Měření přirozené radioaktivity na Vyšehradě
|
|
- Oldřich Doležal
- před 9 lety
- Počet zobrazení:
Transkript
1 Měření přirozené radioaktivity na Vyšehradě P. Guhlová Gymnázium Na Vítězné pláni Praha M. Slavík Gymnázium Jana Masaryka Jihlava R. Žlebčík Gymnázium Christiána Dopplera V. Arťušenko Soukromé šestileté Gymnázium Ostrava Supervisor: Ing. Z. Berka Abstrakt: Přirozená radioaktivita je všude okolo nás, na každého z nás působí a také se jí každý bojí, protože ji našimi smysly nemůžeme zachytit. V našem projektu jsme se zaměřili na zmapování radiační situace na pražském Vyšehradě, na hradbách a uvnitř kasemat, které jsou častým cílem turistů. Z měření jsme zjistili, že množství radioaktivních prvků obsažených v půdě odpovídá standardním hodnotám. Koncentrace radonu v půdě navezené na hradbách je nižší než v původním podloží, a i tam je na dolní hranici obvyklých koncentrací. 1 Úvod Vyšehrad byl v minulosti významným strategickým bodem v Praze a to především vzhledem ke své poloze. V minulosti byl proto poměrně intenzivně využíván k vojenským účelům a byl součástí pražského obranného systému. V 17. stol. došlo k celkovému přebudování vyšehradského opevnění, byly vybudovány mohutné hradby s podzemními ochozy (tzv. kasematy) a celý prostor mezi hradbami byl zarovnán. Toto opevnění se zachovalo až do současnosti, prochází prakticky podél celých vnějších hradeb a částečně i pod střední částí vyšehradské plošiny. Některé části kasemat jsou přístupné veřejnosti. V našem projektu jsme se zaměřili na problematiku přirozené radioaktivity, co to je přirozená radioaktivita, jak vzniká, kde ji najdeme a jak ji měříme. Dále jsme se rozhodli zmapovat úroveň radioaktivity na Vyšehradě a jestli zde přítomnost radonu a radiace neohrožuje zdraví průvodců a turistů. 2 Přirozená radioaktivita Je to přeměna nestabilních jader prvků na stabilní za vzniku alfa, beta nebo gama záření. Záření alfa V podstatě jde o atomová jádra 2 4 He, což jsou těžké nabité částice. Energie těchto částic je řádové v jednotkách megaelektronvoltů (MeV). Částice alfa nesou dva elektrické
2 náboje, proto při průchodu prostředím silně ionizují a velmi rychle ztrácejí svoji energii. Dosah záření alfa je tudíž značně omezen. Ve vzduchu činí jenom několik milimetrů, ve vodě nebo v tkáni jenom zlomky milimetrů.v přírodě ho lze najít u 226 Ra a jeho dceřiných produktů. Záření beta je tvořeno proudem elektronů nebo pozitronů. Jde o částice lehké, jejichž dosah v látce je větší než u záření alfa. V přírodě ho lze také najít u některých dceřiných produktů radonu. Záření gama je elektromagnetické záření, které je tvořeno fotony. Na rozdíl od předchozích dvou typů jde o tzv. nepřímo ionizující záření, kdy při průchodu látkou jsou produkovány elektrony (tzv. sekundární částice) o příslušné energii. Vysílají ho některé nuklidy uranové, thoriové nebo aktiniové řady. Většina přírodních radioaktivních nuklidů je součástí přeměnových řad (např. uran radiové řady), nuklid 40 K se v těchto řadách nevyskytuje. Nejvýznamnějšími složkami přírodní radioaktivity jsou: radon-222 (jako zdroj vnitřního ozáření, zejména plic), gama-záření pocházející z některých prvků v podloží (především draslík-40, radium-226, thorium-232), kosmické záření a záření prvků, které člověk přijímá s potravou a které se usazují v jeho těle. Z hlediska ochrany před takovýmito složkami tzv. přírodního radioaktivního pozadí hraje nejdůležitější roli minimalizace doby pobytu v rizikových prostorách, případně se přistupuje i k aktivním opatřením jako je např. větrání. Vyhledávání rizikových oblastí a analýza rizikových faktorů patří k jednomu z hlavních úkolů ochrany před přírodním zářením.
3 Přístroje a vybavení Spektrometrie Přirozenou radioaktivitu prvků jsme měřili pomocí scintilačního spektrometru s alkalickým halogenem NaI, aktivovaným těžkým kovem Tl. Tento druh dosahuje ze všech známých scintilátorů nejlepší energetické rozlišovací schopnosti pro fotonové záření. Součásti scintliačního spektrometru: Scintilační sonda, obsahující scintilátor, fotokatodu a fotonásobič,a mnohokanálový analyzátor, dělící se na A/D převodník a čítač. Princip detekce záření: Fotony záření γ interagují se scintilátorem třemi hlavními mechanismy: 1. Fotoefekt 2. Comptonův efekt 3. Tvorba párů elektron positron Konečným produktem všech vyjmenovaných procesů je elektron nebo elektron-pozitronový pár.tyto částice excitují atomy scintilátoru, které při zpětné deexcitaci vyzáří světlo.světlo dopadne na fotokatodu, kde pomocí fotonásobičů vzniká nábojový impuls. Tento impuls je dále upravován, zesilován a přechází do mnohokanálového analyzátoru, kde je vyhodnocováno již finální spektrum záření prvků. Na počátku měření je třeba provést energetickou kalibraci, pro určení vztahu mezi energií a kanálem, která je důležitá pro následné určení prvků zjištěného spektra. Tuto kalibraci jsme prováděli pomocí thoria-232. Měření dávkového příkonu Toto měření jsme prováděli jak pomocí měřiče dávkového příkonu záření gama Tesla MB 3201 se scintilační sondou, tak pomocí měřiče dávkového příkonu záření gama Eberline FH 40F2 (Geiger-Müllerova detektoru). Měření Radonu v půdním plynu Je prováděno pomocí metody ztracených hrotů, při níž jsme odebrali půdní vzduch a ten jsme analyzovali pomocí soupravy pro stanovení koncentrace radonu v půdním vzduchu ERM2. 3 Výsledky:
4 Z tohoto spektra vyplývá, že ve zkoumané lokalitě jsou tyto radionuklidy: 214 Pb a 214 Bi patří do uranové řady 228 Ac a 208 Tl patří do thoriové řady 40 K je samostatný přírodní nuklid 137 Cs není přírodní prvek, je umělým produktem. Tento graf ukazuje rozdíl mezi venkovním spektrem a spektrem v kasematech. Při měření venku jsme objevili na energetické hladině 663 kev přítomnost 137 Cs, jež je označena kroužkem.
5 Na tomto plánku jsou vyznačeny hodnoty dávkového příkonu γ na povrchu na různých místech Vyšehradu. Legenda: 1.Hradby nad Cihelnou bránou měření dávkového příkonu: 200 nsv/h měření aktivity radonu v půdním vzduchu : < 3 kbq/m 3 2.Násep nad Gorlicí měření dávkového příkonu: 220 nsv/h měření aktivity radonu v půdním vzduchu : 3,7 kbq/m 3 3. Dětské hřiště před Gorlicí měření dávkového příkonu: 170 nsv/h měření aktivity radonu v půdním vzduchu: 24 kbq/m 3 4. Pozemek před Cihelnou bránou měření aktivity radonu v půdním vzduchu: 9 kbq/m 3 Diskuse: Z naměřených hodnot aktivity radonu v půdním vzduchu vyplývá, že navezená hornina na hradbách je chudší na 226 Ra (resp. 238 U) než původní podloží, měřené uvnitř areálu (dětské hřiště) i mimo areál (před Cihelnou bránou). Obě podloží patří do nízkého radonového rizika. Měřič dávkového příkonu záření gama Tesla MB 3201 se scintilační sondou v porovnání s měřičem dávkového příkonu záření gama Eberline FH 40F2 mírně podhodnocuje, protože nemusí pracovat ve stejném energetickém rozsahu. Naměřené hodnoty se pohybují v běžném rozmezí, což je nsv/h. Při venkovním měření spektra jsme objevili přítomnost 137 Cs, které není přírodním prvkem. Při testování jaderných zbraní (v 50. letech 20. stol) a haváriích
6 jaderných zařízení se tento prvek dostává do atmosféry a odtud je vymýván deštěm do půdy. Proto jsme jej nezachytili při měření v kasematech. 4 Shrnutí Při měření jsme nezaznamenali k žádné vyjímečné odchylky od předpokládaných hodnot a radioaktivita zde není zdraví nebezpečná. Poděkování Děkujeme RNDr. L. Thinové, Ing. Z. Berkovi a Ing. K Knappovi, CSc. za veškerou pomoc a informace, které nám poskytli, a V. Svobodovi, CSc. za možnost zúčastnit se Fyzikálního týdne. Reference: [1] GERNDT, J. : Detektory ionizujícího záření, Vydavatelství ČVUT Zikova 4 Praha 6, 1994 [2] Fyzika pro IV.ročník gymnázií, SPN 1987 [3] ČECHÁK, T.: Základní fyzikální pojmy z oblasti radioaktivity, ČVUT FJFI [4] MOUČKA, L.: Zdroje a transport radonu v budovách, Státní ústav radiační ochrany [5] MAREŠ, S. a kol.: Úvod do užité geofyziky, Vydavatelství ALFA 1979
Spektrometrie záření gama
Spektrometrie záření gama M. Kroupa, Gymnázium Děčín, trellac@centrum.cz B. Dvorský, Gymnázium Šternberk, bohuslav.dvorsky@seznam.cz Abstrakt Tento článek pojednává o spektroskopii záření gama. Bylo měřeno
Referát z atomové a jaderné fyziky. Detekce ionizujícího záření (principy, technická realizace)
Referát z atomové a jaderné fyziky Detekce ionizujícího záření (principy, technická realizace) Měřicí a výpočetní technika Šimek Pavel 5.7. 2002 Při všech aplikacích ionizujícího záření je informace o
Letní škola RADIOAKTIVNÍ LÁTKY a možnosti detoxikace
Letní škola 2008 RADIOAKTIVNÍ LÁTKY a možnosti detoxikace 1 Periodická tabulka prvků 2 Radioaktivita radioaktivita je schopnost některých atomových jader odštěpovat částice, neboli vysílat záření jádro
Spektrometrie záření gama
Spektrometrie záření gama K. Procházková Gymnázium Písek, karlaprochazkova@seznam.cz J. Grepl VOŠ a SPŠ stavební, Náchod, kuba.grepl@seznam.cz J. Michelfeit Gymnázium Brno, tř. Kpt. Jaroše, jmichelf@seznam.cz
K MOŽNOSTEM STANOVENÍ OLOVA
K MOŽNOSTEM STANOVENÍ OLOVA 210 Jaroslav Vlček Státní ústav radiační ochrany, Bartoškova 1450/28, 140 00 Praha 4 Radionuklid 210 Pb v přírodě vzniká postupnou přeměnou 28 U (obr. 1) a dále se mění přes
RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření
KAP. 3 RADIOAKTIVITA A JADERNÉ REAKCE sklo barvené uranem RADIOAKTIVITA =SCHOPNOST NĚKTERÝCH ATOMOVÝCH JADER VYSÍLAT ZÁŘENÍ přírodní nuklidy STABILNÍ NKLIDY RADIONKLIDY = projevují se PŘIROZENO RADIOAKTIVITO
Radioaktivita,radioaktivní rozpad
Radioaktivita,radioaktivní rozpad = samovolná přeměna jader nestabilních nuklidů na jiná jádra, za současného vyzáření neviditelného radioaktivního záření Výskyt v přírodě v přírodě se vyskytuje 264 stabilních
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 7: Spektrum záření gama. Rentgenová fluorescenční spektroskopie. Abstrakt
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 15. 3. 21 Úloha 7: Spektrum záření gama Rentgenová fluorescenční spektroskopie Jméno: Jiří Slabý Pracovní skupina: 4 Ročník a kroužek: 2. ročník, 1.
Měření kosmického záření
Měření kosmického záření D. Jochcová 1, M. Stejskal 2, M. Kozár 3, M. Melčák 4, D. Friedrich 5 1 Wichterlevo gymnázium, Ostrava oxiiiii@centrum.cz 2 Gymnázium Litoměřická, Praha marek.sms@gmail.com 3 Bilingválne
Přírodní radioaktivita
Přírodní radioaktivita Náš celý svět, naše Země, je přirozeně radioaktivní, a to po celou dobu od svého vzniku. V přírodě můžeme najít několik tisíc radionuklidů, tj. prvků, které se samovolně rozpadají
Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD.
Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. KAP FP TU Liberec pavel.pesat@tul.cz tel. 3293 Radioaktivita. Přímo a nepřímo ionizující záření. Interakce záření s látkou. Detekce záření, Dávka
Úloha 7: Spektrum záření gama; rentgenová fluorescenční spektroskopie
Úloha 7: Spektrum záření gama; rentgenová fluorescenční spektroskopie FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 8.3.21 Jméno: František Batysta Pracovní skupina: 5 Ročník a kroužek: 2. ročník,
JADERNÁ FYZIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník
JADERNÁ FYZIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník Základní pojmy Jaderná síla - drží u sebe nukleony, velmi krátký dosah, nasycení Vazebná energie jádra: E V = ( Z m p + N
Radiační zátěž na palubách letadel
Radiační zátěž na palubách letadel M. Flusser 1, L. Folwarczny 2, D. Kalasová 3, L. Lachman 4, V. Větrovec 5 1 Smíchovská střední průmyslová škola, Praha, martin.flusser@atlas.cz 2 Gymnázium Komenského,
Radioaktivní záření, jeho druhy, detekce a základní vlastnosti
Radioaktivní záření, jeho druhy, detekce a základní vlastnosti M. Vohralík vohralik.m@email.cz Gymnázium Dr. Emila Holuba, Holice D. Horák dombas1999@gmail.com Reálné Gymnázium a základní škola města Prostějova
Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou JÁDRO ATOMU A RADIOAKTIVITA VY_32_INOVACE_03_3_03_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Atomové jádro je vnitřní
Radioaktivita a radionuklidy - pozitivní i negativní účinky a využití. Jméno: Ondřej Lukas Třída: 9. C
Radioaktivita a radionuklidy - pozitivní i negativní účinky a využití Jméno: Ondřej Lukas Třída: 9. C Co to je Radioaktivita/Co je radionuklid Radioaktivita = Samovolná přeměna atomových jader Objev 1896
Radiační monitorovací síť ČR metody stanovení a vybrané výsledky monitorování
Radiační monitorovací síť ČR metody stanovení a vybrané výsledky monitorování Miroslav Hýža a kol., SÚRO v.v.i., miroslav.hyza@suro.cz Otázky dopadu jaderné havárie do zemědělství a připravenost ČR Praha,
Identifikace typu záření
Identifikace typu záření U radioaktivního záření rozeznáváme několik druhů, jejichž vlastnosti se diametrálně liší. Jednotlivé druhy rozeznáváme podle druhu emitovaného záření. Tyto druhy radioaktivity
Externí detektory k monitoru kontaminace CoMo 170
Externí detektory k monitoru kontaminace CoMo 170 γ - sonda pro měření nízkých dávek NaI 25D38 Druh záření: γ a RTG záření Jmenovitý rozsah energie fotonů: 25 kev 1.3 MeV, max. chyba měření ±50 % krystal
Nebezpečí ionizujícího záření
Nebezpečí ionizujícího záření Radioaktivita versus Ionizující záření Radioaktivita je schopnost jader prvků samovolně se rozpadnout na jádra menší stabilnější. Rozeznáváme pak radioaktivitu přírodní (viz.
Výukový materiál zpracován v rámci projektu EU peníze školám
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_FYZ_379 Jméno autora: Mgr. Alena Krejčíková Třída/ročník:
12. OCHRANA PŘED IONIZUJÍCÍM ZÁŘENÍM
12. OCHRANA PŘED IONIZUJÍCÍM ZÁŘENÍM Při práci se zdroji záření spočívá v zeslabení dávky záření na hodnotu, při níž je riziko ozáření sníženo na zanedbatelnou hodnotu: udržování patřičné vzdálenosti od
Atomová a jaderná fyzika
Mgr. Jan Ptáčník Atomová a jaderná fyzika Fyzika - kvarta Gymnázium J. V. Jirsíka Atom - historie Starověk - Démokritos 19. století - první důkazy Konec 19. stol. - objev elektronu Vznik modelů atomu Thomsonův
Registrační číslo projektu: CZ.1.07/1.4.00/21.3075
Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 19. 12. 2012 Pořadové číslo 09 1 RADIOAKTIVITA Předmět: Ročník: Jméno autora:
Jméno a příjmení. Ročník. Měřeno dne. 21.3.2012 Příprava Opravy Učitel Hodnocení
FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Vojtěch Přikryl Ročník 1 Předmět IFY Kroužek 35 ID 143762 Spolupracoval Měřeno dne Odevzdáno dne Daniel Radoš 7.3.2012 21.3.2012 Příprava
12. OCHRANA PŘED IONIZUJÍCÍM ZÁŘENÍM
12. OCHRANA PŘED IONIZUJÍCÍM ZÁŘENÍM Při práci se zdroji záření spočívá v zeslabení dávky záření na hodnotu, při níž je riziko ozáření sníženo na zanedbatelnou hodnotu: udržování patřičné vzdálenosti od
Můžete se v Louňovicích bez obav napít?
Můžete se v Louňovicích bez obav napít? E. Černohorská 1, Lenka Fridrichová 2, Jana Kaděrová 3, Táňa Pokorná 4 1 Gymnázium Karlovy Vary, 2 Gymnázium Pelhřimov 3 Gymnázium Komenského Havířov, 4 Gymnázium
3. Radioaktivita. Při radioaktivní přeměně se uvolňuje energie. X Y + n částic. Základní hmotnostní podmínka radioaktivity: M(X) > M(Y) + M(ČÁSTIC)
3. Radioaktivita >2000 nuklidů; 266 stabilních radioaktivita samovolná přeměna na jiný nuklid (neplatí pro deexcitaci jádra) pro Z 20 N / Z 1, poté postupně až 1,52 pro 209 Bi, přebytek neutronů zmenšuje
VY_32_INOVACE_FY.17 JADERNÁ ENERGIE
VY_32_INOVACE_FY.17 JADERNÁ ENERGIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jaderná energie je energie, která existuje
Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika
Jaderná fyzika Vlastnosti atomových jader Radioaktivita Jaderné reakce Jaderná energetika Vlastnosti atomových jader tomové jádro rozměry jsou řádově 1-15 m - složeno z protonů a neutronů Platí: X - soustředí
Měření absorbce záření gama
Měření absorbce záření gama Úkol : 1. Změřte záření gama přirozeného pozadí. 2. Změřte záření gama vyzářené gamazářičem. 3. Změřte záření gama vyzářené gamazářičem přes absorbátor. 4. Naměřené závislosti
Radonový program pokračuje již třetí dekádou. Ariana Lajčíková
Radonový program pokračuje již třetí dekádou Ariana Lajčíková Co to je Radonový program? Program ochrany zdraví obyvatel před ozářením z přírodních zdrojů, program prevence rakoviny plic Vyhlášen vládou
Potřebné pomůcky Sešit, učebnice, pero
Potřebné pomůcky Druh interaktivity Cílová skupina Stupeň a typ vzdělání Potřebný čas Velikost Zdroj Sešit, učebnice, pero Výklad, aktivita žáků 9. ročník 2. stupeň, ZŠ 45 minut 754 kb Viz použité zdroje
JIHOČESKÁ UNIVERZITA - PEDAGOGICKÁ FAKULTA V ČESKÝCH BUDĚJOVICÍCH
JIHOČESKÁ UNIVERZITA - PEDAGOGICKÁ FAKULTA V ČESKÝCH BUDĚJOVICÍCH TECHNICKÁ FYZIKA IV Účinky a druhy záření Vypracoval: Vladimír Pátý Ročník: 2 Datum: 26.5.2003 Skupina: MVT Účinky a druhy záření 1. Druhy
JAKÉ VÝHODY PŘINESE NÁHRADA VELIČINY AKTIVITA VELIČINOU TOK ČÁSTIC PŘI POSUZOVÁNÍ MĚŘIDEL PLOŠNÉ AKTIVITY
RNDr. Tomáš Soukup Český metrologický institut Inspektorát pro ionizující záření, Radiová 1, 102 00 Praha 10, JAKÉ VÝHODY PŘINESE NÁHRADA VELIČINY AKTIVITA VELIČINOU TOK ČÁSTIC PŘI POSUZOVÁNÍ MĚŘIDEL PLOŠNÉ
1. Proveďte energetickou kalibraci gama-spektrometru pomocí alfa-zářiče 241 Am.
1 Pracovní úkoly 1. Proveďte energetickou kalibraci gama-spektrometru pomocí alfa-zářiče 241 Am. 2. Určete materiál několika vzorků. 3. Stanovte závislost účinnosti výtěžku rentgenového záření na atomovém
Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice
RADON - CHARAKTERISTIKA Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora
Stručný úvod do spektroskopie
Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,
RADIOAKTIVITA RADIOAKTIVITA
Předmět: Ročník: Vytvořil: Datum: CHEMIE PRVNÍ Mgr. Tomáš MAŇÁK 20. říjen 2012 Název zpracovaného celku: RADIOAKTIVITA Přirozená radioaktivita: RADIOAKTIVITA Atomová jádra některých nuklidů (zejména těžká
MĚŘENÍ PŘIROZENÉ RADIACE HORNIN NA DĚČÍNSKU
MĚŘENÍ PŘIROZENÉ RADIACE HORNIN NA DĚČÍNSKU Autorský kolektiv Marie Freibergová Jan Kmínek Klára Petrovická Gymnázium Děčín Komenského náměstí 4, Děčín 1; PSČ 405 01 Vedoucí práce: Mgr. Olga Kouřimská
212 a. 5. Vyzáří-li radioaktivní nuklid aktinia částici α, přemění se na atom: a) radia b) thoria c) francia d) protaktinia e) zůstane aktinium
Pracovní list - Jaderné reakce 1. Vydává-li radionuklid záření alfa: a) protonové číslo se zmenšuje o 4 a nukleonové číslo se nemění b) nukleonové číslo se změní o 4 a protonové se nemění c) protonové
Radiační zátěž od kosmického záření na palubě letadla
Radiační zátěž od kosmického záření na palubě letadla Lukáš Malina 1 Helena Paschkeová 2 Zbyněk Štajer 3 Robert Taichman 4 Barbora Zavadilová 5 Supervizor: Ondřej Ploc 6,7 1 Gymnázium Christiana Dopplera,
RIA instrumentace. Jana Číhalová OKB FN Brno
RIA instrumentace Jana Číhalová OKB FN Brno jcihalova@email.cz 1 RIA instrumentace Radioizotopové metody Radioindikátorové značenky- 125 I Detekce ionizujícího záření Popis přístrojů v klin.laboratořích
Kosmické záření a jeho detekce stanicí CZELTA
Kosmické záření a jeho detekce stanicí CZELTA Jiří Slabý slabyji2@fjfi.cvut.cz 30.10.2008, Fyzikální seminář, Fakulta jaderná a fyzikálně inženýrská Českého vysokého učení technického v Praze Co nás čeká
Senzory ionizujícího záření
Senzory ionizujícího záření Senzory ionizujícího záření dozimetrie α = β = He e 2+, e + γ, n X... elmag aktivita [Bq] (Becquerel) A = A e 0 λt λ...rozpadová konstanta dávka [Gy] (Gray) = [J/kg] A = 0.5
Nebezpečí ionizujícího záření
Nebezpečí ionizujícího záření Ionizující záření je proud: - fotonů - krátkovlnné elektromagnetické záření, - elektronů, - protonů, - neutronů, - jiných částic, schopný přímo nebo nepřímo ionizovat atomy
Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření a detekce záření (radiové vlny, neviditelné záření)
Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření a detekce záření (radiové vlny, neviditelné záření) Autor: Doc. Ing. Josef Formánek, Ph.D. Podklady k principu měření
Jaderné reakce a radioaktivita
Střední průmyslová škola Hranice - - Jaderné reakce a radioaktivita Radioaktivita Je vlastností atomových jader, která se samovolně přeměňují na jiná a vyzařují při tom pronikavé neviditelné záření. Jádra
STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST
STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST Obor SOČ: 2. Fyzika Měření gama radioaktivity minerálních vod v oblasti Lázní Jeseník Measurement of the gamma radioactivity in mineral waters of the Jeseník Spa area OPRAVENÁ
FYZIKA ATOMOVÉHO JÁDRA
FYZIKA ATOMOVÉHO JÁDRA Je to nejstarší obor fyziky Stručně jaderná nebo nukleární fyzika Zabývá se strukturou jader, jadernými ději a jejich využití v praxi JÁDRO ATOMU Tvoří centrální část atomu o poloměru
Identifikace typu záření
Identifikace typu záření U radioaktivního záření rozeznáváme několik druhů, jejichž vlastnosti se diametrálně liší. Jednotlivé druhy rozeznáváme podle druhu emitovaného záření. Tyto druhy radioaktivity
Ullmann V.: Jaderná a radiační fyzika
Radionuklidové metody Jsou založeny na studiu přirozené, respektive uměle vzbuzené radioaktivity hornin. Radiometrické metody využívají přirozenou radioaktivitu hornin při vyhledávacím průzkumu a při geologickém
Fyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha 7: Gama spektrometr Datum měření: 15. 4. 2016 Doba vypracovávání: 15 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: Pomocí
Radonový program. Ariana Lajčíková Centrum odborných činností SZÚ Praha
Radonový program Ariana Lajčíková Centrum odborných činností SZÚ Praha Co to je? Program prevence ochrany zdraví obyvatel před ozářením z přírodních zdrojů, program prevence rakoviny plic Kdo ho vyhlásil?
VY_52_INOVACE_VK64. Datum (období), ve kterém byl VM vytvořen červen 2013 Ročník, pro který je VM určen
VY_52_INOVACE_VK64 Jméno autora výukového materiálu Věra Keselicová Datum (období), ve kterém byl VM vytvořen červen 2013 Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace 8. ročník
MOŽNOST VELMI RYCHLÉHO SEMIKVANTITATIVNÍHO ODHADU VYSOKÉ KONTAMINACE VODY A ŽIVOTNÍHO PROSTŘEDÍ ALFA-RADIONUKLIDY MĚŘENÍ IN SITU
MOŽNOST VELMI RYCHLÉHO SEMIKVANTITATIVNÍHO ODHADU VYSOKÉ KONTAMINACE VODY A ŽIVOTNÍHO PROSTŘEDÍ ALFA-RADIONUKLIDY MĚŘENÍ IN SITU Jiří Hůlka, Irena Malátová Státní ústav radiační ochrany Praha Předpokládané
Křemíkovým okem do nitra hmoty, radioaktivita
Křemíkovým okem do nitra hmoty, radioaktivita BaBar SLAC Zbyněk Drásal 1 Historie diodového jevu v polovodičích Objev tzv. Halbleiteru (polovodiče) bodový kontakt kovu a krystalu (PbS) usměrňuje proud
Gama spektroskopie. Vojtěch Motyčka Centrum výzkumu Řež s.r.o.
Gama spektroskopie Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Teoretický úvod ke spektroskopii Produkce a transport neutronů v různých materiálech, které se v daných zařízeních vyskytují (urychlovačem
Test z fyzikálních fyzikálních základ ů nukleární medicíny
Test z fyzikálních základů nukleární medicíny 1. Nukleární medicína se zabývá a) diagnostikou pomocí otevřených zářičů a terapií pomocí uzavřených zářičů aplikovaných in vivo a in vitro b) diagnostikou
Radon Bellušova 1855-1857
Radon Bellušova 1855-1857 Nejdřív pár slov na úvod, abychom věděli, o čem se vlastně budeme bavit. a) Co je radon? b) Jaké jsou zdravotní účinky? c) Jak se dostane do objektu? d) Co z toho plyne pro nás?
1. STANOVENÍ RADIONUKLIDŮ - ZÁŘIČŮ GAMA - VE VZORCÍCH ŽIVOTNÍHO PROSTŘEDÍ
1. STANOVENÍ RADIONUKLIDŮ - ZÁŘIČŮ GAMA - VE VZORCÍCH ŽIVOTNÍHO PROSTŘEDÍ Jedná se o úlohu, demonstrující principy stanovení umělých i přirozených radionuklidů v objemových vzorcích životního prostředí
Atom jeho složení a struktura Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje
Atom jeho složení a struktura Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje 16.3.2009,vyhotovila Mgr. Alena Jirčáková Atom atom (z řeckého átomos nedělitelný)
DUM č. 15 v sadě. 12. Fy-3 Průvodce učitele fyziky pro 4. ročník
projekt GML Brno Docens DUM č. 15 v sadě 12. Fy-3 Průvodce učitele fyziky pro 4. ročník utor: Miroslav Kubera Datum: 27.05.2014 Ročník: 4B notace DUMu: Prezentace je souhrnem probírané tématiky. Ve stručném
PŘÍRODNÍ RADIOAKTIVITA A STAVEBNICTVÍ
PŘÍRODNÍ RADIOAKTIVITA A STAVEBNICTVÍ RNDr. Karel Uvíra 2012 Opava Tato příručka vznikla za finanční podpory Evropského sociálního fondu a rozpočtu České republiky. Přírodní radioaktivita a stavebnictví
CZ.1.07/1.1.30/01.0038
Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 29 Téma: RADIOAKTIVITA A JADERNÝ PALIVOVÝ CYKLUS Lektor: Ing. Petr Konáš Třída/y: 3ST,
Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK
Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Fyzika atomu - model atomu struktura elektronového obalu atomu z hlediska energie atomu - stavba atomového jádra; základní nukleony
SLOVENSKEJ REPUBLIKY
ZBIERKA ZÁKONOV SLOVENSKEJ REPUBLIKY Ročník 1991 Vyhlásené: 01.03.1991 Časová verzia predpisu účinná od: 01.03.1991 Obsah tohto dokumentu má informatívny charakter. 76 V Y H L Á Š K A ministerstva zdravotnictví
Abstrakt: Gama spektroskopie je disciplína, která měří a vyhodnocuje spektra
FJFI ČVUT v Praze Úloha 7 Fyzikální praktikum II Verze Easy Měření spektra gama záření scintilačním detektorem Abstrakt: Gama spektroskopie je disciplína, která měří a vyhodnocuje spektra gama zářičů.
Měření gama záření scintilačním počítačem
Fyzikální praktikum FJFI ČVUT v Praze Úloha č. 7 : Měření spektra gama záření scintilačním počítačem Jméno: Ondřej Ticháček Pracovní skupina: 7 Kruh: ZS 7 Datum měření: 4.3.213 Klasifikace: Měření gama
RADIOAKTIVITA TEORIE. Škola: Masarykovo gymnázium Vsetín Mgr.Milan Staněk MGV_F_SS_3S2_D12_Z_MIKSV_Radioaktivita_PL
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr.Milan Staněk MGV_F_SS_3S2_D12_Z_MIKSV_Radioaktivita_PL Člověk a příroda Fyzika Jaderná fyzika Radioaktivita RADIOAKTIVITA
Práce v radiochemické laboratoři - ověření zákonitostí radioaktivních přeměn
Práce v radiochemické laboratoři - ověření zákonitostí radioaktivních přeměn Autoři: H.Brandejská, Gymnázium Jiřího Ortena, brandejskahelena@seznam.cz A. Hladíková, Gymnázium J.K.Tyla, AJA.HLADIK@seznam.cz
Nová rizika záchytů NORM, TENORM?
Nová rizika záchytů NORM, TENORM? Josef Mudra Centrum nakládání s RAO, ÚJV Řež a.s. Radiologické metody v hydrosféře 11 Hotel Zlatá hvězda, Třeboň 4. 5. 5. 2011 6.5.2011 1 Úvod o ÚJV Řež a.s. Založen v
1.4 Možnosti odstínění radioaktivního záření
1.4 Možnosti odstínění radioaktivního záření Cíle kapitoly: Laboratorní úloha je zaměřena na problematiku radioaktivního záření a studentům umožňuje prověřit znalosti, resp. prakticky si vyzkoušet práci
1. Zadání Pracovní úkol Pomůcky
1. 1. Pracovní úkol 1. Zadání 1. Ověřte měřením, že směry výletu anihilačních fotonů vznikajících po β + rozpadu jader 22 Na svírají úhel 180. 2. Určete pološířku úhlového rozdělení. 3. Vysvětlete tvar
Test z radiační ochrany
Test z radiační ochrany v nukleární medicíně ě 1. Mezi přímo ionizující záření patří a) záření alfa, beta a gama b) záření neutronové c) záření alfa, beta a protonové záření 2. Aktivita je definována a)
Radioaktivní záření, jeho druhy, detekce a základní vlastnosti Týden vědy na FJFI 2018
Radioaktivní záření, jeho druhy, detekce a základní vlastnosti Týden vědy na FJFI 2018 Miloš Tichý, Katedra jaderných reaktorů milos.tichy@fjfi.cvut.cz http://buon.fjfi.cvut.cz/cgi-bin/ftiw/default.cgi?window=main
Základy spektroskopie a její využití v astronomii
Ing. Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Základy spektroskopie a její využití v astronomii Hvězdárna Valašské Meziříčí, p. o. Krajská hvezdáreň v Žiline Světlo x záření Jak vypadá spektrum?
Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího
9. Jaderná energie. Česká zemědělská univerzita v Praze, Technická fakulta
9. Jaderná energie Stavba atomu Atomy byly dlouho považovány za nedělitelné. Postupem času se zjistilo, že mají jádro složené z protonů a z neutronů a elektronový obal tvořený elektrony. Jaderná fyzika
Záření kolem nás. Jaroslav Šoltés, Milan Štefánik Katedra jaderných reaktorů FJFI ČVUT v Praze
Záření kolem nás Jaroslav Šoltés, Milan Štefánik Katedra jaderných reaktorů FJFI ČVUT v Praze Elektromagnetické záření q Pohybující se elektrický náboj vyzařuje elektromagnetické záření q Vlastnosti záření
Radiační ochrana pojetí a interpretace veličin a jednotek v souladu s posledními mezinárodními doporučeními
Radiační ochrana pojetí a interpretace veličin a jednotek v souladu s posledními mezinárodními doporučeními doc.ing. Jozef Sabol, DrSc. Fakulta biomedicínského inženýrství, ČVUT vpraze Nám. Sítná 3105
Výukové texty. pro předmět. Měřící technika (KKS/MT) na téma
Výukové texty pro předmět Měřící technika (KKS/MT) na téma Tvorba grafické vizualizace principu měření ionizujícího záření a bezpečnostní náležitosti Autor: Doc. Ing. Josef Formánek, Ph.D. Tvorba grafické
Screeningová metoda stanovení celkové alfa aktivity ve vodě
SÚJCHBO, v.v.i. Certifikovaná metodika Screeningová metoda stanovení celkové alfa aktivity ve vodě Ing. Zdeňka Veselá, Ing. Josef Vošahlík, Mgr. Jan Merta, Jaroslava Buštová, Ing. Ivo Burian, CSc., Mgr.
Technické normy pro stanovení radioaktivních látek ve vzorcích vody a související normy
Technické normy pro stanovení radioaktivních látek ve vzorcích vody a související normy Ing. Lenka Fremrová, HYDROPROJEKT CZ a.s Ing. Eduard Hanslík, CSc. Výzkumný ústav vodohospodářský, v.v.i. Technická
Radioaktivní záření, jeho druhy, detekce a základní vlastnosti Týden vědy na FJFI 2019
Radioaktivní záření, jeho druhy, detekce a základní vlastnosti Týden vědy na FJFI 2019 Miloš Tichý, Katedra jaderných reaktorů milos.tichy@fjfi.cvut.cz http://tydenvedy.fjfi.cvut.cz/?cgi=miniprojekty Obsah
PATENTOVÝ SPIS CO « O?oo 05. ézěk ČESKÁ REPUBLIKA
PATENTOVÝ SPIS ČESKÁ REPUBLIKA (19) (21) Číslo pfihláiky: 1325-94 (22) PMhláSeno: 31. 05. 94 (40) Zveřejněno: 14. 06. 95 (47) Uděleno: 27. 04. 95 (24) Oznámeno uděleni ve Věstníku: 14. 06. 95 ézěk (11)
Využití radionuklidové rentgenfluorescenční analýzy při studiu památek
Využití radionuklidové rentgenfluorescenční analýzy při studiu památek V. Klevarová, T. Kráčmerová, V. Vítek Gymnásium Matyáše Lercha Gymnásium Václava Hraběte Gymnásium Bystřice nad Pernštejnem veronika.klevarova@centrum.cz,
Znečištění životního prostředí radionuklidy po zničení jaderné elektrárny Fukushima 1. Připravil: Tomáš Valenta
Znečištění životního prostředí radionuklidy po zničení jaderné elektrárny Fukushima 1 Připravil: Tomáš Valenta Umělé (antropogenní) radionuklidy, které se mohou potencionálně uvolnit při nehodě jaderného
RADIUM - 223 - fyzikální vlastnosti a radiobiologické účinky -
RADIUM - 223 - fyzikální vlastnosti a radiobiologické účinky - Radium důležitý radioaktivní prvek Radium 226 Ra a 223 Ra Radiobiologické účinky a využití v nukleární medicíně Ullmann V., Koláček M., Pekárek
Rozměr a složení atomových jader
Rozměr a složení atomových jader Poloměr atomového jádra: R=R 0 A1 /3 R0 = 1,2 x 10 15 m Cesta do hlubin hmoty Složení atomových jader: protony + neutrony = nukleony mp = 1,672622.10 27 kg mn = 1,6749272.10
Balmerova série vodíku
Balmerova série vodíku Josef Navrátil 1, Barbora Pavlíková 2, Pavel Mičulka 3 1 Gymnázium Ivana Olbrachta, pepa.navratil.ez@volny.cz 2 Gymnázium Jeseník, barca@progeo-sys.cz 3 Gymnázium a SOŠ Frýdek Místek,
JADERNÁ ENERGIE. Při chemických reakcích dochází ke změnám v elektronových obalech atomů. Za určitých podmínek mohou změnám podléhat i jádra atomů.
JADERNÁ ENERGIE Při chemických reakcích dochází ke změnám v elektronových obalech atomů. Za určitých podmínek mohou změnám podléhat i jádra atomů. HISTORIE Profesor pařížské univerzity Sorbonny Antoine
1. Spektroskopie záření beta
Praktická cvičení z jaderné chemie Radek Zbořil Katedra yzikální chemie, Přírodovědecká akulta Univerzity Palackého v Olomouci 1. Spektroskopie záření beta Cíl laboratorního cvičení: Seznámení se s technikou
CENÍK SLUŽEB STÁTNÍ ÚSTAV RADIAČNÍ OCHRANY. veřejná výzkumná instituce. (za služby poskytované za úplatu) Bartoškova 28, 140 00 PRAHA 4
STÁTNÍ ÚSTAV RADIAČNÍ OCHRANY veřejná výzkumná instituce CENÍK SLUŽEB (za služby poskytované za úplatu) Bartoškova 28, 140 00 PRAHA 4 Telefon: 241 410 214 http://www.suro.cz Fax: 241 410 215 e-mail: suro@suro.cz
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY 1 Fyzikální základy spektrálních metod Monochromatický zářivý tok 0 (W, rozměr m 2.kg.s -3 ): Absorbován ABS Propuštěn Odražen zpět r Rozptýlen s Bilance toků 0 = +
Je bezpečněji v podzemí nebo u Temelína?
Je bezpečněji v podzemí nebo u Temelína? Marek Kovář* Jiří Šálek** *Gymnázium Karla Sladkovského, Praha 3 **SZŠ a VOŠZ Zlín *kovar.ma@seznam.cz **jirisalek8@seznam.cz Supervizor: RNDr. Lenka Thinová, Ing.
Vizualizace radioaktivity pro sekundu s detektorem MX-10
Vizualizace radioaktivity pro sekundu s detektorem MX-10 VLADIMÍR VÍCHA Gymnázium Pardubice, Dašická, ÚTEF ČVUT Praha MX-10 je unikátní detektor radioaktivity, který může sloužit jako radiační kamera s
RADIOAKTIVITA A VLIV IONIZUJÍCÍHO ZÁŘENÍ
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 RADIOAKTIVITA A VLIV IONIZUJÍCÍHO
Radiační ochrana v JE Dukovany
Seminář 11.4.2011 Radiační ochrana v JE Dukovany Vladimír Kulich Státní legislativa Zákon č. 18/19987 Sb. v platném znění (Atomový zákon) Vyhláška SÚJB č. 307/2002 Sb. o radiační ochraně, ve znění vyhlášky