Vzdělávání výzkumných pracovníků v Regionálním centru pokročilých technologií a materiálů reg. č.: CZ.1.07/2.3.00/
|
|
- Zdeněk Prokop
- před 9 lety
- Počet zobrazení:
Transkript
1 Vzdělávání výzkumných pracovníků v Regionálním centru pokročilých technologií a materiálů reg. č.: CZ.1.07/2.3.00/ Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.
2 NOVÉ METODY DIAGNOSTIKY NÍZKOTEPLOTNÍHO PLAZMATU Martin Čada Oddělení nízkoteplotního plazmatu Fyzikální ústav AV ČR, v.v.i. Na Slovance 2, Praha 8 cada@fzu.cz Univerzita Palackého v Olomouci
3 Obsah Plazma elektrický výboj v plynu Diagnostické metody 3
4 PLAZMA - historie J. A. Purkyně v polovině 19. století definoval slovem plazma čirou tekutinu, která zůstane po odloučení všech buněk z krve. I. Langmuir navrhl v roce 1928 nazývat ionizovaný plyn se stejným množstvím elektronů a iontů slovem plazma. Ionizovaný plyn - plazma 4
5 PLAZMA - definice 4. skupenství hmoty elektricky neutrální látka s kladně a záporně nabitými částicemi. Debyeova stínící vzdálenost λ D jakýkoliv potenciál je plazmatem odstíněn. Kolektivní chování počet nabitých částic ve sféře poloměru λ D musí být větší jak 1. Kvazineutrální platí jen pro rozměry plazmatu větší jak ~ λ D. Plazmová frekvence je mnohem větší jak srážková frekvence elektronu s neutrálem. 5
6 PLAZMA kde ho nalezneme Technologie přípravy tenkých vrstev. 99,999% vesmíru tvoří plazma. Hvězdy plně ionizované. Mezihvězdný prostor 1/m3. Polární záře, plamen, blesk, ionosféra. Zářivka, výbojka, elektrický oblouk. Jaderná fúze tokamak, stellarator, Z-pinch, laserové plazma. 6
7 PLAZMA tenké vrstvy Rozprašování magnetron, dutá katoda terč je odprašován vysokoenergetickými ionty. Plazmové leptání plasma produkuje radikály, ionty, metastabilní atomy chemické reakce na substrátu, RIE, fyzikální leptání (odprašování) jejich kombinace. PECVD chemické prekurzory nejsou aktivovány vysokou teplotou, ale energií dodanou z plazmatu. 7
8 Diagnostika plazmatu Je třeba optimalizovat depoziční proces. Monitorovat parametry plazmatu: Teplota elektronů T e. Hustota plazmatu n e. Energetické rozdělovací funkce elektronů a iontů. Tok energie na substrát. Potenciál plazmatu a plovoucí potenciál V pl a V fl. 8
9 Diagnostické metody Langmuirova sonda Kalorimetrická sonda Tzv. ion flux sonda Tzv. hairpin sonda Optická emisní spektroskopie Laserová absorpční spektroskopie Hmotnostní spektroskopie Energetický analyzátor iontů 9
10 Lokální metoda. Langmuirova sonda Měření V-I charakteristiky malého vodiče vloženého do plazmatu. Aparatura pro měření se skládá ze samotné Langmuirovy sondy a elektronické řídící jednotky snímající napětí a proud tekoucí sondou. 10
11 Diagnostické metody Langmuirova sonda Kalorimetrická sonda Tzv. ion flux sonda Tzv. hairpin sonda Optická emisní spektroskopie Laserová absorpční spektroskopie Hmotnostní spektroskopie Energetický analyzátor iontů 11
12 Diagnostické metody Langmuirova sonda Kalorimetrická sonda Tzv. ion flux sonda Tzv. hairpin sonda Optická emisní spektroskopie Laserová absorpční spektroskopie Hmotnostní spektroskopie Energetický analyzátor iontů 12
13 Diagnostické metody Langmuirova sonda Kalorimetrická sonda Tzv. ion flux sonda Tzv. hairpin hairpin sonda Optická emisní spektroskopie Laserová absorpční spektroskopie Hmotnostní spektroskopie Energetický analyzátor iontů 13
14 Hairpin sonda Jednoduchý mikrovlnný rezonátor vložený do plazmatu Princip: měření změny jeho rezonanční frekvence souvislost s dielektrickou konstantou plazmatu První použití v pol. 70 let 20. století R.L. Stenzel, Rev. Sci. Instrum., 47 (1976) Rozšíření metody pro diagnostiku plazmatu v technologických nízkoteplotních výbojích v první dekádě 21. stol. R.B. Piejak, et al., J. Appl. Phys. 95 (2004) F.A. Haas, et al., Appl. Phys. Lett. 87 (2005) S.K. Karkari, et al., Appl. Phys. Lett. 88 (2006) B.L. Sands, et al., Plasma Sources. Sci. Technol. 16 (2007)
15 Hairpin sonda - konstrukce Existuje několik různých konstrukcí sondy Transmisní nebo reflexní hairpin sonda 1. Vysílací anténa budí rezonátor a přijímací anténa měří odezvu sondy 2. Anténa měří odražený MW výkon 15
16 Hairpin sonda - konstrukce DC nebo RF vazba mezi smyčkovou ant. a rezonátorem 1. možnost vložit DC předpětí na sondu. V RF výboji je na velké RF napětí na vrstvě prostorového náboje kolem sondy nutná korekce. 2. Rezonátor oddělený od antény. Induktivní vazba Kapacitní vazba Možnost použití v RF výboji. 16
17 Laditelný MW generátor Směrový vazební článek Hairpin sonda Krystalový detektor Schottky dioda Osciloskop Při rezonanci je odražený signál minimální Změna hustoty plazmatu znamená posun rezonanční frekvence. 17
18 Hairpin sonda - model Hairpin sonda je jednoduchá dipólová anténa s otevřeným koncem a rezonanční frekvencí: Dielektrická konstanta plazmatu bez mag. pole Bezesrážkové plazma 18
19 Hairpin sonda - model Vztah mezi plazmovou frekvencí a koncentrací elektronů: Hustota plazmatu: frekvence v GHz koncentrace v cm -3 19
20 Hairpin sonda - model Korekce na úbytek elektronů ve vrstvě prostorového náboje v okolí sondy. Posun v rezonanční frekvenci bude menší: ζ s - korekční faktor = f p2 / f p '2 b tloušťka sheathu a poloměr drátu sondy w vzdálenost ramen rezonátoru 20
21 Hairpin sonda - model Korekce na srážky elektronů s neutrálními částicemi v plazmatu. Dielektrická konstanta je komplexní a má reálnou a imaginární složku: Reálná složka určuje posun v rezonanční frekvenci. Imaginární složka představuje srážkový útlum záření ve vodivém prostředí. Má tedy vliv na Q rezonátoru. 21
22 Hairpin sonda - model Korekce na srážky elektronů s neutrálními částicemi v plazmatu je nutné provést jen pro reálnou složku dielektrické konstanty: Korekční faktor: 22
23 Hairpin sonda - model Koncentrace elektronů po korekci na srážky v plazmatu a velikost prostorového náboje kolem sondy je: Velikost vrstvy prostorového náboje kolem sondy je funkcí hustoty plazmatu stanoveni koncentrace elektronů je iterativní metoda. 23
24 Hairpin sonda 24
25 Hairpin sonda 25
26 Diagnostické metody Langmuirova sonda Kalorimetrická sonda Tzv. ion flux sonda Tzv. hairpin sonda Optická emisní spektroskopie Laserová absorpční spektroskopie Hmotnostní spektroskopie Energetický analyzátor iontů 26
27 OES Neinvazivní metoda. Viditelné záření je přivedeno přes okénko v reaktoru do monochromátoru detektor: CCD, fotonásobič. Velmi přesně mohu stanovit přítomnost nečistot. Z intenzit určitých emisních čar mohu stanovit teplotu elektronů, stupeň ionizace výboje, hustotu plazmatu. Stanovení vibrační teploty N 2 teplota elektronů Stanovení rotační teploty OH teplota neutrálů. Dopplerovské rozšíření čáry rychlost částice. Aktinometrie ze známé koncentrace příměsi s emisní čárou blízko čáře zkoumaného plynu, lze stanovit koncentraci. 27
28 Diagnostické metody Langmuirova sonda Kalorimetrická sonda Tzv. ion flux sonda Tzv. hairpin sonda Optická emisní spektroskopie Laserová absorpční spektroskopie Hmotnostní spektroskopie Energetický analyzátor iontů 28
29 TDLAS 29
30 Diagnostické metody Langmuirova sonda Kalorimetrická sonda Tzv. ion flux sonda Tzv. hairpin sonda Optická emisní spektroskopie Laserová absorpční spektroskopie Hmotnostní spektroskopie Energetický analyzátor iontů 30
31 Hmotnostní spektroskopie Umožňuje měřit hmotu iontů Průletový nebo kvadrupólový spektrometr 31
32 Diagnostické metody Langmuirova sonda Kalorimetrická sonda Tzv. ion flux sonda Tzv. hairpin sonda Optická emisní spektroskopie Laserová absorpční spektroskopie Hmotnostní spektroskopie Energetický analyzátor iontů 32
33 RFEA Retarding field energy analyzer mřížkový energetický analyzátor s brzdným polem. Umožňuje měřit rychlostní rozdělovací funkci iontů (IVDF) IVDF jen v horizontálním směru Nemá hmotnostní rozlišení 33
34 RFEA V případě izotropní IVDF, lze převést distribuční funkci na energetickou, kde E KIN je kin. energie při nulovém potenciálu na mřížce 34
Studium kladného sloupce doutnavého výboje pomocí elektrostatických sond: jednoduchá sonda
1 Úvod Studium kladného sloupce doutnavého výboje pomocí elektrostatických sond: jednoduchá sonda V této úloze se zaměříme na měření parametrů kladného sloupce doutnavého výboje, proto je vhodné se na
PRINCIPY ZAŘÍZENÍ PRO FYZIKÁLNÍ TECHNOLOGIE (FSI-TPZ-A)
PRINCIPY ZAŘÍZENÍ PRO FYZIKÁLNÍ TECHNOLOGIE (FSI-TPZ-A) GARANT PŘEDMĚTU: Prof. RNDr. Tomáš Šikola, CSc. (ÚFI) VYUČUJÍCÍ PŘEDMĚTU: Prof. RNDr. Tomáš Šikola, CSc., Ing. Stanislav Voborný, Ph.D. (ÚFI) JAZYK
Plazma. magnetosféra komety. zbytky po výbuchu supernovy. formování hvězdy. slunce
magnetosféra komety zbytky po výbuchu supernovy formování hvězdy slunce blesk polární záře sluneční vítr - plazma je označována jako čtvrté skupenství hmoty - plazma je plyn s významným množstvím iontů
Plazmová depozice tenkých vrstev oxidu zinečnatého
Plazmová depozice tenkých vrstev oxidu zinečnatého Bariérový pochodňový výboj za atmosférického tlaku Štěpán Kment Doc. Dr. Ing. Petr Klusoň Mgr. Zdeněk Hubička Ph.D. Obsah prezentace Úvod do problematiky
ZÁKLADNÍ EXPERIMENTÁLNÍ
Kurz praktické NMR spektroskopie 10. - 12. říjen 2011, Praha ZÁKLADNÍ EXPERIMENTÁLNÍ POSTUPY NMR ROZTOKŮ A KAPALIN Jana Svobodová Ústav Makromolekulární chemie AV ČR, v.v.i. Bruker 600 Avance III PŘÍSTROJOVÉ
vodič u něho dochází k transportu el. nabitých částic, který je nevratný, dochází ke vzniku proudu a disipaci energie
Chování polymerů v elektrickém a magnetickém poli vodič u něho dochází k transportu el. nabitých částic, který je nevratný, dochází ke vzniku proudu a disipaci energie dielektrikum, izolant, nevodič v
OPTICKÁ EMISNÍ SPEKTROMETRIE
OPTICKÁ EMISNÍ SPEKTROMETRIE Optical Emission Spectrometry (OES) ATOMOVÁ EMISNÍ SPEKTROMETRIE (AES) (c) -2010 OES je založena na registrování fotonů vzniklých přechody valenčních e - z vyšších energetických
Plazmové metody Materiály a technologie přípravy M. Čada
Plazmové metody Existuje mnoho druhů výbojů v plynech. Ionizovaný plyn = elektrony + ionty + neutrály Depozice tenkých vrstev za pomocí plazmatu je jednou z nejpoužívanějších metod. Pomocí plazmatu lze
Analýza emisních čar ve výboji v napařovacím stroji
Analýza emisních čar ve výboji v napařovacím stroji Pavel Oupický, Centrum pro optoelektroniku Viktor Sember, Oddělení vysokoteplotního plazmatu Ústav fyziky plazmatu AV ČR, v.v.i. Abstrakt V článku v
Složení hvězdy. Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ
Hvězdy zblízka Složení hvězdy Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ Plazma zcela nebo částečně ionizovaný plyn,
Metody depozice povlaků - CVD
Procesy CVD, PA CVD, PE CVD Chemická metoda depozice vrstev CVD využívá pro depozici směs chemicky reaktivních plynů (např. CH 4, C 2 H 2, apod.) zahřátou na poměrně vysokou teplotu 900 1100 C. Reakční
KINETICKÁ TEORIE STAVBY LÁTEK
KINETICKÁ TEORIE STAVBY LÁTEK Látky kteréhokoliv skupenství se skládají z částic. Prostor, který těleso zaujímá, není částicemi beze zbytku vyplněn (diskrétní struktura látek). Rozměry částic jsou řádově
Úvod do fyziky plazmatu
Úvod do fyziky plazmatu Lenka Zajíčková, Ústav fyz. elektroniky Doporučená literatura: J. A. Bittencourt, Fundamentals of Plasma Physics, 2003 (3. vydání) ISBN 85-900100-3-1 Navazující a související přednášky:
Plazmatické metody pro úpravu povrchů
Plazmatické metody pro úpravu povrchů Aleš Kolouch Technická Univerzita v Liberci Studentská 2 461 17 Liberec 1 Obsah 1. Plazma 2. Plazmové stříkání 3. Plazmové leptání 4. PVD 5. PECVD 6. Druhy reaktorů
způsobují ji volné elektrony, tzv. vodivostní valenční elektrony jsou vázány, nemohou být nosiči proudu
Vodivost v pevných látkách způsobují ji volné elektrony, tzv. vodivostní valenční elektrony jsou vázány, nemohou být nosiči proudu Pásový model atomu znázorňuje energetické stavy elektronů elektrony mohou
Využití plazmových metod ve strojírenství. Metody depozice povlaků a tenkých vrstev
Využití plazmových metod ve strojírenství Metody depozice povlaků a tenkých vrstev Metody depozice povlaků Využití plazmatu pro depozice (nanášení) povlaků a tenkých vrstev je moderní a stále častěji aplikovaná
Analytické metody využívané ke stanovení chemického složení kovů. Ing.Viktorie Weiss, Ph.D.
Analytické metody využívané ke stanovení chemického složení kovů. Ing.Viktorie Weiss, Ph.D. Rentgenová fluorescenční spektrometrie ergiově disperzní (ED-XRF) elé spektrum je analyzováno najednou polovodičovým
Základní experiment fyziky plazmatu
Základní experiment fyziky plazmatu D. Vašíček 1, R. Skoupý 2, J. Šupík 3, M. Kubič 4 1 Gymnázium Velké Meziříčí, david.vasicek@centrum.cz 2 Gymnázium Ostrava-Hrabůvka příspěvková organizace, jansupik@gmail.com
Základy obsluhy plazmatických reaktorů, seznámení s laboratorní technikou
Úloha č. 1 Základy obsluhy plazmatických reaktorů, seznámení s laboratorní technikou Úkoly měření: 1. Zopakujte si základní pojmy z oblasti fyziky plazmatu a plazmochemie. Využijte přednáškové texty a
Plazmové metody. Co je to plazma? Jak se uplatňuj. ují plazmové metody v technice?
Plazmové metody Co je to plazma? Jak se uplatňuj ují plazmové metody v technice? Co je to plazma? Plazma je látkové skupenství hmoty, ČTVRTÉ skupenství a vykazuje určité specifické vlastnosti. (správně
Hmotnostní spektrometrie
Hmotnostní spektrometrie Podstatou hmotnostní spektrometrie je studium iontů v plynném stavu. Tato metoda v sobě zahrnuje tři hlavní části:! generování iontů sledovaných atomů nebo molekul! separace iontů
Úvod do fyziky plazmatu
Úvod do fyziky plazmatu Plazma Velmi často se o plazmatu mluví jako o čtvrtém skupenství hmoty Název plazma pro ionizovaný plyn poprvé použil Irwing Langmuir (1881 1957) v roce 1928, protože mu chováním
Petr Kulhánek České vysoké učení technické v Praze, Fakulta elektrotechnická, katedra fyziky
PLAZMA ČTVRTÉ SKUPENSTVÍ HMOTY Petr Kulhánek České vysoké učení technické v Praze, Fakulta elektrotechnická, katedra fyziky Abstrakt: Příspěvek pojednává o vlastnostech laboratorního i vesmírného plazmatu,
Relativistická dynamika
Relativistická dynamika 1. Jaké napětí urychlí elektron na rychlost světla podle klasické fyziky? Jakou rychlost získá při tomto napětí elektron ve skutečnosti? [256 kv, 2,236.10 8 m.s -1 ] 2. Vypočtěte
Emisní spektrální čáry atomů. Úvod do teorie a dvě praktické aplikace
Emisní spektrální čáry atomů. Úvod do teorie a dvě praktické aplikace Ing. Pavel Oupický Oddělení optické diagnostiky, Turnov Ústav fyziky plazmatu AV ČR, v.v.i., Praha Úvod Teorie vzniku a kvantifikace
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROENERGETIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
Plazma v mikrovlnné troubě
Plazma v mikrovlnné troubě JIŘÍ KOHOUT Katedra obecné fyziky, Fakulta pedagogická, Západočeská univerzita v Plzni V tomto příspěvku prezentuji sérii netradičních experimentů souvisejících se vznikem plazmatu
Typy interakcí. Obsah přednášky
Co je to inteligentní a progresivní materiál - Jaderné analytické metody-využití iontových svazků v materiálové analýze Anna Macková Ústav jaderné fyziky AV ČR, Řež 250 68 Obsah přednášky fyzikální princip
ELEKTRICKÝ PROUD V PLYNECH
ELEKTRICKÝ PROUD V PLYNECH NESAMOSTATNÝ A SAMOSTATNÝ VÝBOJ V PLYNU Vzduch je za normálních podmínek, například elektroskop udrží dlouhou dobu téměř stejnou výchylku Pokud umístíme mezi dvě desky připojené
ELEKTRICKÝ PROUD V KAPALINÁCH, PLYNECH A POLOVODIČÍCH
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D14_Z_OPAK_E_Elektricky_proud_v_kapalinach _plynech_a_polovodicich_t Člověk a příroda
Molekulová spektroskopie 1. Chemická vazba, UV/VIS
Molekulová spektroskopie 1 Chemická vazba, UV/VIS 1 Chemická vazba Silová interakce mezi dvěma atomy. Chemické vazby jsou soudržné síly působící mezi jednotlivými atomy nebo ionty v molekulách. Chemická
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY 1 Fyzikální základy spektrálních metod Monochromatický zářivý tok 0 (W, rozměr m 2.kg.s -3 ): Absorbován ABS Propuštěn Odražen zpět r Rozptýlen s Bilance toků 0 = +
FYZIKA VE FIRMĚ HVM PLASMA
FYZIKA VE FIRMĚ HVM PLASMA Jiří Vyskočil HVM Plasma spol.s r.o. Na Hutmance 2, 158 00 Praha 5 OBSAH HVM PLASMA spol. s r.o. zaměření a historie firmy hlavní činnost a produkty POVRCHOVÉ TECHNOLOGIE metody
CHARAKTERIZACE MATERIÁLU II
CHARAKTERIZACE MATERIÁLU II Vyučující a zkoušející Ing. Martin Kormunda, Ph.D. - CN320 Konzultační hodiny: Po 10-12, St 13 14 nebo dle dohody Doc. RNDr. Jaroslav Pavlík, CS.c. - CN Konzultační hodiny:
Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec
Fotoelektronová spektroskopie Instrumentace RNDr. Věra V Vodičkov ková,, PhD. Katedra materiálů TU Liberec Obecné schéma metody Dopad rtg záření emitovaného ze zdroje na vzorek průnik fotonů několik µm
Hmotnostní spektroskopie pro analýzu plynů a plazmatu
Hmotnostní spektroskopie pro analýzu plynů a plazmatu Hmotnostní spektrometr Jaké částice umíme rozdělovat podle hmotnosti a energie? Jen nabité. Takže musíme získat ionty. Ty ionty musí doletět až do
Přehled metod depozice a povrchových
Kapitola 5 Přehled metod depozice a povrchových úprav Tabulka 5.1: První část přehledu technologií pro depozici tenkých vrstev. Klasifikované podle použitého procesu (napařování, MBE, máčení, CVD (chemical
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ Katedra technologií a měření DIPLOMOVÁ PRÁCE Optické vlastnosti dielektrických tenkých vrstev Bc. Martin Malán 214 Abstrakt Předkládaná diplomová
CZ.1.07/1.1.08/03.0009
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Elektrický proud Elektrický proud je uspořádaný tok volných elektronů ze záporného pólu ke kladnému pólu zdroje.
REAKTIVNÍ MAGNETRONOVÉ NAPRAŠOV. Jan VALTER HVM Plasma s.r.o. www.hvm.cz
REAKTIVNÍ MAGNETRONOVÉ NAPRAŠOV OVÁNÍ Jan VALTER SCHEMA REAKTIVNÍHO NAPRAŠOV OVÁNÍ zdroj výboje katoda odprašovaný terč plasma inertní napouštění plynů reaktivní zdroj předpětí p o v l a k o v a n é s
Michal Bílek Karel Johanovský. Zobrazovací jednotky
Michal Bílek Karel Johanovský SPŠ - JIA Zobrazovací jednotky CRT, LCD, Plazma, OLED E-papír papír, dataprojektory 1 OBSAH Úvodem Aditivní model Gamut Pozorovací úhel CRT LCD Plazma OLED E-Paper Dataprojektory
ZÁKLADNÍ POZNATKY MOLEKULOVÉ FYZIKY A TERMIKY. Mgr. Jan Ptáčník - GJVJ - 2. ročník - Molekulová fyzika a termika
ZÁKLADNÍ POZNATKY MOLEKULOVÉ FYZIKY A TERMIKY Mgr. Jan Ptáčník - GJVJ - 2. ročník - Molekulová fyzika a termika Částicová struktura látek Látky jakéhokoli skupenství se skládají z částic Částicemi jsou
Zobrazovací technologie
Zobrazovací technologie Podle: http://extrahardware.cnews.cz/jak-funguji-monitory-crt-lcd-plazma CRT Cathode Ray Tube Všechny tyto monitory i jejich nástupci s úhlopříčkou až 24 a rozlišením 2048 1536
Vliv plazmatické předúpravy na adhezní vlastnosti textilií
Obsah 1 ÚVOD... 8 2 LITERÁRNÍ PRŮZKUM... 10 2.1 Plazma... 10 2.1.1 Fyzikální popis plazmatu... 10 2.1.2 Výskyt plazmy v přírodě... 11 2.1.3 Rozdělení plazmatu... 13 2.1.4 Vlastnosti plazmatu... 15 2.1.5
ZÁŘENÍ V ASTROFYZICE
ZÁŘENÍ V ASTROFYZICE Plazmový vesmír Uvádí se, že 99 % veškeré hmoty ve vesmíru je v plazmovém skupenství (hvězdy, mlhoviny, ) I na Zemi se vyskytuje plazma, např. v podobě blesků, polárních září Ve sluneční
Využití metod atomové spektrometrie v analýzách in situ
Využití metod atomové spektrometrie v analýzách in situ Oto Mestek Úvod Termínem in situ označujeme výzkum prováděný na místě původního výskytu analyzovaného vzorku nebo jevu (opakem je analýza ex situ,
Vakuové součástky. Hlavní dva typy vakuových součástek jsou
Vakuové součástky Hlavní dva typy vakuových součástek jsou obrazovky (osciloskopické, televizní) elektronky (vysokofrekvenční do 1 GHz, mikrovlnné do 20 GHz). Dále se dnes využívají pro speciální oblasti,
Senzory v inteligentních budovách
Senzory v inteligentních budovách Pavel Ripka Katedra měření ČVUT FEL v Praze ripka@fel.cvut.cz http://measure.feld.cvut.cz/ Evropský sociální fond. Praha & EU: Investujeme do vaší budoucnosti Aplikace
INTERAKCE IONTŮ S POVRCHY II.
Úvod do fyziky tenkých vrstev a povrchů INTERAKCE IONTŮ S POVRCHY II. Metody IBA (Ion Beam Analysis): pružný rozptyl nabitých částic (RBS), detekce odražených atomů (ERDA), metoda PIXE, Spektroskopie rozptýlených
Oddělení fyziky vrstev a povrchů makromolekulárních struktur
Oddělení fyziky vrstev a povrchů makromolekulárních struktur Témata diplomových prací 2014/2015 Studium změn elektrické vodivosti emeraldinových solí vystavených pokojovým a mírně zvýšeným teplotám klíčová
DOUTNAVÝ VÝBOJ. 1. Vlastnosti doutnavého výboje 2. Aplikace v oboru plazmové nitridace
DOUTNAVÝ VÝBOJ 1. Vlastnosti doutnavého výboje 2. Aplikace v oboru plazmové nitridace Doutnavý výboj Připomeneme si voltampérovou charakteristiku výboje v plynech : Doutnavý výboj Připomeneme si, jaké
Vojtěch Hrubý: Esej pro předmět Seminář EVF
Vojtěch Hrubý: Esej pro předmět Seminář EVF Plazma Pod pojmem plazma většinou myslíme plynné prostředí, které se skládá z neutrálních částic, iontů a elektronů. Poměr množství neutrálních a nabitých částic
Petr Zikán. Studentský seminář, Březen 2011
Sondová měření v plazmatu Petr Zikán Studentský seminář, Březen 2011 Přehled prezentace 1 Child-Langmuirův zákon Přehled prezentace 1 Child-Langmuirův zákon 2 Sheath a pre-sheath Přehled prezentace 1 Child-Langmuirův
5. Zobrazovací jednotky
5. Zobrazovací jednotky CRT, LCD, Plazma, OLED E-papír, diaprojektory Zobrazovací jednotky Pro připojení zobrazovacích jednotek se používá grafická karta nebo také video adaptér. Úkolem grafické karty
DOUTNAVÝ VÝBOJ. Magnetronové naprašování
DOUTNAVÝ VÝBOJ Magnetronové naprašování Efektivním způsobem jak získat částice vhodné k růstu povlaku je nahrazení teploty používané u odpařování ekvivalentem energie dodané dopadem těžkéčástice přenosem
Studium produkce jetů v experimentu ALICE na urychlovači LHC
Studium produkce jetů v experimentu ALICE na urychlovači LHC Vít Kučera, Vedoucí práce: RDr. Jana Bielčíková, Ph.D. Matematicko-fyzikální fakulta, Univerzita Karlova v Praze Ústav jaderné fyziky AV ČR,
Netřískové způsoby obrábění
Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Lenka Havlová 1 Lenka Havlová 2 elektroerozivní obrábění
Hmotnostní spektrometrie
Hmotnostní spektrometrie Mass Spectrometry (MS) (c) David MILDE, 2003-2010 ÚVOD MS je nejrychleji se rozvíjejí technika analytické chemie. Dokáže poskytnout informace o: elementárním složení vzorku, struktuře
IONTOVÉ ZDROJE. Účel. Požadavky. Elektronové zdroje. Iontové zdroje. Princip:
Účel IONTOVÉ ZDROJE vyrobit svazek částic vytvarovat ho a dopravit do urychlovací komory předurychlit ho (10 kev) Požadavky intenzita svazku malá emitance svazku trvanlivost zdroje stabilita zdroje minimální
4. STANOVENÍ PLANCKOVY KONSTANTY
4. STANOVENÍ PLANCKOVY KONSTANTY Měřicí potřeby: 1) kompaktní zařízení firmy Leybold ) kondenzátor 3) spínač 4) elektrometrický zesilovač se zdrojem 5) voltmetr do V Obecná část: Při ozáření kovového tělesa
Základy fyzikálněchemických
Základy fyzikálněchemických metod Fyzikálně-chemické metody optické metody elektrochemické metody separační metody kalorimetrické metody radiochemické metody ostatní metody Optické metody Oko je citlivé
Základy magnetohydrodynamiky. aneb MHD v jedné přednášce?! To si snad děláte legraci!
Základy magnetohydrodynamiky aneb MHD v jedné přednášce?! To si snad děláte legraci! Osnova Magnetohydrodynamika Maxwellovy rovnice Aplikace pinče, MHD generátory, geofyzika, astrofyzika... Magnetohydrodynamika
Návod pro laboratorní úlohu: Komerční senzory plynů a jejich testování
Návod pro laboratorní úlohu: Komerční senzory plynů a jejich testování Úkol měření: 1) Proměřte závislost citlivosti senzoru TGS na koncentraci vodíku 2) Porovnejte vaši citlivostní charakteristiku s charakteristikou
VYUŽITÍ TEPELNÉHO ZMLŽOVAČE V AAS
1 VYUŽITÍ TEPELNÉHO ZMLŽOVAČE V AAS JAN KNÁPEK Katedra analytické chemie, Přírodovědecká fakulta MU, Kotlářská 2, Brno 611 37 Obsah 1. Úvod 2. Tepelný zmlžovač 2.1 Princip 2.2 Konstrukce 2.3 Optimalizace
5.6. Člověk a jeho svět
5.6. Člověk a jeho svět 5.6.1. Fyzika ŠVP ZŠ Luštěnice, okres Mladá Boleslav verze 2012/2013 Charakteristika vyučujícího předmětu FYZIKA I. Obsahové vymezení Vyučovací předmět Fyzika vychází z obsahu vzdělávacího
FYZIKA 4. ROČNÍK. Kvantová fyzika. Fotoelektrický jev (FJ)
Stěny černého tělesa mohou vysílat záření jen po energetických kvantech (M.Planck-1900). Velikost kvanta energie je E = h f f - frekvence záření, h - konstanta Fotoelektrický jev (FJ) - dopadající záření
ELEKTRONIKA PRO ZPRACOVÁNÍ SIGNÁLU
ELEKTRONIKA PRO ZPRACOVÁNÍ SIGNÁLU Václav Michálek, Antonín Černoch Společná laboratoř optiky UP a FZÚ AV ČR Regionální centrum pokročilých technologií a materiálů CZ.1.07/2.2.00/07.0018 VM, AČ (SLO/RCPTM)
Fotonické sítě jako médium pro distribuci stabilních signálů z optických normálů frekvence a času
Fotonické sítě jako médium pro distribuci stabilních signálů z optických normálů frekvence a času Ondřej Číp, Šimon Řeřucha, Radek Šmíd, Martin Čížek, Břetislav Mikel (ÚPT AV ČR) Josef Vojtěch a Vladimír
Radioterapie. X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz
Radioterapie X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Radioterapie je klinický obor využívající účinků ionizujícího záření v léčbě jak zhoubných, tak nezhoubných nádorů
Jiří Brus. (Verze 1.0.1-2005) (neupravená a neúplná)
Jiří Brus (Verze 1.0.1-2005) (neupravená a neúplná) Ústav makromolekulární chemie AV ČR, Heyrovského nám. 2, Praha 6 - Petřiny 162 06 e-mail: brus@imc.cas.cz Transverzální magnetizace, která vykonává precesi
O symetrii tokamaku. Vtomto článku opustíme tematiku konkrétních. Jan Mlynář. 50 let UFP AV ČR
č. 4 Čs. čas. fyz. 59 (2009) 207 O symetrii tokamaku Jan Mlynář Ústav fyziky plazmatu AV ČR, v. v. i., Za Slovankou 3, 182 00 Praha 8 Loňské čtvrté číslo Čs. čas. fyz. se podrobně věnovalo historii tokamaků
Optický emisní spektrometr Agilent 725 ICP-OES
Optický emisní spektrometr Agilent 725 ICP-OES Popis systému: Přístroj, včetně řídicího softwaru a počítače, určený pro plně simultánní stanovení prvků v širokém koncentračním rozmezí (ppm až %), v nejrůznějších
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: Lasery - druhy
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Lasery - druhy Laser je tvořen aktivním prostředím, rezonátorem a zdrojem energie. Zdrojem energie, který může
Masarykova univerzita. Optická diagnostika parametrů plazmatu
Masarykova univerzita Přírodovědecká fakulta Diplomová práce Optická diagnostika parametrů plazmatu Dana Skácelová Brno 2009 Prohlašuji,že jsem diplomovou práci vypracovala samostatně, za použití uvedené
Infračervená spektroskopie
Infračervená spektroskopie 1 Teoretické základy Podstatou infračervené spektroskopie je interakce infračerveného záření se studovanou hmotou, kdy v případě pohlcení fotonu studovanou hmotou mluvíme o absorpční
NÍZKOTEPLOTNÍ PLAZMOVÁ DEPOZICE TENKÝCH VRSTEV
NÍZKOTEPLOTNÍ PLAZMOVÁ DEPOZICE TENKÝCH VRSTEV Zdeněk Hubička Fyzikální ústav AV ČR v.v.i. Praha 1 Úvod Dosud bylo vynaloženo mnoho úsilí na vývoj nízkoteplotních plazmových systémů vhodných pro nanášení
METODY CHARAKTERIZACE POLOVODIVÝCH TERMOELEKTRICKÝCH MATERIÁLŮ
METODY CHARAKTERIZACE POLOVODIVÝCH TERMOELEKTRICKÝCH MATERIÁLŮ J. KAŠPAROVÁ, Č. DRAŠAR Fakulta chemicko - technologická, Univerzita Pardubice, Studentská 573, 532 10 Pardubice, CZ, e-mail:jana.kasparova@upce.cz
Katedra geotechniky a podzemního stavitelství
Katedra geotechniky a podzemního stavitelství Geotechnický monitoring učební texty, přednášky Monitoring napětí a sil doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního oboru Geotechnika CZ.1.07/2.2.00/28.0009.
RUZNYCH DRUHU ZÁRENí
Tomáš Fukátko DETEKCE A MERENí o, o RUZNYCH DRUHU ZÁRENí Praha 2007 "'(ECHNICI(4 I (/1"ERATUf\P- It I~~ @ ~~č~~ nékolietody rem béako ucekapitoly "zárení". odrobné pak preo vznik ní nabit hledat mi na
Optická spektroskopie
Univerzita Palackého v Olomouci Přírodovědecká fakulta Optická spektroskopie Antonín Černoch, Radek Machulka, Jan Soubusta Olomouc 2012 Oponenti: Mgr. Karel Lemr, Ph.D. RNDr. Dagmar Chvostová Publikace
galvanicky chemicky plazmatem ve vakuu Vrstvy ve vakuu MBE Vakuová fyzika 2 1 / 39
Vytváření vrstev galvanicky chemicky plazmatem ve vakuu Vrstvy ve vakuu povlakování MBE měření tloušt ky vrstvy během depozice Vakuová fyzika 2 1 / 39 Velmi stručná historie (více na www.svc.org) 1857
Vnitřní magnetosféra
Vnitřní magnetosféra Plazmasféra Elektrické pole díky konvenkci (1) (Convection Electric Field) Vodivost σ, tj. ve vztažné soustavě pohybující se s plazmatem rychlostí v je elektrické pole rovno nule (
Iradiace tenké vrstvy ionty
Iradiace tenké vrstvy ionty Ve většině technologických aplikací dochází k depozici tenké vrstvy za nízké teploty > jsme v zóně I nebo T > vrstvá má sloupcovou strukturu, je porézní a hrubá. Ukazuje se,
Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou?
Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou? 10/20/2004 1 Bethe Blochova formule (1) je maximální možná předaná energie elektronu N r e - vogadrovo čislo - klasický poloměr elektronu
ZÁKLADY SPEKTROSKOPIE
VĚDOU A TECHNIKOU KE SPOLEČNÉMU ROZVOJI DODATEK PŘESHRANIČNÍ LETNÍ ŠKOLA VĚDY A TECHNIKY ZÁKLADY SPEKTROSKOPIE EURÓPSKA ÚNIA EURÓPSKY FOND REGIONÁLNEHO ROZVOJA SPOLOČNE BEZ HRANÍC FOND MIKROPROJEKTŮ 1.
Poloautomatizovaná VA charakteristika doutnavého výboje na tokamaku GOLEM
Poloautomatizovaná VA charakteristika doutnavého výboje na tokamaku GOLEM O. Tinka, Š. Malec, M. Bárta Fakulta jaderná a fyzikálně inženýrská, Břehová 7, 115 19 Praha 1 malecste@fjfi.cvut.cz Abstrakt Uvažovali
Zasedání OR FCH 27. ledna 2016 zápis
Zasedání OR FCH 27. ledna 2016 zápis 1. Předseda OR (prof. Pekař) informoval o prodloužení akreditace. OR projednala související změny ve struktuře studijních předmětů konstatovala, že návrh z posledního
ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ
ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ (c) -2008, ACH/IM BLOKOVÉ SCHÉMA: (a) emisní metody (b) absorpční metody (c) luminiscenční metody U (b) monochromátor často umístěn před kyvetou se vzorkem. Části
Nanogrant KAN ( )
Nanogrant KAN400480701 (2007 2011) Nanostruktury na bázi uhlíku a polymerů pro využití v bioelektronice a medicíně Ústav jaderné fyziky AV ČR, Mgr. Jiří Vacík, CSc., koordinátor projektu ( Výroční seminář
Přednáška 4. Úvod do fyziky plazmatu : základní charakteristiky plazmatu, plazma v elektrickém vf plazma. Doutnavý výboj : oblasti výboje
Přednáška 4 Úvod do fyziky plazmatu : základní charakteristiky plazmatu, plazma v elektrickém vf plazma. Doutnavý výboj : oblasti výboje Jak nahradit ohřev při vypařování Co třeba bombardovat ve vakuu
Počítačový model plazmatu. Vojtěch Hrubý listopad 2007
Počítačový model plazmatu Vojtěch Hrubý listopad 2007 Situace Zajímá nás, co se děje v okolí kovové sondy ponořené do plazmatu. Na válcovou sondu přivedeme napětí U Očekáváme, že se okolo sondy vytvoří
Lineární urychlovače. Jan Pipek jan.pipek@gmail.com 24.11.2011 Dostupné na http://fjfi.vzdusne.cz/urychlovace
Lineární urychlovače Jan Pipek jan.pipek@gmail.com 24.11.2011 Dostupné na http://fjfi.vzdusne.cz/urychlovace Lineární urychlovače Elektrostatické urychlovače Indukční urychlovače Rezonanční urychlovače
Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku V tomto článku uvádíme shrnutí poznatků učiva II. ročníku
Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm
Rtg. záření: Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Vznik rtg. záření: 1. Rtg. záření se spojitým spektrem vzniká při prudkém zabrzdění urychlených elektronů.
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Jan Mlynář Rovnováha plazmatu a magnetického pole v termojaderných reaktorech typu tokamak Pokroky matematiky, fyziky a astronomie, Vol. 57 (2012), No. 2, 122--139
13. Spektroskopie základní pojmy
základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV STROJÍRENSKÉ TECHNOLOGIE FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MANUFACTURING TECHNOLOGY ŘEZÁNÍ PLAZMOU
Snímače, detektory, čidla 1) Principy snímání polohy, měření vzdálenosti, snímání úhlu natočení (mechanické, kontaktní/ bezkontaktní, další jiné).
Snímače, detektory, čidla 1) Principy snímání polohy, měření vzdálenosti, snímání úhlu natočení (mechanické, kontaktní/ bezkontaktní, další jiné). 2) Principy kontaktního snímání otáček, bezkontaktní snímání.
Nanotechnologie a Nanomateriály na PřF UJEP Pavla Čapková
Přírodovědecká fakulta UJEP Ústí n.l. a Ústecké materiálové centrum na PřF UJEP http://sci.ujep.cz/faculty-of-science.html Nanotechnologie a Nanomateriály na PřF UJEP Pavla Čapková Kontakt: Doc. RNDr.