Depozice uhlíkových nanotrubek metodou PECVD a jejich analýza
|
|
- Lenka Kolářová
- před 9 lety
- Počet zobrazení:
Transkript
1 Depozice uhlíkových nanotrubek metodou PECVD a jejich analýza Jiřina Matějková UPT Brno AV ČR Ondřej Jašek- KFE Přírodovědecká fakulta MU Brno, jasek@physics.muni.cz Marek Eliáš, Lenka Zajíčková, Vít Kudrle, Zuzana Kučerová KFE Přf MU Antonín Rek UPT AV ČR Jiří Buršík UFM AV ČR Magdaléna Kadlečíková Komenského Univerzita Bratislava
2 Úvod Motivace Uhlíkové nanotrubky Depozice nanotrubek v kapacitně vázaném vysokofrekvenčním výboji Depozice nanotrubek v mikrovlnném výboji za atmosférického tlaku Závěr
3 Motivace Nový materiál (S.Iijima, Nature 354, 56(1991)) s výjimečnými vlastnostmi ( mechanická pevnost, elektrická a teplená vodivost, emisní vlastnosti) Možné aplikace (nanokompozity, emisní zdroje pro displeje, hroty pro mikroskopy, mikroelektronika, senzory)
4 Struktura nanotrubek C = na 1 + ma 2 Uhlíkové Nanotrubky (Carbon nanotubes (CNTs)) - stěna rovnoběžná s osou -jednostěnné (SWCNTs) zigzag(n,0), armchair(n,n), chirální (n,m) -mnohostěnné (MWCNTs) vzdálenost jednotlivých trubek ~ 0,34 nm Nanovlákna rovina svírá s osou nenulový úhel S.Iijima, Nature 354, 56(1991) Saito, G. Dresselhaus, M.S. Dresselhaus, Physical properties of Carbon nanotubes, Imperial college Press, London, 1998
5 Vlastnosti nanotrubek Konfigurace SWCNTs a) armchair (10,10) b) zigzag (12,0) c) chiralní (7,16) SWCNTs jsou vodiči pro n-m =3i nebo polovodiče pro n-m 3i s zakázaným pásem Eg~ ev v závislosti na hodnotách n a m, mnohostěnné nanotrubky mají zakázaný pás Eg ~ 0 ev hustota 1.35 g/ cm 3 Nanotrubky mají unikátní mechanické vlastnosti Youngův modul 1 TPa (SWCNT) a 1,2 TPa (MWCNT), Ocel 230 GPa Mez pevnosti v tahu Gpa, Ocel 1 GPa Maximální deformace % Elektrické vlastnosti odpor 10-4 Ω/cm Maximální proudová hustota A/m 2 kvantová vodivost (12,9 kω) -1 Tepelná vodivost Jednostěnné W/mK Mnohostěnné >3000 W/mK, měd 400 W/mK Emisní vlastnosti: několik A/cm 2 při hustotě nanotrubek /cm 2 H. J. Dai, Surf. Sci. 500, 218 {2002) K. B.K. Teo, C. Singh, M. Chhowalla, W. I. Milne, Encyclopedia of Nanoscience and Nanotechnology, Vol. 10, Eds. H.S. Nalwa, American Scientific Publishers, Los Angeles, 2003
6 Metody přípravy nanotrubek - obloukový výboj mezi uhlíkovými elektrodami - laserová ablace uhlíkového terče -vysoká teplota (3500 C), krátká doba růstu několik ms, na některých místech částice katalyzátoru se uhlovodík rozkládá a na jiných rostou CNTs - metody CVD ( thermal, hot filament, PECVD) -Teplota C, doba depozice minuty až hodiny, pouze jedna nanotrubka roste z katalytické částice (Fe,Ni,Mo,Co), která určuje její průměr K. B.K. Teo, C. Singh, M. Chhowalla, W. I. Milne, Encyclopedia of Nanoscience and Nanotechnology, Vol. 10, Eds. H.S. Nalwa, American Scientific Publishers, Los Angeles, 2003
7 Příklady depozic nanotrubek
8 Aplikace uhlíkových nanotrubek Elektronika vodivé a polovodivé nanotrubky mají velký poměr mezi délkou a průměrem jsou ideálním konstrukčním materiálem pro vytváření elektronických obvodů s vysokou hustotou integrace (paměti, procesory) Flat panel displays Nízké prahové napětí a vysoká proudová hustota staví nanotrubky mezi jeden z perspektivním materiálů v oblasti zobrazování a emisních zdrojů ( elektronové mikroskopy) Mechanika velký Youngův modul a pevnost předurčují nanotrubice k aplikacím v nových uhlíkových kompozitech a ultra pevných vlákem ( kosmický výtah) Energetika velký poměr povrch/objem lze využít při skladování vodíku Chemie nanotrubky mohou sloužit jako elektrochemické super kapacitory a anody pro baterie,senzory
9 Carbon nanotube devices - Rep. Prog. Phys.,69, (2006)
10 JEOL 6700F Detektor zpětně odražných elektronů BSE YAG EDS analyzátor INCA fy Oxford Instruments Resolution - 1.0nm (15kV), 2.2nm (1kV) Cold field emission electron gun Accelerating voltage 0.5 kv to 30 kv Magnification - 25 to 650,000 Probe current A to A WD(Z) 1,5 25 mm Tilt - -5 to 60
11 Depozice nanotrubek v kapacitně vázaném vysokofrekvenčním výboji Nanotrubky byly deponovány v horizontálně položené křemenné trubici s průměrem 4 cm a délkou 150 cm vložené ve středu válcové pece Aparatura je čerpána rotační vývěvou na tlak několika Pa Vysokofrekvenční generátor pracuje na frekvenci MHz s maximálním výkonem 500 W Příprava vrstvy Pretreatment Průtok vodíku 100 sccm teplota C Depozice Vf. výkon100 W Čas depozice 5-60 minut Směs vodíku a metanu ( sccm) v poměrech ( 1:1 to 1:10) teplota C Vf.výkon W Čas depozice minut
12
13 Substráty a depozice Nanotrubky byly deponovány na těchto substrátech ( Ni/SiO 2 /Si, Fe/SiO 2 /Si,Fe/Si, Ni/Si) SiO 2 hraje důležitou roli jako difúzní bariéra mezi katalyzátorem a Si SiO 2 vrstva byla připravena oxidací Si za vysoké teploty nebo metodou PECVD tj. depozicí ze směsi HMDSO a kyslíku a zahřáta v peci na teplotu 700 C po 30 minut Jako katalyzátor k rozkladu uhlovodíku (CH 4 ) slouží Fe nebo Ni ( 1-20 nm), tenká vrstva kovu byla připravena pomocí vakuového napařování. Před depozicí je aparatura vyčerpána asi na 5 Pa a substrát je zahřát pod vakuem na vysokou teplotu vnější pecí (asi 45 minut) Substrát s vrstvou katalyzátoru je poté vystaven vodíkové atmosféře. Tímto se změní kompaktní vrstva katalyzátoru na ostrůvkovou (povrch se rozdělí na sférické částice).toto bylo prováděno v i bez přítomnosti výboje. Pak následuje samotná depozice na takto rozděleném povrchu ve směsi plynů CH 4 /H 2 Po depozici je aparatura opět vyčerpána na 5 Pa substrát a substrát chladne pod vakuem nebo argonové atmosféře, opět přibližně minut.
14 Vliv pretreatmentu na vrstvu Ni ve vf. výboji substrátem je multivrstva Ni/SiO 2 /Si Ni 1 nm 5 min 700 C 100 sccm H 2, bez výboje Ni 3 nm 5 min 700 C 100 sccm H 2, bez výboje Ni 5 nm 10 min 700 C 100 sccm H 2, bez výboje Count Count Count Area ( nm 2 ) Area ( nm 2 ) Area ( nm 2 )
15 Pretreatment Si/Ni vrstvy Ni 7 nm, P=0,100 W, QH2 = 100 sccn, T=500,600,700 C, t=5,30,60 min S výbojem : 5 min 30 min 60 min Bez výboje : 5 min 30 min 60 min
16 SEM a TEM analýza vrstvy nanotrubek s Fe katalyzátorem
17 HRTEM analýza
18 Micro-Ramanovská spektroskopie He- Ne laser, 630 nm, 15 mw Si/SiO 2 /Ni 10 nm, pretreatment 100 sccm H 2,700 C, 5 min, 200 W depozice 50 sccm H 2, 50 sccm CH 4, 30 mins,700 C, 200 W D-pás G-pás 2*D-pás D+G pás D-pás odpovídá chybám a defektům ve struktuře rovin (disorder) G-pás je tzv. tangenciální mód odpovídající vibracím dvojce C-C v rovině grafitu RBM mód odpovídá vibracím kolmým na osu nanotrubky tzv. dýchaní
19 Materiálová analýza vzorku částice katalyzátoru na koncích nanotrubek - mechanismus růstu nanotrubek tip growth mode pretreatment 100 sccm H 2,700 C, 5 min depozice 100 sccm H 2, 25 sccm CH 4, 15 mins, 700 C, 100 W
20 Mikrovlnný výboj za atmosférického tlaku Schéma aparatury pyrometr Výbojový prostor s držákem substrátu přizpůsobení TRIAX 320 Magnetron, 2,45 GHz, 2 kw Cirkulátor Ar CH 4 H 2
21 Parametry a popis experimentu Nanotrubky byly deponovány v mikrovlnném výboji za atmosférického tlaku buzeného ve směsi plynů CH 4 /H 2 /Ar. Aparatura pro buzení tohoto výboje je tvořena mikrovlnným generátorem pracujícím na frekvenci 2,45 GHz o maximálním výkonu 2 kw, feritovým cirkulátorem a vlnovodem s koaxiálním vyvázáním mikrovlnné energie. průtoky Ar a H 2 jsou 1000 sccm a sccm Průtok CH 4 byl měněn od 10 do 50 sccm substráty stejné jako v předchozích experimentech (Si/SiO 2 /Fe, Si/Fe, Si/SiO 2 /Ni, Si/Ni) teplota substrátu, který byl zahříván pouze výbojem byla T S = C měření teploty pyrometrem s mizejícím vláknem a pyrometrem Raytek Thermalert TX umožňujícím měřit teplotu v rozsahu C. Tento pyrometr také umožňuje měření teploty na velmi úzké stopě sprůměrem 3 mm ve vzdálenosti 20 cm vzdálenost substrátu od ústí trysky byla 10 až 60 mm depoziční doba t d byla několik minut, popřípadě i méně než 1 min.
22
23
24 Konstrukce držáku vzorku KŘEMENNÉ UHLÍKOVÉ
25 SEM analýza SEM analýza nanotrubek deponovaných na substrát s vrstvou Fe 10 nm (Q CH4 =50 sccm, Q H2 =300 sccm, Ar=1000 sccmt S =700 0 C, t d =15 min.).
26 40000x 1500x 20000x 60000x
27 Mechanismus růstu tip growth nanotrubek Fotografie nanotrubek na substrátu s vrstvou Fe deponovaných za následujících podmínek (Q CH4 =20 sccm, T S =700 0 C t d =15 min.). Zobrazení materiálového kontrast. Bílé těčky jsou částice Fe na koncích nanotrubek TEM snímek
28 HRTEM analýza
29 Depozice na substrátech bez mezivrstvy SiO 2 Ar 1000 sccm, CH4 50 sccm, H2 300 sccm Fe 10 nm, minut
30 Depozice s pretreatmentem substrátů Ar+H 2, 2-3 min Depozice Ar 1000 sccm, H sccm, CH 4 50 sccm, 10 nm Fe Si/SiO 2 /Fe, 15 min, 750 C
31 Depozice Ar 1000 sccm, H sccm, CH 4 30 sccm, 10 nm Fe Si/SiO 2 /Fe, 15 min, C
32
33 Závislost teploty substrátu na průtoku plynů a vzdálenosti substrátu a elektrody
34 Analýza povrchu CNTs vrstvy
35 EDX materiálová analýza povrchu vrstvy
36 Syntéza CNTs s velmi krátkou dobou depozice t d =25 s, 0,3 mg
37 Poděkování Děkuji za pozvání Výzkum je podporován projekty: grant GAČR 202/05/ Mgr. L.Zajíčková, PhD. záměr MSM prof. J. Janč O. Jašek, M. Eliáš, L. Zajíčková,V. Kudrle, M. Bublan, J. Matějková, A. Rek,J. Buršík, M. Kadlečíková, Carbon nanotubes synthesis in microwave plasma torch at atmospheric pressure, Materials Science and Engineering C L. Zajíčková, M. Eliáš, O. Jašek, V. Kudrle, Z. Frgala, J. Matějková, J.Buršík, M. Kadlečíková, Atmospheric pressure microwave torch for synthesis of carbon nanotubes, Plasma Physics and Controlled M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, Fusion Ch. D. Williams, K. R. Atkinson, R. H. Baughman, Strong, Transparent, Multifunctional, Carbon Nanotube Sheets Science, Vol 309, Issue 5738, 1215
Uhlíkové nanostruktury fullereny, nanotrubky. Mgr. Ondřej Jašek, Ph.D.
Uhlíkové nanostruktury fullereny, nanotrubky Mgr. Ondřej Jašek, Ph.D. 1 Nanostruktury uhlíku 3D, 0D 1D 2D 2 Micro -> Nano 3 Dnešní téma Jak lze syntetizovat fullereny. Jak lze deponovat diamantovou vrstvu
VíceDepozice uhlíkových nanotrubek
MASARYKOVA UNIVERZITA V BRNĚ, PŘÍRODOVĚDECKÁ FAKULTA Depozice uhlíkových nanotrubek v mikrovlnném plazmovém hořáku Bakalářská práce Brno, 2006 Petr Synek Zde bych chtěl poděkovat všem, bez jejichž podpory
VíceREAKTIVNÍ MAGNETRONOVÉ NAPRAŠOV. Jan VALTER HVM Plasma s.r.o. www.hvm.cz
REAKTIVNÍ MAGNETRONOVÉ NAPRAŠOV OVÁNÍ Jan VALTER SCHEMA REAKTIVNÍHO NAPRAŠOV OVÁNÍ zdroj výboje katoda odprašovaný terč plasma inertní napouštění plynů reaktivní zdroj předpětí p o v l a k o v a n é s
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF MICROELECTRONICS KATODOVÉ
VícePlazmová depozice tenkých vrstev oxidu zinečnatého
Plazmová depozice tenkých vrstev oxidu zinečnatého Bariérový pochodňový výboj za atmosférického tlaku Štěpán Kment Doc. Dr. Ing. Petr Klusoň Mgr. Zdeněk Hubička Ph.D. Obsah prezentace Úvod do problematiky
Vícegalvanicky chemicky plazmatem ve vakuu Vrstvy ve vakuu MBE Vakuová fyzika 2 1 / 39
Vytváření vrstev galvanicky chemicky plazmatem ve vakuu Vrstvy ve vakuu povlakování MBE měření tloušt ky vrstvy během depozice Vakuová fyzika 2 1 / 39 Velmi stručná historie (více na www.svc.org) 1857
VícePříprava grafénu. Petr Jelínek
Příprava grafénu Petr Jelínek Schéma prezentace Úvod do tématu Provedené experimenty - příprava grafénu - charakterizace Plánovaná činnost - experimenty Závěr 2 Pohled do historie 1960 HOPG (Arthur Moore)
VícePlazmatické metody pro úpravu povrchů
Plazmatické metody pro úpravu povrchů Aleš Kolouch Technická Univerzita v Liberci Studentská 2 461 17 Liberec 1 Obsah 1. Plazma 2. Plazmové stříkání 3. Plazmové leptání 4. PVD 5. PECVD 6. Druhy reaktorů
VíceUhlíkové struktury vázající ionty těžkých kovů
Uhlíkové struktury vázající ionty těžkých kovů 7. června/june 2013 9:30 h 17:30 h Laboratoř metalomiky a nanotechnologií, Mendelova univerzita v Brně a Středoevropský technologický institut Budova D, Zemědělská
VíceVakuové metody přípravy tenkých vrstev
Vakuové metody přípravy tenkých vrstev Metody vytváření tenkých vrstev Vakuové metody dnes nejužívanější CVD Chemical Vapour Deposition (PE CVD Plasma Enhanced CVD nebo PA CVD Plasma Assisted CVD) PVD
VíceDOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj
DOUTNAVÝ VÝBOJ Další technologie využívající doutnavý výboj Plazma doutnavého výboje je využíváno v technologiích depozice povlaků nebo modifikace povrchů. Jedná se zejména o : - depozici povlaků magnetronovým
VícePřehled metod depozice a povrchových
Kapitola 5 Přehled metod depozice a povrchových úprav Tabulka 5.1: První část přehledu technologií pro depozici tenkých vrstev. Klasifikované podle použitého procesu (napařování, MBE, máčení, CVD (chemical
VíceVyužití plazmových metod ve strojírenství. Metody depozice povlaků a tenkých vrstev
Využití plazmových metod ve strojírenství Metody depozice povlaků a tenkých vrstev Metody depozice povlaků Využití plazmatu pro depozice (nanášení) povlaků a tenkých vrstev je moderní a stále častěji aplikovaná
VíceVybrané technologie povrchových úprav. Metody vytváření tenkých vrstev Doc. Ing. Karel Daďourek 2008
Vybrané technologie povrchových úprav Metody vytváření tenkých vrstev Doc. Ing. Karel Daďourek 2008 Metody vytváření tenkých vrstev Vakuové metody dnes nejužívanější CVD Chemical vapour deposition PE CVD
VíceNanotechnologie a jejich aplikace. doc. RNDr. Roman Kubínek, CSc.
Nanotechnologie a jejich aplikace doc. RNDr. Roman Kubínek, CSc. Předpona pochází z řeckého νανος což znamená trpaslík 10-9 m 380-780 nm rozsah λ viditelného světla Srovnání známých malých útvarů SPM Vyjasnění
VícePlazmové depozice povlaků. Plazmový nástřik Plasma Spraying
Plazmové depozice povlaků Plazmový nástřik Plasma Spraying Plazmový nástřik patří do kategorie žárových nástřiků. Žárový nástřik je částicový proces vytváření povlaků o tloušťce obvykle větší než 50 µm,
VícePřednáška 3. Napařování : princip, rovnovážný tlak par, rychlost vypařování.
Přednáška 3 Napařování : princip, rovnovážný tlak par, rychlost vypařování. Realizace vypařovadel, směrovost vypařování, vypařování sloučenin a slitin, Vypařování elektronovým svazkem a MBE Napařování
VíceChování látek v nanorozměrech
Univerzita J.E. Purkyně v Ústí nad Labem Chování látek v nanorozměrech Pavla Čapková Přírodovědecká fakulta Univerzita J.E. Purkyně v Ústí nad Labem Březen 2014 Chování látek v nanorozměrech: Co se děje
VícePlynové lasery pro průmyslové využití
Laserové technologie v praxi I. Přednáška č.3 Plynové lasery pro průmyslové využití Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Využití plynových laserů v průmyslových aplikacích Atomární - He-Ne
VíceMetody depozice povlaků - CVD
Procesy CVD, PA CVD, PE CVD Chemická metoda depozice vrstev CVD využívá pro depozici směs chemicky reaktivních plynů (např. CH 4, C 2 H 2, apod.) zahřátou na poměrně vysokou teplotu 900 1100 C. Reakční
VíceElektronová Mikroskopie SEM
Elektronová Mikroskopie SEM 26. listopadu 2012 Historie elektronové mikroskopie První TEM Ernst Ruska (1931) Nobelova cena za fyziku 1986 Historie elektronové mikroskopie První SEM Manfred von Ardenne
VíceElektronová mikroskopie SEM, TEM, AFM
Elektronová mikroskopie SEM, TEM, AFM Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první
VíceVyužití plazmochemické redukce pro konzervaci archeologických nálezů
Využití plazmochemické redukce pro konzervaci archeologických nálezů Zuzana Rašková Technické muzeum v Brně, Purkyňova 105, 612 00 Brno, raskova@technicalmuseum.cz 24.7.2006 1 Nječastější kovové sbírkové
VíceFyzikální metody nanášení tenkých vrstev
Fyzikální metody nanášení tenkých vrstev Vakuové napařování Příprava tenkých vrstev kovů některých dielektrik polovodičů je možné vytvořit i epitaxní vrstvy (orientované vrstvy na krystalické podložce)
VíceVytváření tenkých speciálních vrstev metodou plazmochemické depozice z plynné fáze
Vytváření tenkých speciálních vrstev metodou plazmochemické depozice z plynné fáze Teoretické základy: Plazmochemická depozice z plynné fáze metoda PECVD Rozvoj plazmochemických metod vytváření tenkých
VíceBudoucnost patří uhlíkatým nanomateriálům
Budoucnost patří uhlíkatým nanomateriálům Otakar Frank Oddělení elektrochemických materiálů Ústav fyzikální chemie J. Heyrovského, v.v.i. Akademie věd ČR otakar.frank@jh-inst.cas.cz www.nanocarbon.cz Nanoúvod
VíceProjekt TA Hybridní nanokompozity 01/ /2014 SYNPO - 5M - UTB
Projekt TA02011308 Hybridní nanokompozity 01/2012-12/2014 SYNPO - 5M - UTB 1 SYNPO, akciová společnost Více jak 70 letá historie Vysoká flexibilita schopnost reagovat na potřeby zákazníka. 130 zaměstnanců.
VícePrincipy chemických snímačů
Principy chemických snímačů Název školy: SPŠ Ústí nad Labem, středisko Resslova Autor: Ing. Pavel Votrubec Název: VY_32_INOVACE_05_AUT_99_principy_chemickych_snimacu.pptx Téma: Principy chemických snímačů
VíceMikro a nanotribologie materiály, výroba a pohon MEMS
Tribologie Mikro a nanotribologie materiály, výroba a pohon MEMS vypracoval: Tomáš Píza Obsah - Co je to MEMS - Materiály pro MEMS - Výroba MEMS - Pohon MEMS Co to je MEMS - zkratka z anglických slov Micro-Electro-Mechanical-Systems
VíceMonika Fialová VAKUOVÁ FYZIKA II. ZÍSKÁVÁNÍ NÍZKÝCH TLAKŮ
Monika Fialová VAKUOVÁ FYZIKA II. ZÍSKÁVÁNÍ NÍZKÝCH TLAKŮ CHARAKTERISTIKY VÝVĚV vývěva = zařízení snižující tlak plynu v uzavřeném objemu parametry: mezní tlak čerpací rychlost pracovní tlak výstupní tlak
VíceNávod pro laboratorní úlohu: Závislost citlivosti plynových vodivostních senzorů na teplotě
Návod pro laboratorní úlohu: Závislost citlivosti plynových vodivostních senzorů na teplotě Náplní laboratorní úlohy je proměření základních parametrů plynových vodivostních senzorů: i) el. odpor a ii)
VíceZákladní typy článků:
Základní typy článků: Články z krystalického Si c on ta c t a ntire fle c tio n c o a tin g Tenkovrstvé články N -ty p e P -ty p e Materiály a technologie pro fotovoltaické články Nové materiály Gratzel,
VíceAnalýza emisních čar ve výboji v napařovacím stroji
Analýza emisních čar ve výboji v napařovacím stroji Pavel Oupický, Centrum pro optoelektroniku Viktor Sember, Oddělení vysokoteplotního plazmatu Ústav fyziky plazmatu AV ČR, v.v.i. Abstrakt V článku v
VíceDělení a svařování svazkem plazmatu
Dělení a svařování svazkem plazmatu RNDr. Libor Mrňa, Ph.D. Osnova: Fyzikální podstat plazmatu Zdroje průmyslového plazmatu Dělení materiálu plazmou Svařování plazmovým svazkem Mikroplazma Co je to plazma?
VíceProč elektronový mikroskop?
Elektronová mikroskopie Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop,, 1 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první komerční
VíceElektronová mikroskopie a mikroanalýza-2
Elektronová mikroskopie a mikroanalýza-2 elektronové dělo elektronové dělo je zařízení, které produkuje elektrony uspořádané do svazku (paprsku) elektrony opustí svůj zdroj katodu- po dodání určité množství
VíceStanovení 14 C s využitím urychlovačové hmotnostní spektrometrie (AMS)
Stanovení 14 C s využitím urychlovačové hmotnostní spektrometrie (AMS) Fejgl 1,2, M., Černý 1,3, R., Světlík 1,2, I., Tomášková 1, L. 1 CRL ODZ ÚJF AV ČR, v.v.i., Na Truhlářce 39/64, 180 86 Praha 8 2 SÚRO,
VíceSlitiny titanu pro použití (nejen) v medicíně
Slitiny titanu pro použití (nejen) v medicíně Josef Stráský a spol. Katedra fyziky materiálů MFF UK Obsah Vývoj slitin Ti pro použití v ortopedii Spolupráce: Beznoska s.r.o., Kladno Ultrajemnozrnné slitiny
VíceKatedra materiálu.
Katedra materiálu Vedoucí katedry: prof. Ing. Petr Louda, CSc. Zástupce vedoucího katedry: doc. Ing. Dora Kroisová, Ph.D. Tajemnice katedry: Ing. Daniela Odehnalová http://www.kmt.tul.cz/ EF TUL, Gaudeamus
VíceUhlík v elektrotechnice
Uhlík v elektrotechnice Až do nedávné doby se vědělo, že uhlík má pouze formu diamantu nebo grafitu. Jejich využití je v elektrotechnice dlouhodobě známé. Avšak s nástupem zájmu vědeckých pracovišť o děje
VíceMikroskopie rastrující sondy
Mikroskopie rastrující sondy Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Metody mikroskopie rastrující sondy SPM (scanning( probe Microscopy) Metody mikroskopie rastrující sondy soubor
VíceLaserové technologie v praxi I. Přednáška č.2. Základní konstrukční součásti laserů. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011
Laserové technologie v praxi I. Přednáška č.2 Základní konstrukční součásti laserů Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Konstrukce laseru 1 - Aktivní prostředí 2 - Čerpací zařízení 3 - Optický
VíceKompozitní materiály. přehled
Kompozitní materiály přehled Porovnání vlastností Porovnání vlastností (2) dřevo nemá konkurenci jako lehká tuhá konstrukce Porovnání vlastností (3) dobře tlumí slitiny Mg Cu a vlákny zpevněné plasty Definice
VíceNahlédnutí pod pokličku vývoje SHM: Magnetronové naprašování. Počítačová simulace procesu
Nahlédnutí pod pokličku vývoje SHM: Magnetronové naprašování Počítačová simulace procesu Magnetronové naprašování princip metody vývoj technologie Magnetronové naprašování princip metody Zdroj: Jan Valter,
Vícevodič u něho dochází k transportu el. nabitých částic, který je nevratný, dochází ke vzniku proudu a disipaci energie
Chování polymerů v elektrickém a magnetickém poli vodič u něho dochází k transportu el. nabitých částic, který je nevratný, dochází ke vzniku proudu a disipaci energie dielektrikum, izolant, nevodič v
VícePLASMA ENHANCED CVD. Modifikace práškových částic diamantu v chemické plazmové rotační reaktorové komoře
PLASMA ENHANCED CVD Modifikace práškových částic diamantu v chemické plazmové rotační reaktorové komoře Autor: Przemysław Ceynowa, Koszalin University of Technology, Poland CO JE CVD? Chemical vapor deposition
VíceDruhy vláken. Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008
Druhy vláken Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008 Druhy různých vláken Přírodní vlákna Skleněná vlákna Uhlíková a grafitová vlákna Aramidová a silonová
VíceREM s ultravysokým rozlišením JEOL JSM 6700F v ÚPT AVČR. Jiřina Matějková, Antonín Rek, ÚPT AVČR, Královopolská 147, 61264 Brno
REM s ultravysokým rozlišením JEOL JSM 6700F v ÚPT AVČR Jiřina Matějková, Antonín Rek, ÚPT AVČR, Královopolská 147, 61264 Brno Projekt ÚPT 6351 na r. 2002 - JEOL JSM6700F- Cíl: Vybudovat pracoviště se
VíceVodík jako alternativní ekologické palivo. palivové články a vodíkové hospodářství
Vodík jako alternativní ekologické palivo palivové články a vodíkové hospodářství Charakteristika vodíku vodík je nejrozšířenějším prvkem ve vesmíru na Zemi je třetím nejrozšířenějším prvkem po kyslíku
VíceVzdělávání výzkumných pracovníků v Regionálním centru pokročilých technologií a materiálů reg. č.: CZ.1.07/2.3.00/09.0042
Vzdělávání výzkumných pracovníků v Regionálním centru pokročilých technologií a materiálů reg. č.: CZ.1.07/2.3.00/09.0042 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem
VíceIONTOVÉ ZDROJE. Účel. Požadavky. Elektronové zdroje. Iontové zdroje. Princip:
Účel IONTOVÉ ZDROJE vyrobit svazek částic vytvarovat ho a dopravit do urychlovací komory předurychlit ho (10 kev) Požadavky intenzita svazku malá emitance svazku trvanlivost zdroje stabilita zdroje minimální
VícePVD povlaky pro nástrojové oceli
PVD povlaky pro nástrojové oceli Bc. Martin Rund Vedoucí práce: Ing. Jan Rybníček Ph.D Abstrakt Tato práce se zabývá způsoby a možnostmi depozice PVD povlaků na nástrojové oceli. Obsahuje rešerši o PVD
VícePodivuhodný grafen. Radek Kalousek a Jiří Spousta. Ústav fyzikálního inženýrství a CEITEC Vysoké učení technické v Brně. Čichnova 19. 9.
Podivuhodný grafen Radek Kalousek a Jiří Spousta Ústav fyzikálního inženýrství a CEITEC Vysoké učení technické v Brně Čichnova 19. 9. 2014 Osnova přednášky Úvod Co je grafen? Trocha historie Některé podivuhodné
VíceRovinná harmonická elektromagnetická vlna
Rovinná harmonická elektromagnetická vlna ---- 1. příklad -------------------------------- 2 GHz prochází prostředím s parametry: r 5, r 1, 0.005 S / m. Amplituda intenzity magnetického pole je H m 0.25
VíceGRAFEN VERSUS MWCNT; POROVNÁNÍ DVOU FOREM UHLÍKU V DETEKCI TĚŽKÉHO KOVU. Název: Školitel: Mgr. Dana Fialová. Datum: 15.3.2013
Název: Školitel: GRAFEN VERSUS MWCNT; POROVNÁNÍ DVOU FOREM UHLÍKU V DETEKCI TĚŽKÉHO KOVU Mgr. Dana Fialová Datum: 15.3.2013 Reg.č.projektu: CZ.1.07/2.3.00/20.0148 Název projektu: Mezinárodní spolupráce
VíceHydrogenovaný grafen - grafan
Hydrogenovaný grafen - grafan Zdeněk Sofer, Daniel Bouša, Vlastimil Mazánek, Michal Nováček, Jan Luxa, Alena Libánská, Ondřej Jankovský, David Sedmidubský Ústav anorganické chemie, VŠCHT Praha, Technická
VíceAdhezní síly v kompozitech
Adhezní síly v kompozitech Nanokompozity Pro 5. ročník nanomateriály Fakulta mechatroniky Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010 Vazby na rozhraní
VíceVýzkum slitin titanu - od letadel po implantáty
Výzkum slitin titanu - od letadel po implantáty josef.strasky@gmail.com Titan Saturn a TITAN sonda Pioneer, 26. srpen 1976 Titan Titan Titan Unikátní vlastnosti titanu + nejvyšší poměr mezi pevností a
VíceLasery v mikroelektrotechnice. Soviš Jan Aplikovaná fyzika
Lasery v mikroelektrotechnice Soviš Jan Aplikovaná fyzika Obsah Úvod Laserové: žíhání rýhování (orýsování) dolaďování depozice tenkých vrstev dopování příměsí Úvod Vysoká hustota výkonu laseru změna struktury
VíceAnotace přednášek LŠVT 2015 Česká vakuová společnost. Téma: Plazmové technologie a procesy. Hotel Racek, Úštěk, 1 4. června 2015
Anotace přednášek LŠVT 2015 Česká vakuová společnost Téma: Plazmové technologie a procesy Hotel Racek, Úštěk, 1 4. června 2015 1) Úvod do plasmochemie Lenka Zajíčková, Ústav fyzikální elektroniky, PřF
VíceVyužití technologie Ink-jet printing pro přípravu mikro a nanostruktur II.
Ústav fyziky a měřicí techniky Vysoká škola chemicko-technologická v Praze Využití technologie Ink-jet printing pro přípravu mikro a nanostruktur II. Výrobci, specializované technologie a aplikace Obsah
VíceVYUŽITÍ AKTIVÁTORŮ ABSORPCE MIKROVLNNÉHO ZÁŘENÍ PŘI TERMICKÉ DESORPCI
VYUŽITÍ AKTIVÁTORŮ ABSORPCE MIKROVLNNÉHO ZÁŘENÍ PŘI TERMICKÉ DESORPCI Pavel Mašín - Dekonta, a.s Jiří Hendrych, Jiří Kroužek, VŠCHT Praha Martin Kubal Jiří Sobek - ÚCHP AV ČR Inovativní sanační technologie
VíceOdporové topné články. Elektrické odporové pece
Odporové topné články Otevřené topné články pro odporové pece (vpravo): 1 4 topný vodič v meandru 5 7 topný vodič ve šroubovici Zavřené topné články: a) trubkový (tyčový) článek NiCr izolovaný MgO b) válcové
VíceTenká vrstva - aplikace
Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10; s platností do r. 2016 v návaznosti na platnost norem. Zákaz šíření a modifikace těchto materiálů. Děkuji Ing. D.
VíceRost Marek, Záruba Lukáš školitelé: Z. Sekerešová, J. Šonský. Cesta k vědě 19.6.2011
Studium dynamických jevů v termickém plazmatu Rost Marek, Záruba Lukáš školitelé: Z. Sekerešová, J. Šonský Cesta k vědě 19.6.2011 M. Rost, L. Záruba (CkV) Studium jevů v plazmatu 19.6.2011 1 / 28 Obsah
VíceZdroje optického záření
Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon
VíceVysoké frekvence a mikrovlny
Vysoké frekvence a mikrovlny Osnova Úvod Maxwellovy rovnice Typy mikrovlnného vedení Použití ve fyzice plazmatu Úvod Mikrovlny jsou elektromagnetické vlny o vlnové délce větší než 1mm a menší než 1m, což
VíceNanokrystalické tenké filmy oxidu železitého pro solární štěpení vody
Nanokrystalické tenké filmy oxidu železitého pro solární štěpení vody J. Frydrych, L. Machala, M. Mašláň, J. Pechoušek, M. Heřmánek, I. Medřík, R. Procházka, D. Jančík, R. Zbořil, J. Tuček, J. Filip a
VíceNOVÁ METODIKA PŘÍPRAVY 1 MM FÓLIÍ PRO TEM ANALÝZU AUSTENITICKÝCH OCELÍ OZÁŘENÝCH NEUTRONY. Kontaktní e-mail: bui@cvrez.cz
NOVÁ METODIKA PŘÍPRAVY 1 MM FÓLIÍ PRO TEM ANALÝZU AUSTENITICKÝCH OCELÍ OZÁŘENÝCH NEUTRONY Petra Bublíková 1, Vít Rosnecký 1, Jan Michalička 1, Eliška Keilová 2, Jan Kočík 2, Miroslava Ernestová 2 1 Centrum
VíceÚloha č. 1: CD spektroskopie
Přírodovědecké fakulta Masarykovy univerzity v Brně Předmět: Jméno: Praktikum z astronomie Andrea Dobešová Obor: Astrofyzika ročník: II. semestr: IV. Název úlohy Úloha č. 1: CD spektroskopie Úvod: Koho
VíceFYZIKA VE FIRMĚ HVM PLASMA
FYZIKA VE FIRMĚ HVM PLASMA Jiří Vyskočil HVM Plasma spol.s r.o. Na Hutmance 2, 158 00 Praha 5 OBSAH HVM PLASMA spol. s r.o. zaměření a historie firmy hlavní činnost a produkty POVRCHOVÉ TECHNOLOGIE metody
VíceVÝROBKY PRÁŠKOVÉ METALURGIE
1 VÝROBKY PRÁŠKOVÉ METALURGIE Použití práškové metalurgie Prášková metalurgie umožňuje výrobu součástí z práškových směsí kovů navzájem neslévatelných (W-Cu, W-Ag), tj. v tekutém stavu nemísitelných nebo
VíceNanogrant KAN ( )
Nanogrant KAN400480701 (2007 2011) Nanostruktury na bázi uhlíku a polymerů pro využití v bioelektronice a medicíně Ústav jaderné fyziky AV ČR, Mgr. Jiří Vacík, CSc., koordinátor projektu ( Výroční seminář
VíceUniverzita Tomáše Bati ve Zlíně Fakulta technologická. Ing. Ondřej Hudeček Ing. Tomáš Sedláček, PhD.
Univerzita Tomáše Bati ve Zlíně Fakulta technologická Ing. Ondřej Hudeček Ing. Tomáš Sedláček, PhD. 1 Obsah Úvod do problematiky Dostupná technologická zařízení Pracující v podtlaku Pracující při atmosférických
VíceTECHNOLOGICKÉ PROCESY PŘI VÝROBĚ POLOVODIČOVÝCH PRVKŮ III.
TECHNOLOGICKÉ PROCESY PŘI VÝROBĚ POLOVODIČOVÝCH PRVKŮ III. NANÁŠENÍ VRSTEV V mikroelektronice se nanáší tzv. tlusté a tenké vrstvy. a) Tlusté vrstvy: Používají se v hybridních integrovaných obvodech. Nanáší
VíceMETODY CHARAKTERIZACE POLOVODIVÝCH TERMOELEKTRICKÝCH MATERIÁLŮ
METODY CHARAKTERIZACE POLOVODIVÝCH TERMOELEKTRICKÝCH MATERIÁLŮ J. KAŠPAROVÁ, Č. DRAŠAR Fakulta chemicko - technologická, Univerzita Pardubice, Studentská 573, 532 10 Pardubice, CZ, e-mail:jana.kasparova@upce.cz
Více3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické).
PŘEDMĚTY KE STÁTNÍM ZÁVĚREČNÝM ZKOUŠKÁM V BAKALÁŘSKÉM STUDIU SP: CHEMIE A TECHNOLOGIE MATERIÁLŮ SO: MATERIÁLOVÉ INŽENÝRSTVÍ POVINNÝ PŘEDMĚT: NAUKA O MATERIÁLECH Ing. Alena Macháčková, CSc. 1. Souvislost
VíceTenké vrstvy pro lékařství 1. Laserové vrstvy ( metody přípravy vrstev, laser, princip metody pulzní laserové depozice PLD, růst vrstev, )
Tenké vrstvy pro lékařství 1. Laserové vrstvy ( metody přípravy vrstev, laser, princip metody pulzní laserové depozice PLD, růst vrstev, ) 2. Vybrané vrstvy a aplikace - gradientní vrstvy, nanokrystalické
VíceElektrokinetická dekontaminace půd znečištěných kobaltem
Elektrokinetická dekontaminace půd znečištěných kobaltem Kamila Šťastná, Mojmír Němec, Jan John, Lukáš Kraus Centrum pro radiochemii a radiační chemii, Katedra jaderné chemie, Fakulta jaderná a fyzikálně
VíceMikrosenzory a mikroelektromechanické systémy. Odporové senzory
Mikrosenzory a mikroelektromechanické systémy Odporové senzory Obecné vlastnosti odporových senzorů Odporové senzory kontaktové Měřící potenciometry Odporové tenzometry Odporové senzory teploty Odporové
VíceJ = S A.T 2. exp(-eφ / kt)
Vakuové součástky typy a využití Obrazovky: - osciloskopické - televizní + monitory Elektronky: - vysokofrekvenční (do 1 GHz, 1MW) - mikrovlnné elektronky ( až do 20 GHz, 10 MW) - akustické zesilovače
VíceStudentská 1402/2 461 17 Liberec 1 tel.: +420 485 353 006 cxi.tul.cz. Technologická zařízení
Technologická zařízení Oddělení prototypových technologií a procesů 3D tiskárna Objet Connex 500 Systém od firmy Objet je určen pro výrobu rozměrných a přesných modelů. Maximální rozměry modelů: 490 x
VíceOPTICKÁ EMISNÍ SPEKTROMETRIE
OPTICKÁ EMISNÍ SPEKTROMETRIE Optical Emission Spectrometry (OES) ATOMOVÁ EMISNÍ SPEKTROMETRIE (AES) (c) -2010 OES je založena na registrování fotonů vzniklých přechody valenčních e - z vyšších energetických
VícePlazmové metody Materiály a technologie přípravy M. Čada
Plazmové metody Existuje mnoho druhů výbojů v plynech. Ionizovaný plyn = elektrony + ionty + neutrály Depozice tenkých vrstev za pomocí plazmatu je jednou z nejpoužívanějších metod. Pomocí plazmatu lze
VíceNové typy materiálů na bázi uhlíku. Ing. Stanislav Czudek, PhD Třinecké železárny, a.s. Koksochemická výroba
Nové typy materiálů na bázi uhlíku Ing. Stanislav Czudek, PhD Třinecké železárny, a.s. Koksochemická výroba Program prezentace Definice a vlastnosti Základní rozdělení Sorbenty Surovinová základna Technologie
VíceIonizační manometry. Při ionizaci plynu o koncentraci n nejsou ionizovány všechny molekuly, ale jenom část z nich n i = γn ; γ < 1.
Ionizační manometry Princip: ionizace molekul a měření počtu nabitých částic Rozdělení podle způsobu ionizace: Manometry se žhavenou katodou Manometry se studenou katodou Manometry s radioaktivním zářičem
VíceGas Discharges. Overview of Different Types. 14. listopadu 2011
Gas Discharges Overview of Different Types Jan Voráč ÚFE 14. listopadu 2011 Obrázky použité v této prezentaci jsou nestoudně ukradeny z internetu, z archivů pracovníků ÚFE MU, ze skript Základy fyziky
VíceFotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec
Fotoelektronová spektroskopie Instrumentace RNDr. Věra V Vodičkov ková,, PhD. Katedra materiálů TU Liberec Obecné schéma metody Dopad rtg záření emitovaného ze zdroje na vzorek průnik fotonů několik µm
VíceCEPLANT Regionální VaV centrum pro nízkonákladové plazmové a nanotechnologické povrchové úpravy
CEPLANT Regionální VaV centrum pro nízkonákladové plazmové a nanotechnologické povrchové úpravy Operační program Výzkum a Vývoj pro Inovace prioritní osa 2.1 Regionální VaV centra Reg.č. CZ.1.05/2.1.00/03.0086
VíceDruhy vláken. Nanokompozity
Druhy vláken Nanokompozity Pro 5. ročník nanomateriály Fakulta mechatroniky Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010 Druhy různých vláken Přírodní
VíceIradiace tenké vrstvy ionty
Iradiace tenké vrstvy ionty Ve většině technologických aplikací dochází k depozici tenké vrstvy za nízké teploty > jsme v zóně I nebo T > vrstvá má sloupcovou strukturu, je porézní a hrubá. Ukazuje se,
VícePřednáška 8. Chemické metody a fyzikálně-chemické metody : princip CVD, metody dekompozice, PE CVD
Přednáška 8 Chemické metody a fyzikálně-chemické metody : princip CVD, metody dekompozice, PE CVD CVD Chemical Vapor Deposition Je chemický proces používaný k vytváření tenkých vrstev. Substrát je vystaven
VíceHodnocení opotřebení a změn tribologických vlastností brzdových kotoučů
Hodnocení opotřebení a změn tribologických vlastností brzdových kotoučů Vedoucí práce: Doc. Ing. Milan Honner, Ph.D. Konzultant: Doc. Dr. Ing. Antonín Kříž Bc. Roman Voch Obsah 1) Cíle diplomové práce
VíceBaterie minulost, současnost a perspektivy
Baterie minulost, současnost a perspektivy Prof. Ing. Jiří Vondrák, DrSc. Doc. Ing. Marie Sedlaříková, CSc. Ústav elektrotechnologie, Fakulta elektrotechniky a komunikačních technologií, Vysoké učení technické
VíceVEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH
VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH Jan Hruška TV-FYZ Ahoj, tak jsme tady znovu a pokusíme se Vám vysvětlit problematiku vedení elektrického proudu v látkách. Co je to vlastně elektrický proud? Na to
VíceODŮVODNĚNÍ VEŘEJNÉ ZAKÁZKY
ODŮVODNĚNÍ VEŘEJNÉ ZAKÁZKY s názvem PULSNÍ LASEROVÁ DEPOZICE CEITEC MU vyhotovené podle 156 zákona č. 137/2006 Sb., o veřejných zakázkách, v platném znění (dále jen Zákon o VZ) 1. ODŮVODNĚNÍ ÚČELNOSTI
VíceVlnová délka světla je cca 0,4 µm => rozlišovací schopnost cca. 0,2 µm 1000 x víc než oko
VŠCHT - Forenzní analýza, 2012 RNDr. M. Kotrlý, KUP Mikroskopie Rozlišovací schopnost lidského oka cca 025 0,25mm Vlnová délka světla je cca 0,4 µm => rozlišovací schopnost cca. 0,2 µm 1000 x víc než oko
VíceVakuová technika. Výroba tenkých vrstev vakuové naprašování
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ Vakuová technika Výroba tenkých vrstev vakuové naprašování Tomáš Kahánek ID: 106518 Datum: 17.11.2010 Výroba tenkých vrstev
VíceTechniky prvkové povrchové analýzy elemental analysis
Techniky prvkové povrchové analýzy elemental analysis (Foto)elektronová spektroskopie (pro chemickou analýzu) ESCA, XPS X-ray photoelectron spectroscopy (XPS) Any technique in which the sample is bombarded
Více