1 Nejdůležitější abiotické faktory
|
|
- Dominika Procházková
- před 9 lety
- Počet zobrazení:
Transkript
1 1 Nejdůležitější abiotické faktory 1.1 Světlo Na každý čtvereční metr povrchu atmosféry Země dopadá každou vteřinu průměrně 1, J sluneční energie (solární konstanta). Kolik z tohoto množství pronikne do atmosféry a kolik se odrazí zpět do vesmíru již závisí na poloze místa (nejmenší odraz je na rovníku, největší na pólech). Záření vstupující do atmosféry má rozsah vlnových délek od do (převážně do ) nm a podle dílčích vlnových rozsahů je dělíme na záření kosmické ( nm), radioaktivní ( nm), ultrafialové (3-400 nm), viditelné ( nm) a infračervené (760 až 4000 nm). Účinky kosmického záření na organismy nejsou dostatečně prozkoumány, působení radioaktivního záření je negativní (mutace, hynutí buněk, somatické změny). Vlastní sluneční záření má z valné části vlnový rozsah nm, tzn. zahrnuje ultrafialové (cca 9 %) viditelné (cca 45 %) a infračervené (46 %) záření. Ultrafialové záření je ze značné části pohlceno ve vyšších vrstvách atmosféry, kde vytváří ozónovou vrstvu. Ve větších dávkách a intenzitě Působí na organismy negativně (morfogenní, destrukční a mutační účinky), v malé míře jsou jeho účinky pozitivní. Sluneční záření je částečně pohlceno atmosférou, oblaky, znečišťujícími částicemi, povrchem Země i organismy, částečně se od různých povrchů odráží a určitá jeho část se vrací zpět do vesmíru. Z hodnoty solární konstanty činí toto množství % (albedo Země). Množství zářivé energie za jednotku času (J.s -1 ) se nazývá zářivý tok, jeho velikost vztaženou na jednotku kolmé plochy (J.s -1.m -2 ) označujeme jako hustotu zářivého toku, příp. jako ozářenost při přepočtu na jednotku horizontální plochy. Množství energie dopadající na povrch se mění v závislosti na: postavení slunce a zeměpisné šířce expozici a sklonu ozařované plochy (u nás nejvíce energie na J, JZ a JV svazích o sklonu ), východní svahy - ztráta energie při výparu ranní rosy zaclonění horizontem oblačnosti - například v horách je odpoledne více oblačnosti a proto jsou západní svahy chladnější.
2 Rozhodujícím zdrojem světla je viditelná složka slunečního záření. Světlo jako jeden z nejdůležitějších ekologických faktorů ovlivňuje organismy zejména svojí intenzitou, dobou působení a směrem dopadu a vyvolává nejrůznější životní projevy.
3 1.1.1 Intenzita světla - fotosyntéza a limitní faktor výskytu Jednotlivé druhy organismů jsou schopny existovat při různé intenzitě světla. Druhy euryfotní jsou tolerantní, naopak druhy stenofotní jsou specializované a světlo může být limitujícím faktorem jejich přítomnosti. Podle konkrétních nároků rozlišujeme druhy: heliofilní, heliofyty preferují plné osvětlení. Snášejí takové záření, které u jiných rostlin vyvolává rozklad chlorofylu, adaptace k vysokému UV záření, fyziologické adaptace k nadbytku světelné energie fotofilní, příp. heliosciofyty organismy tolerantní ke 100% ozáření i k zastínění. Tolerují určitý rozsah ozáření, kvetou při ozářeních vyšších. Břečťan (Hedera helix) roste při 2-100% ozáření a kvete při % ozáření sciofilní, sciofyty druhy stínomilné, rostou jen na zastíněných místech (hrachor jarní při 20-33% ozáření). Minimální požadavek na ozáření klesá od zelených kvetoucích rostlin přes kapradiny a mechy k řasám. Fylogenetická (vývojová) adaptace na stinné podmínky: liánovitý vzrůst, epifytismus, ztráta chlorofylu (vznik heterotrofie). U rostlin je příslušnost k uvedeným kategoriím dána především schopností fotosyntetické asimilace při určité hustotě světelného toku. Hustotu světelného toku (ti. intenzitu světla), při které se množství vytvořené organické hmoty a tím vázané chemické energie rovná ztrátám při disimilačních pochodech, označujeme jako světelný kompenzační bod fotosyntézy. V prostředích s průměrnou denní hustotou světelného toku pod hodnotou kompenzačního bodu nemůže daný druh existovat. U sciofytů se kompenzační bod pohybuje kolem 250 lx, u heliofyt je obvykle vyšší než lx. Změny světelných poměrů v průběhu roku způsobují, ze vegetativní a generativní fáze některých vytrvalých druhu bylin lesního podrostu proběhne velmi rychle a nadzemní část odumře. Takové, druhy nazýváme efemeroidy. Mnozí živočichové, houby a baktérie obývají na rozdíl od zelených rostlin prostředí zcela bez světla. S těmito světloplachými (fotofóbními) druhy se můžeme setkat například v půdě (edafobionti), v jeskyních (troglobionti), v dutinách (kavernikolní druhy), v podzemních vodách (stygobionti) nebo v mořských hlubinách (abysální druhy). Patří k nim i endoparazité živočichů a rostlin. Podle obývaných prostředí tyto druhy vykazují různé specifické adaptace, jejich společným znakem bývá většinou ztráta pigmentace a zakrnělé světločivné orgány. K heliofytům patří rostliny bezlesých nezastíněných stanovišť, tj. pouštní, stepní i velehorské a tundrové, druhy. Heliosciofyty snášejí mírné zastínění např. čistec přímý (Stachys recta) a srha říznačka (Dactytis glomerata), příklady sciofytů jsou hrachor jarní (Lathyrus vernus), jazyk jelení (Phyllitis scolopendrium) a řada druhů pokojových rostlin. Známými efeineroidy časného jara jsou například sněženka podsněžník (Galanthus nivalis), dymnivka dutá (Corydalis cava) nebo sasanka hajní (Anemone nemorosa) Délka působení biologické rytmy Doba působení světla, tj. střídání dne a noci nebo změny délky světlé části dne (fotoperioda) vyvolávají tzv. biologické rytmy. Jde o periodické opakování určitých činností nebo životních projevů během 24 hodin nebo v průběhu roku. Střídání dne a noci vede k pravidelným rytmům aktivity mnoha živočichů, ovlivňuje dobu rozvíjení květů některých rostlin. Změny délky fotoperiody mohou být impulsem k nástupu klidových stádií ve vývoji rostlin i živočichů (dornance), mohou vyvolávat
4 sezónní morfologické změny (poiymorsmus), ovlivňovat počátek období rozmnožování živočichů a kvetení rostlin. Tvorba generativních orgánů mnoha druhů rostlin je ovlivněna délkou fotoperiody (rostliny krátkého a dlouhého dne). Mezi živočichy najdeme druhy monofázické s jednou dobou aktivity a odpočinku během 24 hodin (denní motýli, mnozí ptáci), difázické se dvěma fázemi aktivity (soumrační živočichově) a konečně polyfázické, ti kterých se fáze aktivity a odpočinku za 24 hodin mnohokrát opakují (hraboši, rejsci). Zkracující se fotoperioda na podzim vyvolává přípravu a nástup zimní diapauzy u mnoha druhů hmyzu. Tak je zabráněno obrovským ztrátám jedinců, ke kterým by došlo po zhoršení podmínek bez tohoto světelného varování. V suchých a horkých oblastech může analogicky dlouhá fotoperioda vyvolávat nástup letní diapauzy. Fáze měsíce jsou řídícím faktorem tzv. lunárních rytmů u mnoha mořských živočichů, ale také ovlivňují aktivitu terestrických nočních druhů. Známou rostlinou dlouhého dne je například locika salátová (Lactuca sativa; salát ) ke krátkodenním druhům patří chryzantéma indická (Dendrantherna indicum) Směr dopadu pohyby Směr, úhel dopadu a intenzita světla ovlivňují různé pohybové reakce organismů. Prudké osvětlení některých druhů živočichů, příp. rostlinných bičíkovců vyvolává jejich chaotické, nesměrované přesuny z místa na místo fotokinese. Směrové pohyby ke zdroji světla nebo od něj nazýváme fototaxe (pozitivní, negativní). Zvláštním případem fototaktického pohybu některých druhů živočichů je tzv. menotaxe, což je pohyb v určitém konstantním úhlu vůči světelnému zdroji. Světelný zdroj slouží jako orientační bod. Za normálních okolností je to nejčastěji slunce nebo měsíc, ale může se jím stát také umělé světlo (přílet nočních druhů hmyzu k lampě ve zmenšujících se spirálách). Otáčení části těla ke světlu fototropismy - můžeme pozorovat u rostlin (slunečnice) i živočichů (vystavovaní časti těla slunečním paprskům). Nesměrované pohyby rostlin vyvolané určitou intenzitou světla nazýváme fotonastie, např. otvírání květů nebo pohyby listů Světlo ve vodním prostředí Ve vodním prostředí působí světlo podobně jako na souši, navíc se zde uplatňuje jeho spektrální složení. Značná část záření se odráží od vodní hladiny. Průnik do hloubky je ovlivněn úhlem dopadu a průhledností vody. Jednotlivé složky viditelné části spektra jsou vodou různě pohlcovány, proto se s hloubkou mění spektrální složení světla. Nejdříve jsou absorbovány okrajové části spektra (zejména červená) a nejhlouběji proniká záření v oblasti modré, zelené a žluté barvy. Odlišné zbarvení sinic a řas rostoucích ve větších hloubkách (ruduchy) je způsobeno přítomností červených fotosyntetických pigmentů, které jsou svojí barvou komplementární nejvíce pronikajícímu modrozelenému světlu a jsou schopny je nejlépe využít. Dobře prosvětlená horní vrstva vodního sloupce obvykle s probíhající fotosyntézou se nazývá eufotická zóna. Spodní afotická zóna má nedostatek světla a převažují v ní disimilační procesy. Světelné kompenzační body fotosyntézy jednotlivých druhů rostlin však leží podle konkrétních nároků na intenzitu světla v různých hloubkách. Kromě slunečního záření se mohou jako zdroje světla uplatňovat v nepatrné míře také, vulkanická aktivita nebo bioluminiscence mikroorganismů, řas a živočichů (světlušky). Stále většího významu
5 nabývají i vlivy umělého osvětlení. Umělé světlo narušuje biologické rytmy, orientaci i výskyt organismů (, znečištění světlem ) Světlo a fotosyntéza Světlo je základní předpoklad pro fotosyntézu. Ta je nezbytná pro primární produkci, která je na začátku všech potravních řetězců. Světelný kompenzační bod fotosyntézy nastává při takové hustotě záření, kdy množství CO2 vázaného ve fotosyntéze se rovná množství CO2 vydávaného dýcháním. Minimální průměrná denní hustota ozáření musí ležet nad tímto bodem. Je dán i časově (ráno / večer). Pozitivní látková bilance musí být tak velká, aby stačila i na noc. Stín tolerující rostliny dosahují maximální fotosyntézy při 1/4 plného slunečního záření; stín netolerující rostliny nikdy maxima nedosahují a se zvyšujícím se zářením zvyšují i fotosyntézu. Fotosyntetické strategie rostlin 1. C 3 rostliny - CO 2 ze vzduchu je nejdříve konvertován na kyselinu 3-fosfoglycerovou (má 3 uhlíky). U těchto rostlin existuje fotorespirace (dýchání na světle), které znamená ztráty výtěžku fotosyntézy. Jsou to rostliny mírného klimatu. 2. C 4 rostliny - První sloučeniny produkované z CO 2 mají 4 uhlíky. Mají odlišnou anatomickou skladbu listu, která jim umožňuje využívat i nízké koncentrace CO 2 a pro recyklaci CO 2 produkovaného respirací. Na tyto pochody mají i fyziologickou adaptaci rozdílný biochemický cyklus. Efektivním získáváním a recyklací CO 2 dokážou využít vysokou intenzitu záření pro produkci. Jsou to většinou tropické trávy (kukuřice, cukrová třtina), ale i rostliny slanomilné nebo např. ruderální rostliny prašných stanovišť ( ucpané průduchy). Mají vysoké tepelné optimum fotosyntézy a upřednostňují písčité (nejílovité) půdy. Předpokládá se jejich větší rozšíření při globálním oteplování. 3. CAM (crassulacean acid metabolism) rostliny - Otevírají průduchy v noci a brání se tím ztrátě vody. CO2 je uložen v organických kyselinách a ve dne je pak využíván. Jsou adaptovány na suché pouštní oblasti (sukulenty). Mohou přepínat na C 3 režim. 1.2 Teplota Primárním a rozhodujícím zdrojem tepla je sluneční záření. Infračervená složka záření působí přímo (tepelné paprsky), viditelná složka nepřímo zpožděně prostřednictvím fotosyntetické fixace energie a následného uvolňování tepla při disimilačních pochodech. Teplo se přenáší zářením (radiace), prouděním (konvekce) a vedením (kondukce). Ve vzduchu, vodě a půdě se tyto způsoby přenosu uplatňují různě, proto se teplotní poměry v těchto prostředích poněkud liší. Teplota ovlivňuje zejména aktivitu, délku vývoje a je omezujícím faktorem výskytu druhů. Dva základní termobiologické typy organismů organismy poikilotermní a homoiotermní reagují na působení tepla částečně odlišně.
- nezbytný zdroj energie pro existenci života na Zemi - v nadbytku a při přímém působení na protoplazmu nebezpečný činitel pro život
Základy ekologie Světlo - nezbytný zdroj energie pro existenci života na Zemi - v nadbytku a při přímém působení na protoplazmu nebezpečný činitel pro život Typy záření a) radioaktivní (ionizační): vlnová
Světlo jako ekologický faktor
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Pracovní list č. 2 Světlo jako ekologický faktor
Voda jako životní prostředí - světlo
Hydrobiologie pro terrestrické biology Téma 6: Voda jako životní prostředí - světlo Sluneční světlo ve vodě Sluneční záření dopadající na hladinu vody je 1) cestou hlavního přísunu tepla do vody 2) zdrojem
Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje. 26.2.2010 Mgr.
Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje 26.2.2010 Mgr. Petra Siřínková ABIOTICKÉ PODMÍNKY ŽIVOTA SLUNEČNÍ ZÁŘENÍ TEPLO VZDUCH VODA PŮDA SLUNEČNÍ
Ekologie a její obory, vztahy mezi organismy a prostředím
Variace 1 Ekologie a její obory, vztahy mezi organismy a prostředím Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz.
Otázky k předmětu Globální změna a lesní ekosystémy
Otázky k předmětu Globální změna a lesní ekosystémy 1. Jaké jsou formy šíření energie v klimatickém systému Země? (minimálně 4 formy) 2. Na čem závisí množství vyzářené energie tělesem? (minimálně 3 faktory)
Faktory počasí v ekologii - úvod
Faktory počasí v ekologii - úvod Jakub Brom Laboratoř aplikované ekologie ZF JU Z ekologického hlediska nás zajímá, jak působí faktory počasí na organismy a zpětně, jak organismy působí na změnu těchto
molekulární struktura (vodíkové můstky, polarita) hustota viskozita teplo povrchové napětí adheze a koheze proudění
molekulární struktura (vodíkové můstky, polarita) hustota viskozita teplo povrchové napětí adheze a koheze proudění Proč se zabývat teplotou vody? řídí biologické děje (růst, přežívání, reprodukci, kompetici,...),
radioaktivní (ionizační): Význam: Zdroj: ultrafialové Význam: Zdroj: viditelné: Význam: Zdroj infračervené: (tepelné) Význam: Zdroj kosmické: Význam
Základy ekologie Světlo - nezbytný zdroj energie pro existenci ţivota na Zemi - v nadbytku a při přímém působení na protoplazmu nebezpečný činitel pro ţivot Typy záření a) radioaktivní (ionizační): vlnová
Klimatické faktory. Kategorie klimatu:
Klimatické faktory podnebí dlouhodobý průběh počasí - ovlivňováno energetickou bilancí oblasti, vzdušným prouděním, utvářením povrchu, člověkem počasí momentální stav povětrnostních faktorů Kategorie klimatu:
CZ.1.07/1.5.00/ Digitální učební materiály III/ 2- Inovace a zkvalitnění výuky prostřednictvím ICT
Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28.
FOTOSYNTÉZA. Princip, jednotlivé fáze
FOTOSYNTÉZA Princip, jednotlivé fáze FOTOSYNTETICKÉ PIGMENTY - chlorofyl a modrozelený - chlorofyl b žlutozelený + karoteny, xantofyly žluté a oranžové zbarvení CHLOROFYL a, b CHLOROFYL a - nejdůležitější
Vyjádření fotosyntézy základními rovnicemi
FOTOSYNTÉZA Fotochemický proces, při němž fotosynteticky aktivní pigmenty v zelených částech rostlin přijímají energii světelného záření a přeměňují ji na energii chemickou. Ta je dále využita při biologických
kyslík ve vodě CO 2 (vápenato-)uhličitanová rovnováha alkalita
kyslík ve vodě CO 2 ph (vápenato-)uhličitanová rovnováha alkalita elementární plyny s vodou nereagují, ale rozpouštějí se fyzikálně (N 2, O 2, ) plynné anorganické sloučeniny (CO 2, H 2 S, NH 3 ) s vodou
BIOLOGIE OCEÁNŮ A MOŘÍ
BIOLOGIE OCEÁNŮ A MOŘÍ 1. ekologické faktory prostředí světlo salinita, hustota, tlak teplota obsah rozpuštěných látek a plynů 2 1.1 sluneční světlo ubývání světla do hloubky odraz světla od vodní hladiny,
kyslík ve vodě CO 2 (vápenato-)uhličitanová rovnováha alkalita
kyslík ve vodě CO 2 ph (vápenato-)uhličitanová rovnováha alkalita elementární plyny s vodou nereagují, ale rozpouštějí se fyzikálně (N 2, O 2, ) plynné anorganické sloučeniny (CO 2, H 2 S, NH 3 ) s vodou
Podmínky působící na organismy: abiotické - vlivy neživé části prostředí na organismus biotické - vlivy ostatních živých organismů na život jedince, m
Přednáška č. 4 Pěstitelství, základy ekologie, pedologie a fenologie Země Podmínky působící na organismy: abiotické - vlivy neživé části prostředí na organismus biotické - vlivy ostatních živých organismů
Technická univerzita v Liberci fakulta přírodovědně-humanitní a pedagogická. Doc. RNDr. Petr Anděl, CSc. ZÁKLADY EKOLOGIE.
Technická univerzita v Liberci fakulta přírodovědně-humanitní a pedagogická Doc. RNDr. Petr Anděl, CSc. ZÁKLADY EKOLOGIE Studijní texty 2010 Struktura předmětu 1. ÚVOD 2. EKOSYSTÉM MODELOVÁ JEDNOTKA 3.
Fotosyntéza Ekofyziologie. Ondřej Prášil Mikrobiologický ústav AVČR Laboratoř fotosyntézy v Třeboni
Fotosyntéza Ekofyziologie Ondřej Prášil Mikrobiologický ústav AVČR Laboratoř fotosyntézy v Třeboni Fyziologické a ekologické aspekty fotosyntézy vliv stresů a proměnného prostředí na fotosyntézu; mechanismy
ZÁŘENÍ. Záření dopadající na Zemi. Světlo jako faktor CZ.1.07/2.2.00/ Modifikace profilu absolventa biologických studijních oborů na PřF UP
ZÁŘENÍ EKO/EKŽO EKO/EKZSB Ivan H. Tuf Katedra ekologie a ŽP PřF UP v Olomouci Modifikace profilu absolventa : rozšíření praktické výuky a molekulárních, evolučních a cytogenetických oborů Záření dopadající
EKOLOGIE ROSTLIN I. 1. Úvod do problematiky. 2. Energie sluneční záření
EKOLOGIE ROSTLIN I 1. Úvod do problematiky Základní pojmy a termíny: ekologie, ekosystém, dodatková energie, biosféra, geobiocenóza, biotop, ekotop, nika, biomy, biota, ekologické limity, tolerance. EKOLOGIE
www.zlinskedumy.cz Inovace výuky prostřednictvím šablon pro SŠ
Název projektu Číslo projektu Název školy Autor Název šablony Název DUMu Stupeň a typ vzdělávání Vzdělávací oblast Vzdělávací obor Tematický okruh Inovace výuky prostřednictvím šablon pro SŠ CZ.1.07/1.5.00/34.0748
Působení ekologických faktorů
Působení ekologických faktorů Světlo 8 Intenzita světla fotosyntéza a limitní faktor výskytu Druhy euryfotní stenofotní - sluncemilné (heliofilní, heliofyty) - světlomilné (fotofilní) - stínomilné (sciofilní,
1. Ekologie zabývající se studiem jednotlivých druhů se nazývá: a) synekologie b) autekologie c) demekologie
1. Ekologie zabývající se studiem jednotlivých druhů se nazývá: a) synekologie b) autekologie c) demekologie 2. Plocha lesa v ČR dle statistiky ročně: a) stoupá o cca 2 tis. ha b) klesá o cca 15 tis. ha
FYZIOLOGIE ROSTLIN VÝŽIVA ROSTLIN 1) AUTOTROFNÍ VÝŽIVA ROSTLIN 2) HETEROTROFNÍ VÝŽIVA ROSTLIN
FYZIOLOGIE ROSTLIN Fyziologie rostlin, Biologie, 2.ročník 25 Podobor botaniky, který studuje životní funkce a individuální vývoj rostlin. Využívá poznatků z dalších odvětví biologie jako je morfologie,
FOTOSYNTÉZA. Mgr. Alena Výborná Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_01_1_07_BI1
FOTOSYNTÉZA Mgr. Alena Výborná Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_01_1_07_BI1 Fotosyntéza (z řec. phos, photós = světlo) je anabolický děj probíhající u autotrofních organismů (řasy,
Rozmanitost podmínek života na Zemi Podnebné pásy
Podnebné pásy Tropický mezi obratníky - Vhlké vnitřní tropy: - bez střídání ročních období - silné srážky, -průměrná roční teplota nad 20 C -Vnější tropy: -přechod k subtropům - období dešťů a období sucha
Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113
Sluneční energie, fotovoltaický jev Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113 1 Osnova přednášky Slunce jako zdroj energie Vlastnosti slunečního
Fotosyntéza (2/34) = fotosyntetická asimilace
Fotosyntéza (2/34) = fotosyntetická asimilace FOTO - protože k fotosyntéze je třeba fotonů Jedná se tedy o zachycování sluneční energie a přeměnu jednoduchých anorganických látek (CO 2 a H 2 O) na složitější
Fyziologie rostlin - maturitní otázka z biologie (3)
Otázka: Fyziologie rostlin Předmět: Biologie Přidal(a): Isabelllka FOTOSYNTÉZA A DÝCHANÍ, VODNÍ REŽIM ROSTLINY, POHYBY ROSTLIN, VÝŽIVA ROSTLIN (BIOGENNÍ PRVKY, AUTOTROFIE, HETEROTROFIE) A)VODNÍ REŽIM VODA
SKLENÍKOVÝ EFEKT 2010 Ing. Andrea Sikorová, Ph.D.
SKLENÍKOVÝ EFEKT 2010 Ing. Andrea Sikorová, Ph.D. 1 Skleníkový efekt V této kapitole se dozvíte: Co je to skleníkový efekt. Jaké jsou skleníkové plyny. Co je to tepelné záření. Budete schopni: Vysvětlit
Ekologie rostlin. Michal Hejcman
Ekologie rostlin Michal Hejcman Literatura Literatura: Literatura: Slavíková J. (1986): Ekologie rostlin. SPN, Praha. Begon M., Harper J. L. & Townsend C. R. (1997): Ekologie: jedinci, populace a společenstva.
Ekologie fotosyntézy
Ekologie fotosyntézy Fotosyntéza Přeměna zářivé energie Slunce na energii chemických vazeb primární produkce organické hmoty fotochemický (Hillova reakce) a biochemický proces 1 mol přijatého CO 2 energetický
Systémy pro využití sluneční energie
Systémy pro využití sluneční energie Slunce vyzáří na Zemi celosvětovou roční potřebu energie přibližně během tří hodin Se slunečním zářením jsou spojeny biomasa pohyb vzduchu koloběh vody Energie
Fotosyntéza ve dne Ch_054_Přírodní látky_fotosyntéza ve dne Autor: Ing. Mariana Mrázková
Registrační číslo projektu: CZ.1.07/1.1.38/02.0025 Název projektu: Modernizace výuky na ZŠ Slušovice, Fryšták, Kašava a Velehrad Tento projekt je spolufinancován z Evropského sociálního fondu a státního
Organizmy a biogeochemické cykly hlavních prvků (C,N,P) a látek (voda) v ekosystému. (Hana Šantrůčková, Katedra biologie ekosystémů, B 361)
Organizmy a biogeochemické cykly hlavních prvků (C,N,P) a látek (voda) v ekosystému (Hana Šantrůčková, Katedra biologie ekosystémů, B 361) Biogeochemické cykly: Pohyb chemických prvků mezi organizmy a
Atmosféra, znečištění vzduchu, hašení
Atmosféra, znečištění vzduchu, hašení Zemská atmosféra je vrstva plynů obklopující planetu Zemi, udržovaná na místě zemskou gravitací. Obsahuje přibližně 78 % dusíku a 21 % kyslíku, se stopovým množstvím
2) Povětrnostní činitelé studují se v ovzduší atmosféře (je to..) Meteorologie je to věda... Počasí. Meteorologické prvky. Zjišťují se měřením.
Pracovní list č. 2 téma: Povětrnostní a klimatičtí činitelé část. 1 Obsah tématu: Obsah tématu: 1) Vlivy působící na rostlinu 2) Povětrnostní činitelé a pojmy související s povětrnostními činiteli 3) Světlo
Energetika ekosystémů
Energetika ekosystémů Energie Obecně lze konstatovat, že energie je schopnost konat práci Mechanická energie zahrnuje kinetickou a potenciální energii Teplo Zářivá energie vyzařována v kvantech Elektrická
Slunce zdroj energie pro Zemi
Slunce zdroj energie pro Zemi Josef Trna, Vladimír Štefl Zavřete oči a otočte tvář ke Slunci. Co na tváři cítíte? Cítíme zvýšení teploty pokožky. Dochází totiž k přenosu tepla tepelným zářením ze Slunce
6. Tzv. holocenní klimatické optimum s maximálním rozvojem lesa bylo typické pro a) preboreál b) atlantik c) subrecent
1. Ekologie zabývající se studiem populací se nazývá a) synekologie b) autekologie c) demekologie 2. Plocha lesa na planetě dle statistiky ročně: a) stoupá cca o 11 mil. ha b) klesá cca o 16 mil. ha c)
Látky jako uhlík, dusík, kyslík a. z vnějšku a opět z něj vystupuje.
KOLOBĚH LÁTEK A TOK ENERGIE Látky jako uhlík, dusík, kyslík a voda v ekosystémech kolují. Energii se do ekosystémů dostává z vnějšku a opět z něj vystupuje. Základní podmínky pro život na Zemi. Světlo
BIORYTMY. Rytmicita procesů. Délka periody CZ.1.07/2.2.00/ Modifikace profilu absolventa biologických studijních oborů na PřF UP
BIORYTMY EKO/EKŽO EKO/EKZSB Ivan H. Tuf Katedra ekologie a ŽP PřF UP v Olomouci Modifikace profilu absolventa : rozšíření praktické výuky a molekulárních, evolučních a cytogenetických oborů Rytmicita procesů
Organizmy a biogeochemické cykly hlavních prvků (C,N,P) a látek (voda) v ekosystému. (Hana Šantrůčková, Katedra biologie ekosystémů, B 361)
Organizmy a biogeochemické cykly hlavních prvků (C,N,P) a látek (voda) v ekosystému (Hana Šantrůčková, Katedra biologie ekosystémů, B 361) Biogeochemické cykly: Pohyb chemických prvků mezi organizmy a
CZ.1.07/1.5.00/
[1] [3] [2] Číslo projektu Název školy Předmět CZ.1.07/1.5.00/34.0425 INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV Černoleská 1997, 256 01 Benešov BIOLOGIE A EKOLOGIE Tematický okruh Téma Základy obecné
Vztah hmyzu k ekologickým faktorům
Vztah hmyzu k ekologickým faktorům Vztah hmyzu k ekologickým faktorům Abiotické teplota vlhkost světlo vzduch Biotické potrava intraspecifické (vnitrodruhové) interspecifické (mezidruhové) Tolerance (ekologická
Otázky pro samotestování. Téma1 Sluneční záření
Otázky pro samotestování Téma1 Sluneční záření 1) Jaká je vzdálenost Země od Slunce? a. 1 AU b. 6378 km c. 1,496 x 10 11 m (±1,7%) 2) Jaké množství záření dopadá přibližně na povrch atmosféry? a. 1,60210-19
ZMĚNY NEŽIVÉ PŘÍRODY. Anotace: Materiál je určen k výuce přírodovědy ve 4. ročníku ZŠ. Seznamuje žáky se změnami neživé přírody v prostoru a čase.
ZMĚNY NEŽIVÉ PŘÍRODY Anotace: Materiál je určen k výuce přírodovědy ve 4. ročníku ZŠ. Seznamuje žáky se změnami neživé přírody v prostoru a čase. Pohyby Země Země vykonává tyto pohyby: otáčí se kolem své
AUTOTROFNÍ A HETEROTROFNÍ VÝŽIVA ROSTLIN, VODNÍ REŽIM ROSTLIN, RŮST A POHYB ROSTLIN
Otázka: Výživa rostlin, vodní režim rostlin, růst a pohyb rostlin Předmět: Biologie Přidal(a): Cougee AUTOTROFNÍ A HETEROTROFNÍ VÝŽIVA ROSTLIN, VODNÍ REŽIM ROSTLIN, RŮST A POHYB ROSTLIN 1. autotrofní způsob
Ekologie. Základní pojmy - pokračování (přednáška č. 2, zoočást)
Ekologie Základní pojmy - pokračování (přednáška č. 2, zoočást) Témata seminárních prací pro část EKO-ZOO Téma 1: Kritický rozbor článků významné české ekoložky a environmetalistky Hany Librové publikovaných
PRIMÁRNÍ PRODUKCE. CO 2 + H 2 A světlo, fotosyntetický pigment (CH 2 O) + H 2 O + 2A
PRIMÁRNÍ PRODUKCE PP je závislá na biochemických procesech fotosyntézy autotrofních organizmů její množství je dáno množstvím dostupných živin v systému produktem je biomasa vytvořená za časovou jednotku
Rychlost světla a její souvislost s prostředím
Rychlost světla a její souvislost s prostředím Jak byla změřena rychlost světla? První, kdo přišel s myšlenkou konečné rychlosti světla, byl Francis Bacon. Ve své práci Novum Organum Scientiarum tvrdil,
Ztrátové faktory Grazing filtrační rychlost, filtrační rychlost společenstva.
Ztrátové faktory Grazing filtrační rychlost, filtrační rychlost společenstva. Světlo Světelné podmínky ve vodním sloupci Eufotická vrstva, epilimnion, kompenzační hloubka. Závislost fotosyntézy na hloubce
RŮST = nevratné přibývání hmoty či velikosti rostliny spojené s fyziologickými pochody v buňkách
RŮST = nevratné přibývání hmoty či velikosti rostliny spojené s fyziologickými pochody v buňkách Fáze růstu na buněčné úrovni: zárodečná (embryonální) dělení buněk meristematických pletiv prodlužovací
FOTOSYNTÉZA. CO 2 a vody. - soubor chemických reakcí. - probíhá v rostlinách a sinicích. - zachycení a využití světelné energie
Fotosyntéza FOTOSYNTÉZA - soubor chemických reakcí - probíhá v rostlinách a sinicích - zachycení a využití světelné energie - tvorba složitějších chemických sloučenin z CO 2 a vody - jediný zdroj kyslíku
05 Biogeochemické cykly
05 Biogeochemické cykly Ekologie Ing. Lucie Kochánková, Ph.D. Prvky hlavními - biogenními prvky: C, H, O, N, S a P v menších množstvích prvky: Fe, Na, K, Ca, Cl atd. ve stopových množstvích I, Se atd.
DÝCHÁNÍ. uložená v nich fotosyntézou, je z nich uvolňována) Rostliny tedy mohou po určitou dobu žít bez fotosyntézy
Dýchání 2/38 DÝCHÁNÍ Asimiláty vzniklé v rostlinných buňkách fotosyntézou mají různé funkce: stavební, zásobní, enzymatické aj. Zásobní látky jsou v případě potřeby využívány (energie, uložená v nich fotosyntézou,
FOTOSYNTÉZA. soubor chemických reakcí,, probíhaj v rostlinách a sinicích. z CO2 a vody jediný zdroj kyslíku ku pro život na Zemi
Fotosyntéza FOTOSYNTÉZA soubor chemických reakcí,, probíhaj hajících ch v rostlinách a sinicích ch zachycení a využit ití sluneční energie k tvorbě složitých chemických sloučenin z CO2 a vody jediný zdroj
Střední škola rybářská a vodohospodářská Jakuba Krčína Táboritská 941 379 01 TŘEBOŇ EKOLOGICKÁ SOUTĚŽ
EKOLOGICKÁ SOUTĚŽ 1. Vyberte, co nepatří mezi význam zeleně v okolí: a) tlumí hlučnost b) zvyšuje množství oxidu uhličitého c) pohlcuje teplo 2. Půda je úrodná, pokud obsahuje dostatek vody, vzduchu, rozpustných
HLAVNÍ PROBLÉMY V ŽIVOTNÍM PROSTŘEDÍ
HLAVNÍ PROBLÉMY V ŽIVOTNÍM PROSTŘEDÍ Současná etapa je charakterizována: populační explozí a nebývalým rozvojem hospodářské činnosti společnosti řadou antropogenních činností s nadměrnou produkcí škodlivin
Základy biologie a ekologie VZNIK A VÝVOJ ŽIVOTA
Základy biologie a ekologie VZNIK A VÝVOJ ŽIVOTA Výsledky vzdělávání Učivo Ţák Základy biologie charakterizuje názory na vznik a vývoj vznik a vývoj ţivota na Zemi ţivota na Zemi, porovná délku vývoje
Ekosystém. tok energie toky prvků biogeochemické cykly
Ekosystém tok energie toky prvků biogeochemické cykly Ekosystém se sestává z abiotického prostředí a biotické složky (společenstva) a jejich vzájemných interakcí. Ekosystém si geograficky můžeme definovat
Název školy: Střední zahradnická škola Rajhrad, Masarykova 198 Autor: Mgr. Vladimír ŠÁCHA Název projektu: Zkvalitnění výuky na SOŠz a SOU Rajhrad
Název školy: Střední zahradnická škola Rajhrad, Masarykova 198 Autor: Mgr. Vladimír ŠÁCHA Název projektu: Zkvalitnění výuky na SOŠz a SOU Rajhrad Číslo projektu: CZ.1.07/1.5.00/34.0127 Název učebního materiálu:
DEKOMPOZICE, CYKLY LÁTEK, TOKY ENERGIÍ
DEKOMPOZICE, CYKLY LÁTEK, TOKY ENERGIÍ Vše souvisí se vším Živou hmotu tvoří 3 hlavní organické složky: Bílkoviny, cukry, tuky Syntézu zajišťuje cca 20 biogenních prvků Nejdůležitější C, O, N, H, P tzv.
Fyzikální podstata DPZ
Elektromagnetické záření Vlnová teorie vlna elektrického (E) a magnetického (M) pole šíří se rychlostí světla (c) Charakteristiky záření: vlnová délka (λ) frekvence (ν) Fyzikální podstata DPZ Petr Dobrovolný
a) zkonzumují za život velké množství jedinců, avšak nespotřebují jedince celého, nezpůsobují jeho smrt, i když mu svou aktivitou škodí
1. Praví predátoři: a) zkonzumují za život velké množství jedinců, avšak nespotřebují jedince celého, nezpůsobují jeho smrt, i když mu svou aktivitou škodí b) konzumují část kořisti, kořist zpravidla neusmrtí,
Biosyntéza sacharidů 1
Biosyntéza sacharidů 1 S a c h a r id y p o tr a v y (š k r o b, g ly k o g e n, sa c h a r o sa, a j.) R e z e r v n í p o ly sa c h a r id y J in é m o n o sa c h a r id y Trávení (amylásy - sliny, pankreas)
Energie fotonů je předávána molekulám chlorofylu A, který se zachyceným fotonem excituje (uvolní se energeticky bohatý elektron).
Otázka: Fotosyntéza a biologické oxidace Předmět: Biologie Přidal(a): Ivana Černíková FOTOSYNTÉZA = fotosyntetická asimilace: Jediný proces, při němž vzniká v přírodě kyslík K přeměně jednoduchých látek
Úvod k pracovním listům FOTOSYNTÉZA
Úvod k pracovním listům FOTOSYNTÉZA Rostliny přeměňují světelnou energii v energii chemickou v reakci, která se nazývá fotosyntéza. Jedná se vůbec o nejdůležitější chemický proces na naší zeměkouli. Začátek
Projekt realizovaný na SPŠ Nové Město nad Metují
Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 02 Přírodovědné předměty Hana Gajdušková 1 Viry
MB130P68 Globální změny a trvalá udržitelnost. ZS 2012/2013. Lubomír Nátr. Lubomír Nátr
MB130P68 Globální změny a trvalá udržitelnost. ZS 2012/2013 Globální změny klimatu a trvale udržitelný rozvoj 2. Biologické principy fotosyntetické produkce rostlin Lubomír Nátr Lubomír Nátr 2. Biologické
Seminář I Teplota vzduchu & Městský tepelný ostrov..
Seminář I Teplota vzduchu & Městský tepelný ostrov.. Plán seminářů: 5. Teplota a městský tepelný ostrov.22.10. 6. Měření půdní vlhkosti; Zadání projektu Klimatická změna a politika ČR minikin 29.10. 7.
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Anotace: Inovace a zkvalitnění výuky prostřednictvím ICT Základy ekologie Ostatní abiotické
J i h l a v a Základy ekologie
S třední škola stavební J i h l a v a Základy ekologie 16. Skleníkový jev a globální oteplování Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284
FOTOBIOLOGICKÉ POCHODY
FOTOBIOLOGICKÉ POCHODY Základním zdrojem energie nutné pro život na Zemi je sluneční záření. Většina pochodů souvisí s přímým využitím zářivé energie pro metabolické pochody nebo pro orientaci organizmu
1. Ekologie zabývající se studiem společenstev se nazývá a) autekologie b) demekologie c) synekologie
1. Ekologie zabývající se studiem společenstev se nazývá a) autekologie b) demekologie c) synekologie 2. Obor ekologie lesa se zabývá zejména: a) vzájemnými vztahy organismů s prostředím a mezi sebou b)
ATMOSFÉRA. Anotace: Materiál je určen k výuce zeměpisu v 6. ročníku základní školy. Seznamuje žáky s vlastnostmi a členěním atmosféry.
ATMOSFÉRA Anotace: Materiál je určen k výuce zeměpisu v 6. ročníku základní školy. Seznamuje žáky s vlastnostmi a členěním atmosféry. Atmosféra je to plynný obal Země společně s planetou Zemí se otáčí
Vliv teploty. Mezofilní mik. Termoofilní mik. Psychrofilní mik. 0 C 10 C 20 C 30 C 40 C 50 C 60 C 70 C teplota
Vliv teploty Jeden z hlavních faktorů ovlivňující téměř všechny životní pochody mik. Každý mik. žije v určitém teplotním rozmezí je dáno: Minimální teplotou nejnižší teplota, při které mik. roste a množí
Pracovní list č. 3 téma: Povětrnostní a klimatičtí činitelé část 2
Pracovní list č. 3 téma: Povětrnostní a klimatičtí činitelé část 2 Obsah tématu: 1) Vzdušný obal země 2) Složení vzduchu 3) Tlak vzduchu 4) Vítr 5) Voda 1) VZDUŠNÝ OBAL ZEMĚ Vzdušný obal Země.. je směs
Dekompozice, cykly látek, toky energií
Dekompozice, cykly látek, toky energií Vše souvisí se vším Živou hmotu tvoří 3 hlavní organické složky: - Bílkoviny, cukry, tuky Syntézu zajišťuje cca 20 biogenních prvků - Nejdůležitější C, O, N, H, P
Autor: Katka Téma: fyziologie (fotosyntéza) Ročník: 1.
Fyziologie Fotosyntéza Celým názvem: fotosyntetická asimilace - vznikla při ohrožení, že již nebudou anorg. l. rostliny začaly dělat fotosyntézu v atmosféře vzrostl počet O 2 = 1. energetická krize - nejdůležitější
Atmosféra - složení a důležité děje
Atmosféra - složení a důležité děje Atmosféra tvoří plynný obal Země a je rozdělena na vertikální vrstvy s odlišnými vlastnostmi tři základní kriteria dělení atmosféry podle: intenzity větru průběhu teploty
Škola: Střední škola obchodní, České Budějovice, Husova 9. Inovace a zkvalitnění výuky prostřednictvím ICT
Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Číslo projektu: CZ.1.07/1.5.00/34.0536 Název projektu školy: Výuka s ICT na SŠ obchodní České Budějovice Šablona
Březinka. Starý porost s bukem na škrapech. P. Jelínek a M. Čech. Mendelova univerzita v Brně. Přírodní rezevace
Přírodní rezevace Březinka Starý porost s bukem na škrapech P. Jelínek a M. Čech Mendelova univerzita v Brně Březinka Mapový server seznam.cz OBSAH Co území chrání...3 Liána..10 Stromy.....4 Mrtvé dřevo...
Anotace: Materiál je určen k výuce přírodopisu v 9. ročníku ZŠ. Seznamuje žáky se základními pojmy z oblasti ekologie. Materiál je plně funkční pouze
Anotace: Materiál je určen k výuce přírodopisu v 9. ročníku ZŠ. Seznamuje žáky se základními pojmy z oblasti ekologie. Materiál je plně funkční pouze s použitím internetu. abiotický biotický ekosystém
ZÁKLADNÍ FOTOMETRICKÉ VELIČINY
ZÁKLADNÍ FOTOMETRICKÉ VELIČINY Ing. Petr Žák VÝVOJ ČLOVĚKA vývoj člověka přizpůsobení okolnímu prostředí (adaptace) příjem informací o okolním prostředí smyslové orgány rozhraní pro příjem informací SMYSLOVÉ
J i h l a v a Základy ekologie
S třední škola stavební J i h l a v a Základy ekologie 11. Atmosféra Země - vlastnosti Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Tomáš Krásenský
Zkoumá: Obory ekologie:
Základy ekologie Ekologie se zabývá vzájemnými vztahy mezi organismy a prostředím. Zkoumá: - vliv organismu na prostředí a zpětný vliv prostředí na celkový stav a způsob života organismu - vztahy v prostředí,
Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova
1 Rozložení, distribuce tepla Teplota je charakteristika tepelného stavu hmoty je to stavová veličina, charakterizující termodynamickou rovnováhu systému. Teplo vyjadřuje kinetickou energii částic. Teplota
Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země
Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země strana 2 Co je DPZ Dálkový průzkum je umění rozdělit svět na množství malých barevných čtverečků, se kterými si lze hrát na počítači a odhalovat jejich neuvěřitelný
Půdní voda. *vyplňuje póry v půdách. *nevytváří souvislou hladinu. *je důležitá pro růst rostlin.
PODPOVRCHOVÁ VODA Půdní voda *vyplňuje póry v půdách. *nevytváří souvislou hladinu. *je důležitá pro růst rostlin. Podzemní voda hromadí se na horninách, které jsou málo propustné pro vodu vytváří souvislou
NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663
EU - PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:
Je tříatomová molekula kyslíku. Jeho vliv se liší podle toho, v jaké výšce se vyskytuje. Přízemní ozon je škodlivý, má účinky jako jedovatá látka,
Ozon Je tříatomová molekula kyslíku. Jeho vliv se liší podle toho, v jaké výšce se vyskytuje. Přízemní ozon je škodlivý, má účinky jako jedovatá látka, ničí automobily, umělé hmoty a pryž. Vzniká při vzájemném
FOTOSYNTÉZA Správná odpověď:
FOTOSYNTÉZA Správná odpověď: 1. Mezi asimilační barviva patří 1. chlorofyly, a) 1, 2, 4 2. antokyany b) 1, 3, 4 3. karoteny c) pouze 1 4. xantofyly d) 1, 2, 3, 4 2. V temnostní fázi fotosyntézy dochází
FAKTORY VNITŘNÍHO PROSTŘEDÍ STAVEB
FAKTORY VNITŘNÍHO PROSTŘEDÍ STAVEB Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace
Praktikum z experimentálních metod biofyziky a chemické fyziky I. Vypracoval: Jana Čurdová, Martin Kříž, Vít Marek. Dne: 2.3.
Praktikum z experimentálních metod biofyziky a chemické fyziky I. Vypracoval: Jana Čurdová, Martin Kříž, Vít Marek. Dne:.3.3 Úloha: Radiometrie ultrafialového záření z umělých a přirozených světelných
CHEMIE ŽIVOTNÍHO PROSTŘEDÍ I. (06) Biogeochemické cykly
Centre of Excellence CHEMIE ŽIVOTNÍHO PROSTŘEDÍ I Environmentální procesy (06) Biogeochemické cykly Ivan Holoubek RECETOX, Masaryk University, Brno, CR holoubek@recetox. recetox.muni.cz; http://recetox.muni
Ekologické faktory rozšíření rostlin a živočichů
Ekologické faktory rozšíření rostlin a živočichů Tento studijní materiál vznikl v rámci projektu OP VK Inovace výuky geografických studijních oborů (CZ.1.07/2.2.00/15.0222) Projekt je spolufinancován Evropským
Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné
Fotosyntéza. Ondřej Prášil
Fotosyntéza 2 Ondřej Prášil prasil@alga.cz 384-340430 Obsah přednášky membrány a organely světlo termodynamika historie Fotosyntetické membrány Electron tomography Cells contain ~100 chlorosomes appressed