovanost systému začne okamžitě snižovat (nastupuje smrt živé soustavy), systém se rozkládá až na molekuly
8 3. TOK INFORMACE vnitřní paměť buňky všechny informace determinující principy její struktury a funkcí replikace genetické informace exprese genetické informace u všech buněk DNA buňky mohou SELEKTIVNĚ využívat různé části své genetické informace podle podnětů ze svého okolí příjem informací z okolí (a reakce na ně) systém (signální dráhy) pro příjem signálů, zpracování signálu, převod na efektorové mechanismy výdej signálů (mezibuněčná signalizace)
9 EVOLUCE BUNĚK buňka se množí zdvojením své DNA a následným dělením kopie DNA nejsou vždy identické (mutace, rekombinace): náhodné změny k horšímu boj o přežití je vyřazuje náhodné změny k lepšímu boj o přežití je upřednostňuje náhodné změny neutrální boj o přežití je toleruje tato změna a výběr je základem EVOLUCE původní buňka (dávná prokaryotní buňka) před 3,5 až 3,8 miliardami let PROKARYOTNÍ ORGANISMY 2 říše bakterií EUBACTERIA a ARCHEA nejjednodušší buňky anaerobní, aerobní ( mitochondrie) fotosyntetické bakterie ( chloroplasty) Escherichia coli modelový druh
10 Bakterie Escherichia coli
11 EUKARYOTNÍ ORGANISMY (Eukaryota, Eukarya) před 1,5 miliardou let jejich vznik vysvětluje endosymbiotická teorie Modelové druhy pekařská kvasinka, kvasinka pivní Saccharomyces cerevisiae (houba) vejcovka Tetrahymena sp. (nálevník) huseníček rolní Arabidopsis thaliana (rostlina) octomilka obecná Drosophila melanogaster hádě (háďátko) obecné Caenorhabditis elegans laboratorní myš člověk
12 Kvasinky Saccharomyces cerevisiae v elektronovém mikroskopu
13 nálevník vejcovka Tetrahymena sp.
14 Arabidopsis thaliana - huseníček rolní
15 Hlístice, hádě (háďátko) obecné Caenorhabditis elegans
16 Octomilka obecná Drosophila melanogaster Např. T.H. Morgan struktura chromozomu 1926 Nobelova cena
17 ENDOSYMBIÓZA soužití taxonomicky nepříbuzných organismů ENDOSYMBIOTICKÁ TEORIE VZNIKU EUKARYOTICKÉ BUŇKY Z PROKARYOTICKÉ buňky + - endosymbiotický původ BUNĚČNÉHO JÁDRA (S. Watase 1893, T. Boveri 1904) L. Margulisová: jádro je původu archeálního P. Bell (Austrálie), L.P.Villareal (USA) 2005: velký DNA virus - CHLOROPLASTY K.S. Merežkovskij 1905: fotosyntetizující bakterie sinice (Synechococcus sp.?) 1920 teorie symbiogeneze - MITOCHONDRIE - P. Portier 1918: oxidačně fosforylující bakterie (Paracoccus sp.?)
18 TEORIE SÉRIOVÉ ENDOSYMBIÓZY Lynn Margulisová Symbiotická planeta, Academia, Praha 2004
19 Původ mitochondrie
20 Evoluční počátky dnešních eukaryot
21 EUBACTERIA ARCHEA EUKARYOTA DNA Kruhová, (lineární) Kruhová Lineární + kruhová HISTONY JADERNÁ MEMBRÁNA PLAZMATICKÁ MEMBRÁNA Esterové lipidy Éterové archeoly Esterové lipidy KYS. MURAMOVÁ v BS RIBOZOMY 70 S 70 S 80 S 1. AK V PROTEOSYNTÉZE Formylmetionin Metionin Metionin OPERONY INTRONY VE VĚTŠ. GENŮ ČEPIČKA A POLY-A KONEC NA mrna RNA POLYMERÁZY 1 mnoho 3 METANOGENEZE CHEMOLITOTROFIE (Fe, S, H 2 ) + + -
22 CHARAKTERISTIKY BUŇKY PROKARYOTNÍ A EUKARYOTNÍ PROKARYOTNÍ BUŇKY jednobuněčné organismy nukleoid (jádro) 1 chromozom (cirkulární) volně v cytoplazmě, v chromozomu nejsou histony ribozomy 70S binární dělení (bez mitózy) velikost buněk 1-10 m výživa autotrofní i heterotrofní evolučně prvotní Organely bakterií donedávna neznámé 2003: membránová organela ACIDOKALCIOZOM v membráně protonové pumpy okyselující jeho obsah (původně tzv. volutinové granuly, polyfosfátová zrna) např. u Helicobacter pylori, Corynebacterium diphtheriae
23 EUKARYOTNÍ BUŇKY eukaryotní organismy (protista, houby, rostliny, živočichové) jednobuněčné i mnohobuněčné organismy jádro více chromozomů oddělených od cytoplazmy jaderným obalem, chromozomy s histony, lineární ribozomy vlastní 80S (1. AK metionin), mitochondriální a chloroplastové (1. AK formylmetionin) řada membránových organel zřetelný cytoskelet dělení mitózou velikost buněk 10 m (5 20) m ROSTLINY mitochondrie i chloroplasty buněčná stěna z celulózy výživa hl. fotoautotrofní ŽIVOČICHOVÉ mitochondrie bez buněčné stěny heterotrofní výživa HOUBY mitochondrie buněčná stěna z chitinu heterotrofní výživa
24 JEDNOBUNĚČNÁ EUKARYOTA Antoni van Leeuwenhoek (17. st.) zvířátka - animalcules Carl von Linné (18. st.) rod Chaos Ernst Haeckel (19. st.) říše PROTISTA 20. st. heterotrofní - PRVOCI (Protozoa) říše ŽIVOČICHOVÉ autotrofní, fotosyntetizující ŘASY (Algae) říše ROSTLINY jednobuněčné houby (Fungi) říše HOUBY 60. léta 20. st rozvoj elektronové mikroskopie neudržitelnost tradičních systémů 90. léta 20. st. současnost ANALÝZA DNA 1. komparativní studie SSU rdna (gen pro SSU rrna), 18S rdna 2. multigenové fylogenomické studie komparativní analýzy stovek genů (proteinů) + analýzy vzácných genomových událostí EUKARYOTA JEDNOBUNĚČNÁ I MNOHOBUNĚČNÁ: 5 ŘÍŠÍ SUPERSKUPIN, DOMÉN, SUPERDOMÉN:
25 FYLOGENEZE EUKARYOT (na základě molekulárních dat k r. 2010) Říše OPISTHOKONTA (jasná monofylie) Nyní jsou dřívější říše ANIMALIA (mnohobuněční živočichové) a FUNGI (houby) slučovány (spolu s některými drobnějšími skupinami dřívějších protozoí) do říše Opisthokonta. Společnými znaky jsou jeden posteriorní = opistokontní bičík (např. spermie, u hub druhotně zanikl) a mitochondrie s plochými kristami. Říše AMOEBOZOA (jasná monofylie) Někteří kořenonožci (jednobuněčná eukaryota, jejichž hlavním zdrojem pohybu jsou pseudopodia) - pravé měňavky, hlenky Mycetozoa a řada bičíkovců (jednobuněčných eukaryot, jejichž hlavním zdrojem pohybu jsou bičíky). Říše EXCAVATA (možná kořen eukaryot) Někteří bičíkovci a někteří kořenonožci. Např. trypanozomy, trichomonády. Říše ARCHAEPLASTIDA (monofylie?) S primárním plastidem, pravé rostliny PLANTAE, zelené řasy Chlorophyta, řasy ruduchy Rhodophyta, glaukofytní řasy Glaucophyta. Říše CHROMISTA (monofylie?) dřívější říše Chromista (např. zlativky, rozsivky, chaluhy), Alveolata, např. mnohojaderné jednobuněčné opalinky Opalinata, obrněnky Dinozoa, nálevníci Ciliophora a výtrusovci Apicomplexa (souhrnně také říše CHROMALVEOLATA), včetně dřívější říše RHIZARIA např. dírkonošci Foraminifera.
26 kořenonožci (dírkonošci, mřížovci) rostliny, řasy Apicomplexa, nálevníci, opalinky, Dinozoa houby Choanozoa živočichové kořenonožci (Entamoeba, Acanthamoeba, Pelomyxa) 6 ŘÍŠÍ Euglenozoa, Parabasala, Naegleria, Diplomonadida,
27 Prvoci
28 HLENKY (Mycetozoa) vlčí mléko červené Lycogala epidendrum plasmodia
29
30
31 JÁDRO informační centrum buňky 2-membránový obal polymery molekul DNA (chromozomy) zbytek buňky mimo jádra je CYTOPLAZMA
32 JÁDRO
33 Chromosomy v buňce, která se bude dělit
34 MITOCHONDRIE oxidace molekul potravy (mastných kyselin a cukrů) produkce ATP = tzv. buněčná respirace (dýchání) nezbytné pro aerobní metabolismus eukaryontních organismů - získávání energie z potravy vlastní DNA vnější membrána vnitřní membrána, mitochondriální kristy mezimembránový prostor matrix
35 MITOCHONDRIE pod elektronovým mikroskopem
36 CHLOROPLASTY u rostlin (funkční ekvivalenty u některých bakterií) vlastní DNA fotosyntéza zachycují energii slunečního světla v molekulách chlorofylu a využívají ji k výrobě energeticky bohatých sacharidů (ty zpracují mitochondrie) fotosyntetická fosforylace tvorba ATP fixace CO 2 do uhlíkatého řetězce cukrů
37 CHLOROPLASTY
38 ENDOPLAZMATICKÉ RETIKULUM syntéza molekul biomembrán (membránové lipidy, transmembránové proteiny) tvorba proteinů určených na export z buňky zásobárna Ca 2+ iontů drsné ER hladké ER
39 ENDOPLAZMATICKÉ RETIKULUM
40 GOLGIHO APARÁT u rostlin tzv. dictyosom Camillo Golgi ( ) chemická modifikace látek produkovaných ER (glykozylace, sulfatace, specifická proteolýza apod.) jejich transport a vylučování z buňky popsán v r. 1898
41 GOLGIHO APARÁT
42 LYSOZOMY vnitrobuněčné trávení katabolické biochemické procesy 40 hydrolytických enzymů kyselé hydrolázy ph 5 proteázy, nukleázy, glykosidázy, fosfolipázy, fosfatázy, sulfatázy apod. VAKUOLY funkční ekvivalent lysozomů u rostlin a hub + shromažďování zásobních látek a odpadních produktů a regulace buněčného turgoru
43 JAK SI EUKARYOTICKÉ BUŇKY UKLÍZEJÍ? AUTOFAGIE odstranění nepotřebných proteinů, nefungujících organel, mikroorganismů FAGOFOR 2-vrstevná membrána z bílk. a lipidů, spojením vzniká AUTOFAGOZOM intracelulární signál extracelulární signál LYSOZOM FAGOFOR AUTOFAGOZOM AUTOLYSOZOM monomery jsou po odbourání uvolněny do cytoplasmy k opětovnému použití
44 PEROXISOMY objevil je v 70. letech 20. st. stejně jako lysozomy Belgičan Ch. de DUVE u všech eukaryot evolučně původně zřejmě hl. článek metabolismu kyslíku (snižoval hladinu kyslíku toxického pro živé organismy) později mitochondrie s evoluční výhodou oxidační fosforylace (tvorba ATP)? endosymbiotického původu, samoreplikující se, příp. odvozeny od ER, fce: - metabolismus MK - β-oxidace MK (u živočichů i v mitochondriích, u rostlin a hub výhradně v peroxisomech) RH 2 + O 2 R + H 2 O 2 - využívá množství kyslíku - odstraňuje toxické produkty metabolismu (kyslíkové radikály, hl. H 2 O 2 ) H 2 O 2 + R H 2 R + H 2 O (2H 2 O 2 2 H 2 O + O 2 ) využívají molekulární kyslík, obsahují oxidační enzymy a katalázu, kterou odbourávají peroxid vodíku (např. polovina etanolu je v jaterních buňkách oxidována na acetaldehyd)
45
46 Vnitřní membrány a cytosol CYTOSOL koncentrovaný vodný gel malých a velkých molekul uvnitř buňky, mimo organely řada chemických reakcí syntéza proteinů na RIBOZOMECH
47 CYTOSKELET pro tvar, pevnost a pohyb buněk aktinová mikrofilamenta (zvláště početná ve svalových buňkách) intermediární filamenta (mechanické posílení buňky) mikrotubuly (táhnou od sebe chromozomy)
48 Cytoskelet AKTINOVÁ INTERMEDIÁRNÍ FILAMENTA MIKROTUBULY FILAMENTA
49 Velikosti buněk a jejich částí
B2, 2007/2008, I. Literák
B2, 2007/2008, I. Literák BUNĚČNÁ TEORIE Základy vědeckého pohledu na život: BUNĚČNÁ TEORIE TEORIE EVOLUCE hierarchická organizace živých soustav BUŇKA zásadní hierarchická úroveň základní a minimální
BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ
BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ SPOLEČNÉ ZNAKY ŽIVÉHO - schopnost získávat energii z živin pro své životní potřeby - síla aktivně odpovídat na změny prostředí - možnost růstu, diferenciace a reprodukce
BUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA:
BUNĚČ ĚČNÁ STAVBA ŽIVÝCH ORGANISMŮ KLÍČOVÁ SLOVA: Prokaryota, eukaryota, viry, bakterie, živočišná buňka, rostlinná buňka, organely buněčné jádro, cytoplazma, plazmatická membrána, buněčná stěna, ribozom,
Buňka buňka je základní stavební a funkční jednotka živých organismů
Buňka - buňka je základní stavební a funkční jednotka živých organismů - je pozorovatelná pouze pod mikroskopem - na Zemi existuje několik typů buněk: 1. buňky bez jádra (prokaryotní buňky)- bakterie a
Buňka. Buňka (cellula) základní stavební a funkční jednotka organismů, schopná samostatné existence. Cytologie nauka o buňkách
Buňka Historie 1655 - Robert Hooke (1635 1703) - použil jednoduchý mikroskop k popisu pórů v řezu korku. Nazval je, podle podoby k buňkám včelích plástů, buňky. 18. - 19. St. - vznik buněčné biologie jako
Buňka. Autor: Mgr. Jitka Mašková Datum: Gymnázium, Třeboň, Na Sadech 308
Buňka Autor: Mgr. Jitka Mašková Datum: 27. 10. 2012 Gymnázium, Třeboň, Na Sadech 308 Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0702 VY_32_INOVACE_BIO.prima.02_buňka Škola Gymnázium, Třeboň, Na Sadech
Základy buněčné biologie
Maturitní otázka č. 8 Základy buněčné biologie vypracovalo přírodozpytné sympózium LP, AM & DK na konferenci v Praze, 1. Máje 2014 Buňka (cellula) je nejmenší známý útvar, který je schopný všech životních
Aplikované vědy. Hraniční obory o ţivotě
BIOLOGICKÉ VĚDY Podle zkoumaného organismu Mikrobiologie (viry, bakterie) Mykologie (houby) Botanika (rostliny) Zoologie (zvířata) Antropologie (člověk) Hydrobiologie (vodní organismy) Pedologie (půda)
Nejmenší jednotka živého organismu schopná samostatné existence. Výměnu látek Růst Pohyb Rozmnožování Dědičnost
BUŇKA Nejmenší jednotka živého organismu schopná samostatné existence Buňka je schopna uskutečňovat základní funkce organismu: obrázky použity z Nečas: BIOLOGIE LIDSKÉ TĚLO Alberts: ZÁKLADY BUNĚČNÉ BIOLOGIE
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Buňka. Kristýna Obhlídalová 7.A
Buňka Kristýna Obhlídalová 7.A Buňka Buňky jsou nejmenší a nejjednodušší útvary schopné samostatného života. Buňka je základní stavební a funkční jednotkou živých organismů. Zatímco některé organismy jsou
Anotace: Materiál je určen k výuce přírodopisu v 6. ročníku ZŠ. Seznamuje žáky se základní stavbou rostlinné a živočišné buňky.
Anotace: Materiál je určen k výuce přírodopisu v 6. ročníku ZŠ. Seznamuje žáky se základní stavbou rostlinné a živočišné buňky. Materiál je plně funkční pouze s použitím internetu. základní projevy života
PRAPRVOCI A PRVOCI Vojtěch Maša, 2009
PRAPRVOCI A PRVOCI Vojtěch Maša, 2009 Opakování Prokarytotické organismy Opakování Prokaryotické organismy Nemají jádro, ale jen 1 chromozóm neoddělený od cytoplazmy membránou Patří sem archea, bakterie
Stavba dřeva. Základy cytologie. přednáška
Základy cytologie přednáška Buňka definice, charakteristika strana 2 2 Buňky základní strukturální a funkční jednotky živých organismů Základní charakteristiky buněk rozmanitost (diverzita) - např. rostlinná
od eukaryotické se liší svou výrazně jednodušší stavbou a velikostí Dosahuje velikosti 1-10 µm. Prokaryotní buňku mají bakterie a sinice skládá se z :
Otázka: Buňka Předmět: Biologie Přidal(a): konca88 MO BI 01 Buňka je základní stavební jednotka živých organismů. Je to nejmenší živý útvar schopný samostatné existence a rozmnožování. Každá buňka má svůj
Číslo a název projektu Číslo a název šablony
Číslo a název projektu Číslo a název šablony DUM číslo a název CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT SSOS_ZE_1.05
Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné
- pro učitele - na procvičení a upevnění probírané látky - prezentace
Číslo projektu Název školy Autor Tematická oblast CZ.1.07/1.5.00/34.0743 Moravské gymnázium Brno s.r.o. RNDr. Monika Jörková Biologie 10 obecná biologie Organely eukaryotní buňky Ročník 1. Datum tvorby
Prokaryota x Eukaryota. Vibrio cholerae
Živočišná buňka Prokaryota x Eukaryota Vibrio cholerae Dělení živočišných buněk: buňky jednobuněčných organismů (volně žijící samostatné jednotky) buňky mnohobuněčných větší morfologické i funkční celky
Obecná biologie Slavomír Rakouský JU ZSF
1 Obecná biologie Slavomír Rakouský JU ZSF Tyto texty jsou určeny pouze pro studijní účely (semináře z kurzu Obecné biologie) studentů JU ZSF. Jejich další šíření, publikování atd. by bylo v rozporu s
Buňka cytologie. Buňka. Autor: Katka www.nasprtej.cz Téma: buňka stavba Ročník: 1.
Buňka cytologie Buňka - Základní, stavební a funkční jednotka organismu - Je univerzální - Všechny organismy jsou tvořeny z buněk - Nejmenší životaschopná existence - Objev v 17. stol. R. Hooke Tvar: rozmanitý,
Současná formulace: Buňka je minimální jednotka, která vykazuje všechny znaky živých soustav
Buněčná teorie: Počátky formování: 1840 a dále, Jan E. Purkyně myšlenka o analogie rostlinného a živočišného těla (buňky zrníčka) Schwann T. Virchow R. nové buňky vznikají pouze dělením buněk již existujících
FYZIOLOGIE ROSTLIN. Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz
FYZIOLOGIE ROSTLIN Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz Studijní literatura: Hejnák,V., Zámečníková,B., Zámečník, J., Hnilička, F.: Fyziologie rostlin.
Evoluce (nejen) rostlinné buňky Martin Potocký laboratoř buněčné biologie ÚEB AV ČR, v.v.i. potocky@ueb.cas.cz http://www.ueb.cas.cz Evoluce rostlinné buňky Vznik a evoluce eukaryotních organismů strom
Buňky, tkáně, orgány, soustavy
Lidská buňka buněčné organely a struktury: Jádro Endoplazmatické retikulum Goldiho aparát Mitochondrie Lysozomy Centrioly Cytoskelet Cytoplazma Cytoplazmatická membrána Buněčné jádro Jadérko Karyoplazma
GENETIKA 1. Úvod do světa dědičnosti. Historie
GENETIKA 1. Úvod do světa dědičnosti Historie Základní informace Genetika = věda zabývající se dědičností a proměnlivostí živých soustav sleduje variabilitu (=rozdílnost) a přenos druhových a dědičných
Schéma rostlinné buňky
Rostlinná buňka 1 2 3 5 vakuola 4 5 6 Rostlinná buňka je eukaryotní buňkou se základními charakteristikami tohoto typu buňky. Krom toho má některé charakteristiky typické pro rostlinné buňky, jako je předevšímř
Projekt realizovaný na SPŠ Nové Město nad Metují
Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 02 Přírodovědné předměty Hana Gajdušková 1 Viry
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu:
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu: VY_32_INOVACE_05_BUŇKA 2_P1-2 Číslo projektu: CZ 1.07/1.5.00/34.1077
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 KBB/ZGEN Základy genetiky Dana Šafářová KBB/ZGEN Základy genetiky Rozsah: 2+1
VAKUOLA. membránou ohraničený váček membrána se nazývá tonoplast. běžná u rostlin, zvířata specializované funkce či její nepřítomnost
VAKUOLA membránou ohraničený váček membrána se nazývá tonoplast běžná u rostlin, zvířata specializované funkce či její nepřítomnost VAKUOLA Funkce: uložiště odpadů a uskladnění chemických látek (fenolické
Základy histologie. prof. MUDr. RNDr. Jaroslav Slípka, DrSc. Recenzovaly: doc. MUDr. Jitka Kočová, CSc. doc. RNDr. Viera Pospíšilová, CSc.
Základy histologie prof. MUDr. RNDr. Jaroslav Slípka, DrSc. Recenzovaly: doc. MUDr. Jitka Kočová, CSc. doc. RNDr. Viera Pospíšilová, CSc. Vydala Univerzita Karlova v Praze Nakladatelství Karolinum jako
Digitální učební materiál
Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tématická Odborná biologie, část biologie Společná pro
1/II. Cvičení 2: ŽIVOČIŠNÁ BUŇKA, PROTOZOA Jméno: TVAR BUNĚK NERVOVÁ BUŇKA
Cvičení 2: ŽIVOČIŠNÁ BUŇKA, PROTOZOA Jméno: Skupina: TVAR BUNĚK NERVOVÁ BUŇKA Trvalý preparát: mícha Vyhledejte nervové buňky (neurony) ve ventrálních rozích šedé hmoty míšní. Pozorujte při zvětšení, zakreslete
Digitální učební materiál
Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tematická oblast Odborná biologie, část biologie organismus
- význam: ochranná funkce, dodává buňce tvar. jádro = karyon, je vyplněné karyoplazmou ( polotekutá tekutina )
Otázka: Buňka a dělení buněk Předmět: Biologie Přidal(a): Štěpán Buňka - cytologie = nauka o buňce - rostlinná a živočišná buňka jsou eukaryotické buňky Stavba rostlinné (eukaryotické) buňky: buněčná stěna
Buňka. základní stavební jednotka organismů
Buňka základní stavební jednotka organismů Buňka Buňka je základní stavební a funkční jednotka těl organizmů. Toto se netýká virů (z lat. virus jed, je drobný vnitrobuněčný cizopasník nacházející se na
Program kursu Rostlinná buňka
Program kursu Rostlinná buňka 1) Poznávání rostlinných buněk Buňka a vývoj jejího poznání Srovnání rostlinné a živočišné buňky Jak jsou buňky rozčleněny: membrány 2) Buněčné membrány a vakuoly rostlinných
Otázky ke zkoušce z Biologie (MSP, FVHE, FVL) a ke zkoušce z Biologie a mol. biol. metod (BSP, FVHE), 2018/2019
1 Otázky ke zkoušce z Biologie (MSP, FVHE, FVL) a ke zkoušce z Biologie a mol. biol. metod (BSP, FVHE), 2018/2019 Okruh A 1. Definice a podstata života, princip hierarchických systémů živých soustav 2.
Biologie I. Buňka II. Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings
Biologie I Buňka II Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings BUŇKA II centrioly, ribosomy, jádro endomembránový systém semiautonomní organely peroxisomy
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Šablona III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146
MEMBRÁNOVÉ STRUKTURY EUKARYONTNÍCH BUNĚK
MEMBRÁNOVÉ STRUKTURY EUKARYONTNÍCH BUNĚK PLASMATICKÁ MEMBRÁNA EUKARYOTICKÝCH BUNĚK Všechny buňky (prokaryotické a eukaryotické) jsou ohraničeny membránami zajišťujícími integritu a funkci buněk Ochrana
Eukaryotická buňka. Stavba. - hlavní rozdíly:
Eukaryotická buňka - hlavní rozdíly: rostlinná buňka živočišná buňka buňka hub buněčná stěna ano (celulóza) ne ano (chitin) vakuoly ano ne (prvoci ano) ano lysozomy ne ano ne zásobní látka škrob glykogen
Bu?ka - maturitní otázka z biologie (6)
Bu?ka - maturitní otázka z biologie (6) by Biologie - Pátek, Únor 21, 2014 http://biologie-chemie.cz/bunka-6/ Otázka: Bu?ka P?edm?t: Biologie P?idal(a): david PROKARYOTICKÁ BU?KA = Základní stavební a
Název: Hmoto, jsi živá? I
Název: Hmoto, jsi živá? I Výukové materiály Téma: Obecné vlastnosti živé hmoty Úroveň: střední škola Tematický celek: Obecné zákonitosti přírodovědných disciplín a principy poznání ve vědě Předmět (obor):
sloučeniny až 90% celkové sušiny tuk estery vyšších mastných kyselin a glycerolu
Otázka: Buňka Předmět: Biologie Přidal(a): Anička -cytologie = nauka o buňce -cellula=buňka =základní stavební a funkční jednotka všech organismů Chemické složení -biogenní prky makrobiogenní 0,1-50% C,H,N,Fe,F,O
BIOLOGIE BUŇKY II Struktura buňky Buněčný cyklus
BIOLOGIE BUŇKY II Struktura buňky Buněčný cyklus 10.10.2016 Nejjednodušší forma života (viry neschopnost samostatné reprodukce) Základní stavební a funkční jednotka organismů schopná se dělit Spojeno s
Energetický metabolizmus buňky
Energetický metabolizmus buňky Buňky vyžadují neustálý přísun energie pro tvorbu a udržování biologického pořádku (život). Tato energie pochází z energie chemických vazeb v molekulách potravy (energie
VY_32_INOVACE_002. VÝUKOVÝ MATERIÁL zpracovaný v rámci projektu EU peníze školám
VY_32_INOVACE_002 VÝUKOVÝ MATERIÁL zpracovaný v rámci projektu EU peníze školám Registrační číslo projektu: CZ. 1.07. /1. 5. 00 / 34. 0696 Šablona: III/2 Název: Buňka Vyučovací předmět: Základy ekologie
Šablona č.i, sada č. 2. Buňka, jednobuněční. Ročník 8.
Šablona č.i, sada č. 2 Vzdělávací oblast Vzdělávací obor Tematický okruh Téma Přírodopis Přírodopis Zoologie Buňka, jednobuněční Ročník 8. Anotace Materiál slouží pro ověření znalostí učiva o buňkách a
STRUKTURA EUKARYONTNÍCH BUNĚK
STRUKTURA EUKARYONTNÍCH BUNĚK EUKARYOTICKÉ ORGANELY Jádro Ribozomy Endoplazmatické retikulum Golgiho aparát Lysozomy Endozomy Mitochondrie Plastidy Vakuola Cytoskelet Vznik eukaryotického jádra Jaderný
PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ ORGANISMY
PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ ORGANISMY 2010 Ing. Andrea Sikorová, Ph.D. 1 Problémy životního prostředí - organismy V této kapitole se dozvíte: Co je to organismus. Z čeho se organismus skládá. Jak se dělí
VY_32_INOVACE_ / Prvoci Prvoci jednobuněční živočichové
1/7 3.2.02.9 jednobuněční živočichové cíl - popsat stavbu, tvar, pohyb, výskyt a rozmnožování prvoků - uvést zástupce - jednobuněční živočichové, tvoří je jedna buňka, která vykonává všechny životní funkce
Digitální učební materiál
Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tematická oblast Odborná biologie, část biologie organismus
1 (2) CYTOLOGIE stavba buňky
1 (2) CYTOLOGIE stavba buňky Buňka základní stavební a funkční jednotka všech živých organismů. (neexistuje život mimo buňku!) buňky se liší tvarem i velikostí - záleží při tom hlavně na jejich funkci.
METABOLISMUS SACHARIDŮ
METABOLISMUS SAHARIDŮ A. Odbourávání sacharidů - nejdůležitější zdroj energie pro heterotrofy - oxidací sacharidů až na. získávají aerobní organismy energii ve formě. - úplná oxidace glukosy: složitý proces
Úvod do mikrobiologie
Úvod do mikrobiologie 1. Lidské infekční patogeny Subcelulární Prokaryotické o. Eukaryotické o. Živočichové Priony Chlamydie Houby Červi Viry Rickettsie Protozoa Členovci Mykoplasmata Klasické bakterie
1.Biologie buňky. 1.1.Chemické složení buňky
1.Biologie buňky 1.1.Chemické složení buňky 1. Stavbu molekuly DNA objasnil: a) J. B. Lamarck b) W. Harwey c) J.Watson a F.Crick d) A. van Leeuwenhoeck 2. Voda obsažená v buňkách je: a) vázaná na lipidy
STRUKTURA EUKARYONTNÍCH BUNĚK
STRUKTURA EUKARYONTNÍCH BUNĚK EUKARYOTICKÉ ORGANELY Jádro Ribozomy Endoplazmatické retikulum Golgiho aparát Lysozomy Endozomy Mitochondrie Plastidy Vakuola Cytoskelet Vznik eukaryotického jádra Jaderný
Škola: Střední škola obchodní, České Budějovice, Husova 9. Inovace a zkvalitnění výuky prostřednictvím ICT
Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Číslo projektu: CZ.1.07/1.5.00/34.0536 Název projektu školy: Výuka s ICT na SŠ obchodní České Budějovice Šablona
BIOLOGIE BUŇKY. Aplikace nanotechnologií v medicíně zimní semestr 2016/2017. Mgr. Jana Rotková, Ph.D.
BIOLOGIE BUŇKY Aplikace nanotechnologií v medicíně zimní semestr 2016/2017 Mgr. Jana Rotková, Ph.D. OBSAH zařazení v systému organismů charakterizace buňky buněčné organely specializace buněk užitečné
Martina Bábíčková, Ph.D
Jméno Martina Bábíčková, Ph.D. Datum 25.11.2013 Ročník 6. Vzdělávací oblast Člověk a příroda Vzdělávací obor Přírodopis Tematický okruh Základní struktura života Téma klíčová slova Buňka rostlinná a živočišná
Zkušební okruhy k přijímací zkoušce do magisterského studijního oboru:
Biotechnologie interakce, polarita molekul. Hydrofilní, hydrofobní a amfifilní molekuly. Stavba a struktura prokaryotní a eukaryotní buňky. Viry a reprodukce virů. Biologické membrány. Mikrobiologie -
Struktura buňky - maturitní otázka z biologie
Otázka: Struktura buňky Předmět: Biologie Přidal(a): Zuzlanka95 STAVBA EUKARYOTICKÉ BUŇKY Biomembrány Ohraničují a rozdělují buňku Podílí se na přenosu látek a probíhají na nich biochemické reakce Na povrchu
Biologie - Kvinta, 1. ročník
- Kvinta, 1. ročník Biologie Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence
CZ.1.07/1.5.00/ Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT
Autor: Mgr. Barbora Blažková Tematický celek: Základy ekologie Cílová skupina: 1. ročník SŠ Anotace Kontrolní test navazuje na prezentaci, která seznámila žáky se základy buněčné teorie, s druhy buněk,
Název: Fotosyntéza, buněčné dýchání
Název: Fotosyntéza, buněčné dýchání Výukové materiály Autor: Mgr. Blanka Machová Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: Biologie, chemie Ročník: 2. Tematický
Buněčné dýchání Ch_056_Přírodní látky_buněčné dýchání Autor: Ing. Mariana Mrázková
Registrační číslo projektu: CZ.1.07/1.1.38/02.0025 Název projektu: Modernizace výuky na ZŠ Slušovice, Fryšták, Kašava a Velehrad Tento projekt je spolufinancován z Evropského sociálního fondu a státního
pátek, 24. července 15 BUŇKA
BUŇKA ŽIVOČIŠNÁ BUŇKA mitochondrie ribozom hrubé endoplazmatické retikulum cytoplazma plazmatická membrána mikrotubule lyzozom hladké endoplazmatické retikulum Golgiho aparát jádro jadérko chromatin volné
Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně
Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu:
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu: VY_32_INOVACE_04_BUŇKA 1_P1-2 Číslo projektu: CZ 1.07/1.5.00/34.1077
- v interfázi dále viditelné - jadérko, jaderný skelet, jaderný obal
Buňka buňka : 10-30 mikrometrů největší buňka : vajíčko životnost : hodiny: leukocyty, erytrocyty: 110 130 dní, hepatocyty: 1 2 roky, celý život organismu: neuron počet bb v těle: 30 biliónů pojem buňka
Obecná charakteristika živých soustav
Obecná charakteristika živých soustav Vypracoval: RNDr. Milan Zimpl, Ph.D. TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Kategorie živých soustav Existují
A. chromozómy jsou rozděleny na 2 chromatidy spojené jen v místě centromery. B. vlákna dělícího vřeténka jsou připojena k chromozómům
Karlova univerzita, Lékařská fakulta Hradec Králové Obor: všeobecné lékařství - test z biologie Vyberte tu z nabídnutých odpovědí (1-5), která je nejúplnější. Otázka Odpověď 1. Mezi organely membránového
Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza
Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových
Mitochondrie. Rostlinná cytologie, Katedra experimentální biologie rostlin PřF UK
Mitochondrie Krátká historie objevu mitochondrií Jako granulární struktury pozorovány v buňkách od poloviny 19. století 1886, Richard Altmann: popsal pozorování bioblastů a navrhl hypotézu, že se jedná
4. Eukarya. - plastidy, mitochondrie, cytoskelet, vakuola
4. Eukarya - plastidy, mitochondrie, cytoskelet, vakuola Plastidy odděleny dvojitou membránou (u vyšších rostlin) - bezbarvé leukoplasty (heterotrofní pletiva) funkce: zásobní; proteinoplasty, - barevné
Digitální učební materiál
Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tématická oblast Odborná biologie, část biologie organismus
B4, 2007/2008, I. Literák
B4, 2007/2008, I. Literák ENERGIE, KATALÝZA, BIOSYNTÉZA Živé organismy vytvářejí a udržují pořádek ve světě, který spěje k čím dál většímu chaosu Druhá věta termodynamiky: Ve vesmíru nebo jakékoliv izolované
Téma: MORFOLOGIE ŢIVOČIŠNÝCH BUNĚK
Téma: MORFOLOGIE ŢIVOČIŠNÝCH BUNĚK ŢIVÉ SOUSTAVY Nebuňečné (priony, viroidy, viry) Buněčné (jedno- i mnohobuněčné organismy) PROKARYOTICKÝ TYP BUNĚK 1-10 µm Archebakterie Eubakterie (bakterie a sinice)
PŘÍPRAVY K VYUČOVACÍM HODINÁM PRO TÉMATA BIOLOGICKÁ SYSTEMATIKA + NOVÝ SYSTÉM EUKARYOT
PŘÍPRAVY K VYUČOVACÍM HODINÁM PRO TÉMATA BIOLOGICKÁ SYSTEMATIKA + NOVÝ SYSTÉM EUKARYOT Libuše Turjanicová, Kateřina Mikešová Elektronická příloha k článku Proměny vyšší systematiky eukaryot a její odraz
Univerzita Karlova v Praze - 1. lékařská fakulta. Buňka. Ústav pro histologii a embryologii
Univerzita Karlova v Praze - 1. lékařská fakulta Buňka. Stavba a funkce buněčné membrány. Transmembránový transport. Membránové organely, buněčné kompartmenty. Ústav pro histologii a embryologii Doc. MUDr.
- základní stavební i funkční jednotka všech živých organizmů ( jednotka života )
Otázka: Buňka význam a stavba Předmět: Biologie Přidal(a): Janča 1) Buňka (=cellula) význam a stavba - základní stavební i funkční jednotka všech živých organizmů ( jednotka života ) - organizační základ
Fyziologie buňky. RNDr. Zdeňka Chocholoušková, Ph.D.
Fyziologie buňky RNDr. Zdeňka Chocholoušková, Ph.D. Přeměna látek v buňce = metabolismus Výměna látek mezi buňkou a prostředím Buňka = otevřený systém probíhá výměna látek i energií s prostředím Některé
Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162
ZŠ Určeno pro Sekce Předmět Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 Téma / kapitola Dělnická 6. 7. třídy ZŠ základní
Látky jako uhlík, dusík, kyslík a. z vnějšku a opět z něj vystupuje.
KOLOBĚH LÁTEK A TOK ENERGIE Látky jako uhlík, dusík, kyslík a voda v ekosystémech kolují. Energii se do ekosystémů dostává z vnějšku a opět z něj vystupuje. Základní podmínky pro život na Zemi. Světlo
FYZIOLOGIE ROSTLIN VÝŽIVA ROSTLIN 1) AUTOTROFNÍ VÝŽIVA ROSTLIN 2) HETEROTROFNÍ VÝŽIVA ROSTLIN
FYZIOLOGIE ROSTLIN Fyziologie rostlin, Biologie, 2.ročník 25 Podobor botaniky, který studuje životní funkce a individuální vývoj rostlin. Využívá poznatků z dalších odvětví biologie jako je morfologie,
Prokaryotní a eukaryotní buňka
2016-08-31 08:13 1/13 Prokaryotní a eukaryotní buňka Prokaryotní a eukaryotní buňka Nebuněčné a buněčné formy života Nebuněčné formy života viry viroidy priony Buněčné formy života prokaryotní eukaryotní
Eukaryotická buňka. Milan Dundr
Eukaryotická buňka Milan Dundr Buněčné jádro: jaderný obal (jaderná blána, karyothéka) Buněčné jádro (BJ) =dvojitá membrána (nucleus, karyon) mezi 2 membránami je perinukleární prostor vnější jaderná membrána
Číslo materiálu: VY 32 INOVACE 18/08
Číslo materiálu: Název materiálu: PÍSEMNÉ OPKOVCÍ TESTY 1.pololetí Číslo projektu: CZ.1.07/1.4.00/21.1486 Zpracovala: Marcela Kováříková 1. Co je symbioza. Jaký je rozdíl mezi symbiozou a parazitismem.
Biologie 30 Metabolismus, fotosyntéza, dýchání, glykolýza, kvašení
Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Autor Tematická oblast Moravské gymnázium Brno s.r.o. RNDr. Monika Jörková Biologie 30 Metabolismus, fotosyntéza, dýchání, glykolýza, kvašení Ročník 1.
Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA
Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA
DUM č. 11 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika
projekt GML Brno Docens DUM č. 11 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 30.06.2014 Ročník: 6AF, 6BF Anotace DUMu: Princip genové exprese, intenzita překladu
prokaryotní Znaky prokaryoty
prokaryotní buňka Znaky prokaryoty Základní stavební jednotka bakterií a sinic Mikroskopická velikost viditelné pouze v optickém mikroskopu Buňka neobsahuje organely Obsahuje pouze 1 biomembránu cytoplazmatickou
DUM č. 3 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika
projekt GML Brno Docens DUM č. 3 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 02.06.2014 Ročník: 6AF, 6BF Anotace DUMu: chromatin - stavba, organizace a struktura
Evoluce rostlinné buňky
Evoluce rostlinné buňky Vznik a evoluce eukaryotních organismů strom (kruh, síť...) života zařazení rostlin v rámci eukaryot Endosymbiotický vznik organel mitochondrie plastidy - primární (a sekundární)
Evoluce rostlinné buňky
Evoluce rostlinné buňky Vznik a evoluce eukaryotních organismů strom (kruh, síť...) života zařazení rostlin v rámci eukaryot Endosymbiotický vznik organel mitochondrie plastidy - primární (a sekundární)