Uhlíkové nanostruktury fullereny, nanotrubky. Mgr. Ondřej Jašek, Ph.D.

Rozměr: px
Začít zobrazení ze stránky:

Download "Uhlíkové nanostruktury fullereny, nanotrubky. Mgr. Ondřej Jašek, Ph.D."

Transkript

1 Uhlíkové nanostruktury fullereny, nanotrubky Mgr. Ondřej Jašek, Ph.D. 1

2 Nanostruktury uhlíku 3D, 0D 1D 2D 2

3 Micro -> Nano 3

4 Dnešní téma Jak lze syntetizovat fullereny. Jak lze deponovat diamantovou vrstvu s ~nm krystaly. Rozdíl mezi nanotrubkami a vlákny, jaké jsou vlastnosti nanotrubek. Jak lze růst uhlíkové nanotrubky. Jakou roli hraje substrát, bariérová vrstva, katalyzátor jak jej připravit. Co přináší při depozici nanotrubek plazma. Jak nanotrubky analyzovat. 4

5 Fullereny Kroto, Curl, Smalley Huffmann, Krätschmer 1996 Nobel Prize in Chemistry Struktura respektuje IPR Isolated pentagonal rule, rychle roste počet isomerů d C60 = 0,7 nm krystalická forma fullerit velký účinný průřez pro záchyt nízko-energetických elektronů srovnatelný s SF 6 Za pokojové teploty mohou molekuly v krystalu rotovat. C 60 : Buckminsterfullerene, H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl & R. E. Smalley, Nature 318, (14 November 1985) 5

6 Fullereny syntéza Laserová ablace odpařování uhlíkového terče v He atmosféře Tlak ~ 100 Torr (13 kpa) separace odstředění v centrifůze a kapalinová chromatografie. Rychlá detekce barva roztoku v toulenu nebo CS 2 C 60 vínová, C 70 hnědá. Obloukový výboj He atmosféra, 13 kpa, Oblouk v kontaktu nebo konstantní proud desítky až 100 A, 24V. Depozit na stěnách aparatury. Analýza hmotová spektroskrometrie C amu, C amu. Nukleární magnetická rezonance C 60 1 čára, C 70 5 čar. Lawrence T. Scott, Methods for the Chemical Synthesis of Fullerenes, Angew. Chem. Int. Ed. 2004, 43, , Hot Topic: Organic solar cells with fullerenes 6

7 Syntéza fullerenů rozkladem organických sloučenin ve vf. výboji Nerezová nádoba 20 cm průměr, 25 cm výška Rozkládané uhlovodíky toluen, benzen, CCl 4 (0,2 0,3 cm 3 /min) Výkon - 27 MHz,2 kw, doba syntézy minut Pracovní atmosféra Helium Torr 7

8 Krátká poznámka o růstu diamantových vrstev s ~nm krystaly -nanokrystalický x ultra-nanokrystalický diamant nukleace a růst 8

9 Ultra-nanokrystalický diamant - nukleace Bias Enhanced Nucleation BEN in-situ nukleace diamantové vrstvy ~ cm 2 9

10 Ultra-nanokrystalický diamant Vysoká koncentrace CH 4-10 procent proti 1-2 tradičně, 2x snížena drsnost vrstvy H/N/C mixtures T. Frgala, PhD Thesis preferenční růst 100 směru 10

11 Uhlíkové nanotrubky 11 K. Hata et.al., Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes, Science, 2004, 306, 1363

12 Struktura: nanotrubky x nanovlákna Nanovlákna rovina svírá s osou nenulový úhel Nanotrubky Carbon nanotubes (CNTs) stěna rovnoběžná s osou -jednostěnné (SWCNTs) zig-zag (n,0), armchair (n,n), chiral (n,m) -mnohostěnné (MWCNTs) a délka základního vektoru a 3a C nm a C C C 0,144 nm a a 1,a 2 vektory báze,,, a C chirální vektor C na 1 ma 2 ( 0 m n ) 2 2 L délka C L C a n m nm d t průměr d t L / chirální úhel sin 2 cos 2 3m, 2 2 n m nm 2n m, 2 2 n m nm 0 6 3m tan 2n m N.M.Rodrigeuz et al., Langmuir 11, 3862(1995), S.Iijima, Nature 354, 56(1991), Saito, G. Dresselhaus, M.S. Dresselhaus, Physical properties of Carbon nanotubes, Imperial college Press, London,

13 Vlastnosti nanotrubek Konfigurace SWCNTs a) armchair (10,10) b) zigzag (12,0) c) chiralní (7,16) SWCNTs jsou vodiči pro n-m =3i nebo polovodiče pro n-m 3i s zakázaným pásem Eg~ ev v závislosti na hodnotách n, m, mnohostěnné nanotrubky mají zakázaný pás Eg ~ 0 ev V krystalu se uspořádávají do trsu, closed packed triangular lattice, vzdálenost mezi vrstvami je 3.4 A, hustota 1.35 g/ cm 3, vzdálenost v MWCNTs je 0,34 0,39 podle průměru Nanotrubky mají unikátní mechanické vlastnosti Youngův modul 1 TPa (SWCNT) a 1,2 TPa (MWCNT), Ocel 230 GPa Mez pevnosti v tahu GPa Maximální deformace % Elektrické vlastnosti odpor 10-4 W/cm Maximální proudová hustota A/m 2 kvantová vodivost (12,9 kw) -1 Tepelná vodivost Jednostěnné W/mK Mnohostěnné >3000 W/mK, měd 400 W/mK H. J. Dai, Surf. Sci. 500, 218 {2002) Emisní vlastnosti: několik A/cm 2 při hustotě nanotrubek /cm 2 K. B.K. Teo, C. Singh, M. Chhowalla, W. I. Milne, Encyclopedia of Nanoscience and Nanotechnology, Vol. 10, Eds. H.S. Nalwa, American Scientific Publishers, Los Angeles,

14 Metody syntézy nanotrubek Vysokoteplotní metody - obloukový výboj mezi uhlíkovými elektrodami - laserová ablace uhlíkového terče -vysoká teplota (3500 C), -krátká doba růstu několik ms -V případě SWCNTs nutný katalyzátor přechodový kov Fe, Ni, Co atd. Nízkoteplotní metody - metody CVD ( thermal, hot filament, PECVDrf,mw,dc) -Teplota C, doba depozice minuty až hodiny, pouze jedna nanotrubka roste z katalytické částice (Fe,Ni,Mo,Co), která určuje její průměr -PECVD vertikální uspořádání díky přítomnosti el.pole (0,1 V/mm), jinak pouze hustotou růstu(van der Walls), snížení depoziční teploty, kompatibilita se současnými mikroelektronickými procesy - HiPCO High pressure CO decomposition atm CO, CO+ ppm Fe(CO) 5, CoMoCAT K.B.K. Teo, R.G. Lacerda, M.H. Yang, A.S. Teh, L.A.W. Robinson, S.H. Dalal, N.L. Rupesinghe, M. Chhowalla, S.B. Lee, D.A. Jefferson, D.G. Hasko, G.A.J. Amaratunga, W.I. Milne, P. Legagneux, L. Gangloff, E. Minoux, J.P. Schnell, and D. Pribat. "Carbon Nanotube Technology for Solid State and Vacuum Electronics" IEE Proceedings in Circuits, Devices and Systems (Nanoelectronics issue) 151, 443 (2004). 14

15 CoMoCAT SWNT are grown by CO disproportionation (decomposititon into C and carbon dioxide) at in flow of pure CO at a total pressure that typically ranges from 1 to 10 atm,

16 Katalyzátor Katalyzátor Fe,Co,Mo,Ni nebo kombinace transition metals konečná rozpustnost kovu v C, u Fe v C to může být i několik procent v závislosti na podmínkách, především teplotě -> difúze,saturace a precipitace -> růst CNT,CNF. Obecně oba typy struktur charakterizuje při vyšších teplotách mechanismus VLS Vapor-Liquid -Solid Musí být částice! Vysoká mobilta částic i pod teplotou tání, Base a tip růstový mód > kopíruje průměr částice Metody přípravy katalyzátoru chemické kapalný katalyzátor, koloidní částice, fyzikální napařování, naprašování Chemická příprava kobalt acetát a nikl acetát je rozpuštěn v ethanolu (0,05 wt) -> dipcoating 10 minut s vytažením rychlostí 4 cm/min. Následuje žíhaní substrátu v peci 5 minut 400 C na vzduchu. Takto vzniknout částice oxidů kovů. Katalyzátor na substrátech a tzv. plovoucí katalyzátor generovaný přímo v systému z organokovu pentakarbonyl železa Fe (CO) 5, ferrocen Fe C10H10. Výrazný vliv na velikost částic má interakce se substrátem! Využití Al 2 O 3 napaření Al 20 nm přežíhání na 500 C na vzduchu po 10 minut vytvoří Al 2 O 3 vrstvu. zastavení růstu - catalyst poisoning- a-c K. B.K. Teo, C. Singh, M. Chhowalla, W. I. Milne, Encyclopedia of Nanoscience and Nanotechnology, Vol. 10, Eds. H.S. Nalwa, American Scientific Publishers, Los Angeles,

17 Interakce s bariérovou vrstvou Tvorba sloučeniny materiálu substrátu a katalyzátoru snížení katalytické aktivity či uplné znemožnění růstu Řešení použítí mezivrstvy-buffer layer, neinteraguje s katalyzátorem, plní různé funkce zabránění difúze, zlepšení adheze a funkčních vlastnosti soustavy (elekt. a tepelná vodiv.) Buffer layer na Si SiO 2,TiN,Al 2 O 3 apod. může mít vliv na proces růstu CNTs Y. J. Jung, B. Wei, R. Vajtai, and P. M. Ajayan, "Mechanism of Selective Growth of Carbon Nanotubes on SiO 2 /Si Patterns", Nano Letters, 3, 561 (2003). Cao et.al., Appl. Phys. Lett., Vol. 84, No. 1,2004 T. de los Arcos et al., Carbon 42 (2004), 187; X.Li, Nano Lett., Vol. 5, No. 10, 2005,

18 Vliv podmínek při vytváření katalyzátoru 500 C, Si/SiO 2 (50 nm) substrate S. Pisana et al., Physica E, 37(1-2), 2007,

19 SiO 2 x Al 2 O 3 Si/SiO2 (Al 2 O 3 )/Fe(2,5 nm) pretreatmen: a) vakuum b) Ar a c) H 2 v 750 C, 10 Pa, 15 minut. 19

20 Růst nanotrubek s různou mezivrstvou Růst CNts a) SiO x b) Al x O y and c) bez buffer vrstvy. Ar/H 2 /CH /430/42 sccm, 60 s, 400W, C 20

21 Růst nanotrubek na definovaných plochách 21

22 PECVD růst CNTs Doutnavý výboj, vyhřívaná grafitová elektroda, směs C 2 H 2 a NH 3, Ni katalyzátor Chhowalla et al., J. Appl. Phys., Vol. 90, No. 10, 2001,

23 PECVD růst CNTs 23

24 CNTs v za použití kapacitně vázaného výboje 24

25 PECVD růst za atmosférického tlaku v pochodňovém výboji Microwave plasma torch operating at 2,45 GHz, max. 2 kw power, dual gas flow Center - Ar( sccm)/ Outer - H 2 ( sccm)/ch 4 (10-50 sccm) Si/Fe, Si/SiO x /Fe, Si/Al x O y /Fe substrates Fe(1-10 nm) vacuum evaporated, SiO x PECVD O. Jašek, M. Eliáš, L. Zajíčková et al., Materials Science and Eng. C, 26, 2006,

26 CNTs v mikrovlnném pochodňovém výboji SEM analýza nanotrubek deponovaných na substrát s vrstvou Fe 10 nm (Q CH4 =50 sccm, Q H2 =300 sccm, Ar=1000 sccmt S =700 0 C, t d =15 min.). 26

27 CNTs v mikrovlnném pochodňovém výboji 1500x 40000x 20000x 60000x 27

28 CNTs v mikrovlnném pochodňovém výboji Fotografie nanotrubek na substrátu s vrstvou Fe deponovaných za následujících podmínek (Q CH4 =20 sccm, T S =700 0 C t d =15 min.). Zobrazení materiálového kontrast. Bílé těčky jsou částice Fe na koncích nanotrubek TEM snímek 28

29 CNTs v mikrovlnném pochodňovém výboji - HRTEM 29

30 CNTs v mikrovlnném pochodňovém výboji SE/BSE Catalyst poisoning 30

31 Depozice na substrátech bez mezivrstvy SiO 2 Ar 1000 sccm, CH4 50 sccm, H2 300 sccm Fe 10 nm, minut 31

32 Ramanovská spektroskopie - CNTs Si/SiO 2 /Ni 10 nm, pretreatment 100 sccm H 2,700 C, 5 min, 200 W depozice 50 sccm H 2, 50 sccm CH 4, 30 mins,700 C, 200 W D-pás odpovídá chybám a defektům ve struktuře rovin (disorder) G-pás je tzv. tangenciální mód odpovídající vibracím dvojce C-C v rovině grafitu RBM mód odpovídá vibracím kolmým na osu nanotrubky tzv. dýchaní 32

33 CNTs v mikrovlnném pochodňovém výboji floating catalyst TEM micrograph of MWCNTs/SWCNTs deposited from mixture of Ar/H 2 /CH 4 and Fe(CO) 5 Raman spectra of deposited nanostructures 33

34 Další kapitoly pro CNTs -Čistění CNTs -Umisťování CNTs - optimalizace ve směru chirality CNTs - 34

35 Lekce 7 1. Kterou metodou bylo poprvé připraveno větší množství fullerenů? Popište podmínky depozice touto metodou. 2. Kolik čar bude mít NMR spektrum fulerenu C 60 a kolik fullerenu C 70? 3. Jak ovlivní proces nukleace diamantová vrstvy výslednou velikost krystalů ve vrstvě? Jmenujte metodu, kterou lze řídit nukleaci během růstu diamantové vrstvy. 4. Jakou metodou lze připravit mnohostěnné uhlíkové nanotrubky bez katalyzátoru? Jakou plynovou atmosféru a o jakém tlaku použijete? 5. Jakou podobu musí mít katalyzátor při depozici uhlíkových nanotrubek metodou depozice z plynné fáze? Proč používáme přechodové kovy jako katalyzátor? 6. Jakou úlohu hraje velikost nanočástic katalyzátoru při růstu uhlíkových nanotrubek? 7. Co je úlohou bariérové vrstvy při růstu uhlíkových nanotrubek metodou depozice z plynné fáze? 8. Jaké rozdíly vykazuje depozice uhlíkových nanotrubek z plynné fáze v přitomnosti plazmatu oproti situaci bez něj? 9. Uveďte alespoň tři metody jak, lze určit velikost uhlíkových nanotrubek a přítomnost katalyzátoru. Jak určíte složení katalyzátoru? 10. Popište základní charakteristiky Ramanovského spektra uhlíkových nanotrubek. Jak se liší spektrum jednostěnných a mnohostěnných nanotrubek? 35

Depozice uhlíkových nanotrubek metodou PECVD a jejich analýza

Depozice uhlíkových nanotrubek metodou PECVD a jejich analýza Depozice uhlíkových nanotrubek metodou PECVD a jejich analýza Jiřina Matějková UPT Brno AV ČR Ondřej Jašek- KFE Přírodovědecká fakulta MU Brno, jasek@physics.muni.cz Marek Eliáš, Lenka Zajíčková, Vít Kudrle,

Více

Plazmová depozice tenkých vrstev oxidu zinečnatého

Plazmová depozice tenkých vrstev oxidu zinečnatého Plazmová depozice tenkých vrstev oxidu zinečnatého Bariérový pochodňový výboj za atmosférického tlaku Štěpán Kment Doc. Dr. Ing. Petr Klusoň Mgr. Zdeněk Hubička Ph.D. Obsah prezentace Úvod do problematiky

Více

Přehled metod depozice a povrchových

Přehled metod depozice a povrchových Kapitola 5 Přehled metod depozice a povrchových úprav Tabulka 5.1: První část přehledu technologií pro depozici tenkých vrstev. Klasifikované podle použitého procesu (napařování, MBE, máčení, CVD (chemical

Více

Příprava grafénu. Petr Jelínek

Příprava grafénu. Petr Jelínek Příprava grafénu Petr Jelínek Schéma prezentace Úvod do tématu Provedené experimenty - příprava grafénu - charakterizace Plánovaná činnost - experimenty Závěr 2 Pohled do historie 1960 HOPG (Arthur Moore)

Více

Depozice uhlíkových nanotrubek

Depozice uhlíkových nanotrubek MASARYKOVA UNIVERZITA V BRNĚ, PŘÍRODOVĚDECKÁ FAKULTA Depozice uhlíkových nanotrubek v mikrovlnném plazmovém hořáku Bakalářská práce Brno, 2006 Petr Synek Zde bych chtěl poděkovat všem, bez jejichž podpory

Více

Nanotechnologie a jejich aplikace. doc. RNDr. Roman Kubínek, CSc.

Nanotechnologie a jejich aplikace. doc. RNDr. Roman Kubínek, CSc. Nanotechnologie a jejich aplikace doc. RNDr. Roman Kubínek, CSc. Předpona pochází z řeckého νανος což znamená trpaslík 10-9 m 380-780 nm rozsah λ viditelného světla Srovnání známých malých útvarů SPM Vyjasnění

Více

Uhlíkové nanostruktury nanotrubky, grafén. Mgr. Ondřej Jašek, Ph.D.

Uhlíkové nanostruktury nanotrubky, grafén. Mgr. Ondřej Jašek, Ph.D. Uhlíkové nanostruktury nanotrubky, grafén Mgr. Ondřej Jašek, Ph.D. 1 Uhlíkové nanotrubky - čištění Odleptání amorfního uhlíku a defektů Principem je nižší stabilita defektních míst než struktury nanotrubky.

Více

Uhlíkové struktury vázající ionty těžkých kovů

Uhlíkové struktury vázající ionty těžkých kovů Uhlíkové struktury vázající ionty těžkých kovů 7. června/june 2013 9:30 h 17:30 h Laboratoř metalomiky a nanotechnologií, Mendelova univerzita v Brně a Středoevropský technologický institut Budova D, Zemědělská

Více

Vakuové metody přípravy tenkých vrstev

Vakuové metody přípravy tenkých vrstev Vakuové metody přípravy tenkých vrstev Metody vytváření tenkých vrstev Vakuové metody dnes nejužívanější CVD Chemical Vapour Deposition (PE CVD Plasma Enhanced CVD nebo PA CVD Plasma Assisted CVD) PVD

Více

Chování látek v nanorozměrech

Chování látek v nanorozměrech Univerzita J.E. Purkyně v Ústí nad Labem Chování látek v nanorozměrech Pavla Čapková Přírodovědecká fakulta Univerzita J.E. Purkyně v Ústí nad Labem Březen 2014 Chování látek v nanorozměrech: Co se děje

Více

galvanicky chemicky plazmatem ve vakuu Vrstvy ve vakuu MBE Vakuová fyzika 2 1 / 39

galvanicky chemicky plazmatem ve vakuu Vrstvy ve vakuu MBE Vakuová fyzika 2 1 / 39 Vytváření vrstev galvanicky chemicky plazmatem ve vakuu Vrstvy ve vakuu povlakování MBE měření tloušt ky vrstvy během depozice Vakuová fyzika 2 1 / 39 Velmi stručná historie (více na www.svc.org) 1857

Více

Plazmatické metody pro úpravu povrchů

Plazmatické metody pro úpravu povrchů Plazmatické metody pro úpravu povrchů Aleš Kolouch Technická Univerzita v Liberci Studentská 2 461 17 Liberec 1 Obsah 1. Plazma 2. Plazmové stříkání 3. Plazmové leptání 4. PVD 5. PECVD 6. Druhy reaktorů

Více

Základní typy článků:

Základní typy článků: Základní typy článků: Články z krystalického Si c on ta c t a ntire fle c tio n c o a tin g Tenkovrstvé články N -ty p e P -ty p e Materiály a technologie pro fotovoltaické články Nové materiály Gratzel,

Více

Metody depozice povlaků - CVD

Metody depozice povlaků - CVD Procesy CVD, PA CVD, PE CVD Chemická metoda depozice vrstev CVD využívá pro depozici směs chemicky reaktivních plynů (např. CH 4, C 2 H 2, apod.) zahřátou na poměrně vysokou teplotu 900 1100 C. Reakční

Více

GRAFEN VERSUS MWCNT; POROVNÁNÍ DVOU FOREM UHLÍKU V DETEKCI TĚŽKÉHO KOVU. Název: Školitel: Mgr. Dana Fialová. Datum: 15.3.2013

GRAFEN VERSUS MWCNT; POROVNÁNÍ DVOU FOREM UHLÍKU V DETEKCI TĚŽKÉHO KOVU. Název: Školitel: Mgr. Dana Fialová. Datum: 15.3.2013 Název: Školitel: GRAFEN VERSUS MWCNT; POROVNÁNÍ DVOU FOREM UHLÍKU V DETEKCI TĚŽKÉHO KOVU Mgr. Dana Fialová Datum: 15.3.2013 Reg.č.projektu: CZ.1.07/2.3.00/20.0148 Název projektu: Mezinárodní spolupráce

Více

DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj

DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj DOUTNAVÝ VÝBOJ Další technologie využívající doutnavý výboj Plazma doutnavého výboje je využíváno v technologiích depozice povlaků nebo modifikace povrchů. Jedná se zejména o : - depozici povlaků magnetronovým

Více

Přednáška 8. Chemické metody a fyzikálně-chemické metody : princip CVD, metody dekompozice, PE CVD

Přednáška 8. Chemické metody a fyzikálně-chemické metody : princip CVD, metody dekompozice, PE CVD Přednáška 8 Chemické metody a fyzikálně-chemické metody : princip CVD, metody dekompozice, PE CVD CVD Chemical Vapor Deposition Je chemický proces používaný k vytváření tenkých vrstev. Substrát je vystaven

Více

Využití plazmových metod ve strojírenství. Metody depozice povlaků a tenkých vrstev

Využití plazmových metod ve strojírenství. Metody depozice povlaků a tenkých vrstev Využití plazmových metod ve strojírenství Metody depozice povlaků a tenkých vrstev Metody depozice povlaků Využití plazmatu pro depozice (nanášení) povlaků a tenkých vrstev je moderní a stále častěji aplikovaná

Více

VÝROBKY PRÁŠKOVÉ METALURGIE

VÝROBKY PRÁŠKOVÉ METALURGIE 1 VÝROBKY PRÁŠKOVÉ METALURGIE Použití práškové metalurgie Prášková metalurgie umožňuje výrobu součástí z práškových směsí kovů navzájem neslévatelných (W-Cu, W-Ag), tj. v tekutém stavu nemísitelných nebo

Více

Uhlíkové nanotrubičky (CNT) a jejich aplikační možnosti. Martina Koutná

Uhlíkové nanotrubičky (CNT) a jejich aplikační možnosti. Martina Koutná Uhlíkové nanotrubičky (CNT) a jejich aplikační možnosti Martina Koutná Bakalářská práce 2014 ABSTRAKT Tato práce se zabývá popisem uhlíkových nanotrubiček (CNT). První část práce je věnována historii

Více

Budoucnost patří uhlíkatým nanomateriálům

Budoucnost patří uhlíkatým nanomateriálům Budoucnost patří uhlíkatým nanomateriálům Otakar Frank Oddělení elektrochemických materiálů Ústav fyzikální chemie J. Heyrovského, v.v.i. Akademie věd ČR otakar.frank@jh-inst.cas.cz www.nanocarbon.cz Nanoúvod

Více

Vybrané technologie povrchových úprav. Metody vytváření tenkých vrstev Doc. Ing. Karel Daďourek 2008

Vybrané technologie povrchových úprav. Metody vytváření tenkých vrstev Doc. Ing. Karel Daďourek 2008 Vybrané technologie povrchových úprav Metody vytváření tenkých vrstev Doc. Ing. Karel Daďourek 2008 Metody vytváření tenkých vrstev Vakuové metody dnes nejužívanější CVD Chemical vapour deposition PE CVD

Více

Využití kalorimetrie při studiu nanočástic. Jindřich Leitner VŠCHT Praha

Využití kalorimetrie při studiu nanočástic. Jindřich Leitner VŠCHT Praha Využití kalorimetrie při studiu nanočástic Jindřich Leitner VŠCHT Praha Obsah přednášky 1. Velikost a tvar nanočástic 2. Povrchová energie 3. Teplota a entalpie tání 4. Tepelná kapacita a entropie 5. Molární

Více

Fullereny. Nanomateriály na bázi uhlíku

Fullereny. Nanomateriály na bázi uhlíku Fullereny Nanomateriály na bázi uhlíku Modifikace uhlíku základní alotropické modifikace C grafit diamant fullereny další modifikace grafen amorfní uhlík uhlíkaté nanotrubičky fullerit Modifikace uhlíku

Více

Plazmové metody Materiály a technologie přípravy M. Čada

Plazmové metody Materiály a technologie přípravy M. Čada Plazmové metody Existuje mnoho druhů výbojů v plynech. Ionizovaný plyn = elektrony + ionty + neutrály Depozice tenkých vrstev za pomocí plazmatu je jednou z nejpoužívanějších metod. Pomocí plazmatu lze

Více

Skupenské stavy látek. Mezimolekulární síly

Skupenské stavy látek. Mezimolekulární síly Skupenské stavy látek Mezimolekulární síly 1 Interakce iont-dipól Např. hydratační (solvatační) interakce mezi Na + (iont) a molekulou vody (dipól). Jde o nejsilnější mezimolekulární (nevazebnou) interakci.

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF MICROELECTRONICS KATODOVÉ

Více

Oddělení fyziky vrstev a povrchů makromolekulárních struktur

Oddělení fyziky vrstev a povrchů makromolekulárních struktur Oddělení fyziky vrstev a povrchů makromolekulárních struktur Témata diplomových prací 2014/2015 Studium změn elektrické vodivosti emeraldinových solí vystavených pokojovým a mírně zvýšeným teplotám klíčová

Více

Vzdělávání výzkumných pracovníků v Regionálním centru pokročilých technologií a materiálů reg. č.: CZ.1.07/2.3.00/09.0042

Vzdělávání výzkumných pracovníků v Regionálním centru pokročilých technologií a materiálů reg. č.: CZ.1.07/2.3.00/09.0042 Vzdělávání výzkumných pracovníků v Regionálním centru pokročilých technologií a materiálů reg. č.: CZ.1.07/2.3.00/09.0042 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem

Více

Anotace přednášek LŠVT 2015 Česká vakuová společnost. Téma: Plazmové technologie a procesy. Hotel Racek, Úštěk, 1 4. června 2015

Anotace přednášek LŠVT 2015 Česká vakuová společnost. Téma: Plazmové technologie a procesy. Hotel Racek, Úštěk, 1 4. června 2015 Anotace přednášek LŠVT 2015 Česká vakuová společnost Téma: Plazmové technologie a procesy Hotel Racek, Úštěk, 1 4. června 2015 1) Úvod do plasmochemie Lenka Zajíčková, Ústav fyzikální elektroniky, PřF

Více

Keramika. Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. K. Daďourek 2008

Keramika. Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. K. Daďourek 2008 Keramika Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. K. Daďourek 2008 Tuhost a váha materiálů Keramika má největší tuhost z technických materiálů Keramika je lehčí než kovy, ale

Více

REAKTIVNÍ MAGNETRONOVÉ NAPRAŠOV. Jan VALTER HVM Plasma s.r.o. www.hvm.cz

REAKTIVNÍ MAGNETRONOVÉ NAPRAŠOV. Jan VALTER HVM Plasma s.r.o. www.hvm.cz REAKTIVNÍ MAGNETRONOVÉ NAPRAŠOV OVÁNÍ Jan VALTER SCHEMA REAKTIVNÍHO NAPRAŠOV OVÁNÍ zdroj výboje katoda odprašovaný terč plasma inertní napouštění plynů reaktivní zdroj předpětí p o v l a k o v a n é s

Více

NANOSTRUKTURY NA BÁZI UHLÍKU A POLYMERU PRO VYUŽITÍ V BIOELEKTRONICE A V MEDICÍNE

NANOSTRUKTURY NA BÁZI UHLÍKU A POLYMERU PRO VYUŽITÍ V BIOELEKTRONICE A V MEDICÍNE Nanotechnologie pro společnost, KAN400480701 NANOSTUKTUY NA BÁZI UHLÍKU A POLYMEU PO VYUŽITÍ V BIOELEKTONICE A V MEDICÍNE ÚJF Řež, leden 2009 Temata řešená v rámci projektu na VŠCHT A4 Nanostruktury vytvořené

Více

Uhlík a jeho alotropy

Uhlík a jeho alotropy Uhlík Uhlík a jeho alotropy V přírodě se uhlík nachází zejména v karbonátových usazeninách, naftě, uhlí, a to jako směs grafitu a amorfní formy C. Rozeznáváme dvě základní krystalické formy uhlíku: a)

Více

Uhlík v elektrotechnice

Uhlík v elektrotechnice Uhlík v elektrotechnice Až do nedávné doby se vědělo, že uhlík má pouze formu diamantu nebo grafitu. Jejich využití je v elektrotechnice dlouhodobě známé. Avšak s nástupem zájmu vědeckých pracovišť o děje

Více

Metalografie ocelí a litin

Metalografie ocelí a litin Metalografie ocelí a litin Metalografie se zabývá pozorováním a zkoumáním vnitřní stavby neboli struktury kovů a slitin. Dále také stanoví, jak tato struktura souvisí s chemickým složením, teplotou a tepelným

Více

V005. Studium interakce tranzitních kovů s nanodiamanty a fullerény a příprava a modifikace jejich kompozitů. ( )

V005. Studium interakce tranzitních kovů s nanodiamanty a fullerény a příprava a modifikace jejich kompozitů. ( ) V005 Studium interakce tranzitních kovů s nanodiamanty a fullerény a příprava a modifikace jejich kompozitů. (2006-2009) J. Vacík, V. Lavrentiev, V. Bejšovec, V. Hnatowicz Hybridizace Hybridizace organických

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat

Více

Katedra materiálu.

Katedra materiálu. Katedra materiálu Vedoucí katedry: prof. Ing. Petr Louda, CSc. Zástupce vedoucího katedry: doc. Ing. Dora Kroisová, Ph.D. Tajemnice katedry: Ing. Daniela Odehnalová http://www.kmt.tul.cz/ EF TUL, Gaudeamus

Více

vodič u něho dochází k transportu el. nabitých částic, který je nevratný, dochází ke vzniku proudu a disipaci energie

vodič u něho dochází k transportu el. nabitých částic, který je nevratný, dochází ke vzniku proudu a disipaci energie Chování polymerů v elektrickém a magnetickém poli vodič u něho dochází k transportu el. nabitých částic, který je nevratný, dochází ke vzniku proudu a disipaci energie dielektrikum, izolant, nevodič v

Více

10/21/2013. K. Záruba. Chování a vlastnosti nanočástic ovlivňuje. velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita

10/21/2013. K. Záruba. Chování a vlastnosti nanočástic ovlivňuje. velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita Chování a vlastnosti nanočástic ovlivňuje velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita K. Záruba Optická mikroskopie Elektronová mikroskopie (SEM, TEM) Fotoelektronová

Více

Katedra chemie FP TUL Chemické metody přípravy vrstev

Katedra chemie FP TUL   Chemické metody přípravy vrstev Chemické metody přípravy vrstev Metoda sol-gel Historie nejstarší příprava silikagelu 1939 patent na výrobu antireflexních vrstev na fotografické čočky 60. léta studium vrstev SiO 2 a TiO 2 70. léta výroba

Více

Molekulová spektroskopie 1. Chemická vazba, UV/VIS

Molekulová spektroskopie 1. Chemická vazba, UV/VIS Molekulová spektroskopie 1 Chemická vazba, UV/VIS 1 Chemická vazba Silová interakce mezi dvěma atomy. Chemické vazby jsou soudržné síly působící mezi jednotlivými atomy nebo ionty v molekulách. Chemická

Více

Seminární práce Nanomateriály uhlíkové NANOtrubky

Seminární práce Nanomateriály uhlíkové NANOtrubky Seminární práce Nanomateriály uhlíkové NANOtrubky Antonín Čajka Od fullerenů k nanotrubkám. Fullereny nejsou pouze dvacetistěny C 60. Existuje také spousta jiných, jejichž tvar je více oblý a připomíná

Více

Hydrogenovaný grafen - grafan

Hydrogenovaný grafen - grafan Hydrogenovaný grafen - grafan Zdeněk Sofer, Daniel Bouša, Vlastimil Mazánek, Michal Nováček, Jan Luxa, Alena Libánská, Ondřej Jankovský, David Sedmidubský Ústav anorganické chemie, VŠCHT Praha, Technická

Více

Mikro a nanotribologie materiály, výroba a pohon MEMS

Mikro a nanotribologie materiály, výroba a pohon MEMS Tribologie Mikro a nanotribologie materiály, výroba a pohon MEMS vypracoval: Tomáš Píza Obsah - Co je to MEMS - Materiály pro MEMS - Výroba MEMS - Pohon MEMS Co to je MEMS - zkratka z anglických slov Micro-Electro-Mechanical-Systems

Více

TECHNOLOGICKÉ PROCESY PŘI VÝROBĚ POLOVODIČOVÝCH PRVKŮ III.

TECHNOLOGICKÉ PROCESY PŘI VÝROBĚ POLOVODIČOVÝCH PRVKŮ III. TECHNOLOGICKÉ PROCESY PŘI VÝROBĚ POLOVODIČOVÝCH PRVKŮ III. NANÁŠENÍ VRSTEV V mikroelektronice se nanáší tzv. tlusté a tenké vrstvy. a) Tlusté vrstvy: Používají se v hybridních integrovaných obvodech. Nanáší

Více

Chemické metody přípravy tenkých vrstev

Chemické metody přípravy tenkých vrstev Chemické metody přípravy tenkých vrstev verze 2013 Povrchové filmy monomolekulární Langmuirovy filmy PAL (povrchově aktivní látky) na polární kapalině (vodě), 0,205 nm 2 na 1 molekulu, tloušťka dána délkou

Více

Požadavky na technické materiály

Požadavky na technické materiály Základní pojmy Katedra materiálu, Strojní fakulta Technická univerzita v Liberci Základy materiálového inženýrství pro 1. r. Fakulty architektury Doc. Ing. Karel Daďourek, 2010 Rozdělení materiálů Požadavky

Více

nm. mory_cz_02_68x68mm_02.indd :31

nm. mory_cz_02_68x68mm_02.indd :31 20.000 nm mory_cz_02_68x68mm_02.indd 1 17-07-16 12:31 Uhlík strukturou podobný diamantu (Tvrdý) povlak mory_cz_02_68x68mm_02.indd 2 17-07-16 12:31 mory_cz_02_68x68mm_02.indd 3 17-07-16 12:31 Uhlík strukturou

Více

Plazmové depozice povlaků. Plazmový nástřik Plasma Spraying

Plazmové depozice povlaků. Plazmový nástřik Plasma Spraying Plazmové depozice povlaků Plazmový nástřik Plasma Spraying Plazmový nástřik patří do kategorie žárových nástřiků. Žárový nástřik je částicový proces vytváření povlaků o tloušťce obvykle větší než 50 µm,

Více

Nanokrystalické tenké filmy oxidu železitého pro solární štěpení vody

Nanokrystalické tenké filmy oxidu železitého pro solární štěpení vody Nanokrystalické tenké filmy oxidu železitého pro solární štěpení vody J. Frydrych, L. Machala, M. Mašláň, J. Pechoušek, M. Heřmánek, I. Medřík, R. Procházka, D. Jančík, R. Zbořil, J. Tuček, J. Filip a

Více

Lasery v mikroelektrotechnice. Soviš Jan Aplikovaná fyzika

Lasery v mikroelektrotechnice. Soviš Jan Aplikovaná fyzika Lasery v mikroelektrotechnice Soviš Jan Aplikovaná fyzika Obsah Úvod Laserové: žíhání rýhování (orýsování) dolaďování depozice tenkých vrstev dopování příměsí Úvod Vysoká hustota výkonu laseru změna struktury

Více

TECHNIKY VYTVÁŘENÍ NANOSTRUKTUROVANÝCH POVRCHŮ ELEKTROD U MIKROSOUČÁSTEK TECHNIQUES TO CREATE NANOSTRUCTURED SURFACES OF ELECTRODES FOR MICRO DEVICES

TECHNIKY VYTVÁŘENÍ NANOSTRUKTUROVANÝCH POVRCHŮ ELEKTROD U MIKROSOUČÁSTEK TECHNIQUES TO CREATE NANOSTRUCTURED SURFACES OF ELECTRODES FOR MICRO DEVICES TECHNIKY VYTVÁŘENÍ NANOSTRUKTUROVANÝCH POVRCHŮ ELEKTROD U MIKROSOUČÁSTEK TECHNIQUES TO CREATE NANOSTRUCTURED SURFACES OF ELECTRODES FOR MICRO DEVICES Jaromír Hubálek Ústav mikroelektroniky, FEKT, Vysoké

Více

CHEMICKY ČISTÁ LÁTKA A SMĚS

CHEMICKY ČISTÁ LÁTKA A SMĚS CHEMICKY ČISTÁ LÁTKA A SMĚS Látka = forma hmoty, která se skládá z velkého množství základních stavebních částic: atomů, iontů a... Látky se liší podle druhu částic, ze kterých se skládají. Druh částic

Více

Nano a mikrotechnologie v chemickém inženýrství. Hi-tech VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE ÚSTAV CHEMICKÉHO INŽENÝRSTVÍ

Nano a mikrotechnologie v chemickém inženýrství. Hi-tech VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE ÚSTAV CHEMICKÉHO INŽENÝRSTVÍ Nano a mikrotechnologie v chemickém inženýrství Hi-tech VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE ÚSTAV CHEMICKÉHO INŽENÝRSTVÍ Hi-tech Nano a mikro technologie v chemickém inženýrství umožňují: Samočisticí

Více

Nanogrant KAN ( )

Nanogrant KAN ( ) Nanogrant KAN400480701 (2007 2011) Nanostruktury na bázi uhlíku a polymerů pro využití v bioelektronice a medicíně Ústav jaderné fyziky AV ČR, Mgr. Jiří Vacík, CSc., koordinátor projektu ( Výroční seminář

Více

Iradiace tenké vrstvy ionty

Iradiace tenké vrstvy ionty Iradiace tenké vrstvy ionty Ve většině technologických aplikací dochází k depozici tenké vrstvy za nízké teploty > jsme v zóně I nebo T > vrstvá má sloupcovou strukturu, je porézní a hrubá. Ukazuje se,

Více

Uhlíkové nanotrubice. Rozdělení, struktura. Eva Košťáková KNT, FT, TUL

Uhlíkové nanotrubice. Rozdělení, struktura. Eva Košťáková KNT, FT, TUL Uhlíkové nanotrubice Rozdělení, struktura Eva Košťáková KNT, FT, TUL UHLÍK Uhlík je chemický prvek, tvořící základní kámen všech organických sloučenin a tím i všech živých organizmů. Charakteristickou

Více

Třídění látek. Chemie 1.KŠPA

Třídění látek. Chemie 1.KŠPA Třídění látek Chemie 1.KŠPA Systém (soustava) Vymezím si kus prostoru, látky v něm obsažené nazýváme systém soustava okolí svět Stěny soustavy Soustava může být: Izolovaná = stěny nedovolí výměnu částic

Více

Přednáška 3. Napařování : princip, rovnovážný tlak par, rychlost vypařování.

Přednáška 3. Napařování : princip, rovnovážný tlak par, rychlost vypařování. Přednáška 3 Napařování : princip, rovnovážný tlak par, rychlost vypařování. Realizace vypařovadel, směrovost vypařování, vypařování sloučenin a slitin, Vypařování elektronovým svazkem a MBE Napařování

Více

Uhlíkové nanotrubice. Rozdělení, struktura. Eva Kuželová Košťáková KNT, FT, TUL

Uhlíkové nanotrubice. Rozdělení, struktura. Eva Kuželová Košťáková KNT, FT, TUL Uhlíkové nanotrubice Rozdělení, struktura Eva Kuželová Košťáková KNT, FT, TUL CÍL Cíl: Pochopení a zapamatování struktury uhlíkových nanotrubic UHLÍKOVÉ NANOTRUBICE 3D VIZUALIZACE Snímky převzaty z: http://www.turbosquid.com,

Více

Gas Discharges. Overview of Different Types. 14. listopadu 2011

Gas Discharges. Overview of Different Types. 14. listopadu 2011 Gas Discharges Overview of Different Types Jan Voráč ÚFE 14. listopadu 2011 Obrázky použité v této prezentaci jsou nestoudně ukradeny z internetu, z archivů pracovníků ÚFE MU, ze skript Základy fyziky

Více

Lasery RTG záření Fyzika pevných látek

Lasery RTG záření Fyzika pevných látek Lasery RTG záření Fyzika pevných látek Lasery světlo monochromatické koherentní malá rozbíhavost svazku lze ho dobře zfokusovat aktivní prostředí rezonátor fotony bosony laser stejný kvantový stav učební

Více

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu. Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.

Více

Nanotechnologie a Nanomateriály na PřF UJEP Pavla Čapková

Nanotechnologie a Nanomateriály na PřF UJEP Pavla Čapková Přírodovědecká fakulta UJEP Ústí n.l. a Ústecké materiálové centrum na PřF UJEP http://sci.ujep.cz/faculty-of-science.html Nanotechnologie a Nanomateriály na PřF UJEP Pavla Čapková Kontakt: Doc. RNDr.

Více

Mikroskopie rastrující sondy

Mikroskopie rastrující sondy Mikroskopie rastrující sondy Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Metody mikroskopie rastrující sondy SPM (scanning( probe Microscopy) Metody mikroskopie rastrující sondy soubor

Více

Tenká vrstva - aplikace

Tenká vrstva - aplikace Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10; s platností do r. 2016 v návaznosti na platnost norem. Zákaz šíření a modifikace těchto materiálů. Děkuji Ing. D.

Více

Slitiny titanu pro použití (nejen) v medicíně

Slitiny titanu pro použití (nejen) v medicíně Slitiny titanu pro použití (nejen) v medicíně Josef Stráský a spol. Katedra fyziky materiálů MFF UK Obsah Vývoj slitin Ti pro použití v ortopedii Spolupráce: Beznoska s.r.o., Kladno Ultrajemnozrnné slitiny

Více

Tenké vrstvy pro lékařství 1. Laserové vrstvy ( metody přípravy vrstev, laser, princip metody pulzní laserové depozice PLD, růst vrstev, )

Tenké vrstvy pro lékařství 1. Laserové vrstvy ( metody přípravy vrstev, laser, princip metody pulzní laserové depozice PLD, růst vrstev, ) Tenké vrstvy pro lékařství 1. Laserové vrstvy ( metody přípravy vrstev, laser, princip metody pulzní laserové depozice PLD, růst vrstev, ) 2. Vybrané vrstvy a aplikace - gradientní vrstvy, nanokrystalické

Více

Adhezní síly v kompozitech

Adhezní síly v kompozitech Adhezní síly v kompozitech Nanokompozity Pro 5. ročník nanomateriály Fakulta mechatroniky Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010 Vazby na rozhraní

Více

Katalýza na nanostrukturách edí

Katalýza na nanostrukturách edí a životní prostřed edí Zdeněk Sobalík Ústav fyzikální chemie J. Heyrovského AVČR, Praha 300 250 200 150 100 50 0 1994 1996 1998 2000 2002 2004 2006 2008 10000 cat 8000 6000 4000 Počet publikací ve všech

Více

Výstupní práce Materiály a technologie přípravy M. Čada

Výstupní práce Materiály a technologie přípravy M. Čada Výstupní práce Makroskopická veličina charakterizující povrch z pohledu elektronických vlastností. Je to míra vazby elektronu k pevné látce a hraje důležitou roli při procesech transportu nabitých částic

Více

Glass temperature history

Glass temperature history Glass Glass temperature history Crystallization and nucleation Nucleation on temperature Crystallization on temperature New Applications of Glass Anorganické nanomateriály se skelnou matricí Martin Míka

Více

Podivuhodný grafen. Radek Kalousek a Jiří Spousta. Ústav fyzikálního inženýrství a CEITEC Vysoké učení technické v Brně. Čichnova 19. 9.

Podivuhodný grafen. Radek Kalousek a Jiří Spousta. Ústav fyzikálního inženýrství a CEITEC Vysoké učení technické v Brně. Čichnova 19. 9. Podivuhodný grafen Radek Kalousek a Jiří Spousta Ústav fyzikálního inženýrství a CEITEC Vysoké učení technické v Brně Čichnova 19. 9. 2014 Osnova přednášky Úvod Co je grafen? Trocha historie Některé podivuhodné

Více

Nové typy materiálů na bázi uhlíku. Ing. Stanislav Czudek, PhD Třinecké železárny, a.s. Koksochemická výroba

Nové typy materiálů na bázi uhlíku. Ing. Stanislav Czudek, PhD Třinecké železárny, a.s. Koksochemická výroba Nové typy materiálů na bázi uhlíku Ing. Stanislav Czudek, PhD Třinecké železárny, a.s. Koksochemická výroba Program prezentace Definice a vlastnosti Základní rozdělení Sorbenty Surovinová základna Technologie

Více

Zdroj: Bioceramics: Propertie s, Characterization, and applications (Biokeramika: Vlastnosti, charakterizace a aplikace) Překlad: Václav Petrák

Zdroj: Bioceramics: Propertie s, Characterization, and applications (Biokeramika: Vlastnosti, charakterizace a aplikace) Překlad: Václav Petrák Zdroj: Bioceramics: Properties, Characterization, and applications (Biokeramika: Vlastnosti, charakterizace a aplikace) Překlad: Václav Petrák Kapitola 8., strany: 167-177 8. Sklokeramika (a) Nádoby Corning

Více

Nauka o materiálu. Přednáška č.2 Poruchy krystalické mřížky

Nauka o materiálu. Přednáška č.2 Poruchy krystalické mřížky Nauka o materiálu Přednáška č.2 Poruchy krystalické mřížky Opakování z minula Materiál Degradační procesy Vnitřní stavba atomy, vazby Krystalické, amorfní, semikrystalické Vlastnosti materiálů chemické,

Více

Tepelné rozklady železo obsahujících sloučenin pohledem Mössbauerovy spektroskopie

Tepelné rozklady železo obsahujících sloučenin pohledem Mössbauerovy spektroskopie Tepelné rozklady železo obsahujících sloučenin pohledem Mössbauerovy spektroskopie Libor Machala E-mail: libor.machala@upol.cz 21.10.2011 Workshop v rámci projektu Pokročilé vzdělávání ve výzkumu a aplikacích

Více

Hmotnostní spektrometrie

Hmotnostní spektrometrie Hmotnostní spektrometrie Podstatou hmotnostní spektrometrie je studium iontů v plynném stavu. Tato metoda v sobě zahrnuje tři hlavní části:! generování iontů sledovaných atomů nebo molekul! separace iontů

Více

Fyzikální metody depozice KFY / P223

Fyzikální metody depozice KFY / P223 Fyzikální metody depozice KFY / P223 Obsah Vymezení pojmu tenkých vrstev, význam TV ve vědě a technice, přehled metod vytváření TV Růst tenkých vrstev: módy a fáze růstu TV, vliv parametrů procesu. Napařování

Více

PLASMA ENHANCED CVD. Modifikace práškových částic diamantu v chemické plazmové rotační reaktorové komoře

PLASMA ENHANCED CVD. Modifikace práškových částic diamantu v chemické plazmové rotační reaktorové komoře PLASMA ENHANCED CVD Modifikace práškových částic diamantu v chemické plazmové rotační reaktorové komoře Autor: Przemysław Ceynowa, Koszalin University of Technology, Poland CO JE CVD? Chemical vapor deposition

Více

Hmotnostní spektrometrie

Hmotnostní spektrometrie Hmotnostní spektrometrie Princip: 1. Ze vzorku jsou tvořeny ionty na úrovni molekul, nebo jejich zlomků (fragmentů), nebo až volných atomů dodáváním energie, např. uvolnění atomů ze vzorku nebo přímo rozštěpení

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice 6. FÁZOVÉ PŘEMĚNY KOVOVÝCH SOUSTAVÁCH Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace

Více

SPEKTROMETRIE. aneb co jsem se dozvěděla. autor: Zdeňka Baxová

SPEKTROMETRIE. aneb co jsem se dozvěděla. autor: Zdeňka Baxová SPEKTROMETRIE aneb co jsem se dozvěděla autor: Zdeňka Baxová FTIR spektrometrie analytická metoda identifikace látek (organických i anorganických) všech skupenství měříme pohlcení IČ záření (o různé vlnové

Více

Vytváření tenkých speciálních vrstev metodou plazmochemické depozice z plynné fáze

Vytváření tenkých speciálních vrstev metodou plazmochemické depozice z plynné fáze Vytváření tenkých speciálních vrstev metodou plazmochemické depozice z plynné fáze Teoretické základy: Plazmochemická depozice z plynné fáze metoda PECVD Rozvoj plazmochemických metod vytváření tenkých

Více

Nanotrubky. Seminární práce. Autor: Jiří Gabryš Datum: 24.11.2005 Obor: Nové technické materiály

Nanotrubky. Seminární práce. Autor: Jiří Gabryš Datum: 24.11.2005 Obor: Nové technické materiály Nanotrubky Seminární práce Autor: Jiří Gabryš Datum: 24.11.2005 Obor: Nové technické materiály Skupina: HM371 Obsah 1 Úvod...1 2 Historie...1 2.1 Fullereny...1 2.2 Od fullerenů k nanotrubkám...2 3 Vlastnosti

Více

Chemické metody plynná fáze

Chemické metody plynná fáze Chemické metody plynná fáze Chemické reakce prekurzorů lze aktivovat i UV zářením PHCVD. Foton aktivuje molekuly nebo atomy, které pak vytvářejí volné radikály nesoucí hodně energie > ty pak rozbijí velké

Více

FYZIKA VE FIRMĚ HVM PLASMA

FYZIKA VE FIRMĚ HVM PLASMA FYZIKA VE FIRMĚ HVM PLASMA Jiří Vyskočil HVM Plasma spol.s r.o. Na Hutmance 2, 158 00 Praha 5 OBSAH HVM PLASMA spol. s r.o. zaměření a historie firmy hlavní činnost a produkty POVRCHOVÉ TECHNOLOGIE metody

Více

Separace plynů a par. Karel Friess. Ústav fyzikální chemie, VŠCHT Praha. Seminář 10. 5. 2012 Praha

Separace plynů a par. Karel Friess. Ústav fyzikální chemie, VŠCHT Praha. Seminář 10. 5. 2012 Praha Separace plynů a par Karel Friess Ústav fyzikální chemie, VŠCHT Praha Seminář 10. 5. 2012 Praha Membránové separace SEPARAČNÍ MEMBRÁNA pasivní nebo aktivní bariéra průchodu částic mezi dvěma fázemi Pro

Více

Oxidace allotropických forem uhlíku

Oxidace allotropických forem uhlíku MASARYKOVA UNIVERZITA Přírodovědecká fakulta Obor: Chemie Oxidace allotropických forem uhlíku v prostředí plazmových výbojů Bakalářská práce Svatava Župková Vedoucí bakalářské práce: RNDr. Milan Alberti,

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í CHEMICKY ČISTÉ LÁTKY A SMĚSI Látka = forma hmoty, která se skládá z velkého množství základních částic: atomů, iontů a... 1. Přiřaďte látky: glukóza, sůl, vodík a helium k níže zobrazeným typům částic.

Více

Jiří Oswald. Fyzikální ústav AV ČR v.v.i.

Jiří Oswald. Fyzikální ústav AV ČR v.v.i. Jiří Oswald Fyzikální ústav AV ČR v.v.i. I. Úvod Polovodiče Zákládní pojmy Kvantově-rozměrový jev II. Luminiscence Si nanokrystalů III. Luminiscence polovodičových nanostruktur A III B V IV. Aplikace Pásová

Více

Návod pro laboratorní úlohu: Závislost citlivosti plynových vodivostních senzorů na teplotě

Návod pro laboratorní úlohu: Závislost citlivosti plynových vodivostních senzorů na teplotě Návod pro laboratorní úlohu: Závislost citlivosti plynových vodivostních senzorů na teplotě Náplní laboratorní úlohy je proměření základních parametrů plynových vodivostních senzorů: i) el. odpor a ii)

Více

Plazma v technologiích

Plazma v technologiích Plazma v technologiích Mezi moderními strojírenskými technologiemi se stále častěji prosazují metody využívající různé formy plazmatu. Plazma je plynné prostředí skládající se z poměrně volných částic,

Více

Fyzikální vlastnosti materiálů FX001

Fyzikální vlastnosti materiálů FX001 Fyzikální vlastnosti materiálů FX001 Ondřej Caha 1. Vazba v pevné látce, elastické a tepelné vlastnosti materiálů 2. Elektrické vlastnosti materiálů 3. Optické vlastnosti materiálů 4. Magnetické vlastnosti

Více

Technologie a vlastnosti tenkých vrstev, tenkovrstvé senzory

Technologie a vlastnosti tenkých vrstev, tenkovrstvé senzory Vysoká škola chemicko-technologická v Praze Technologie a vlastnosti tenkých vrstev, tenkovrstvé senzory Technologie CVD, PVD, PECVD, MOVPE, MBE, coating technologie (spin-, spray-, dip-) Ondřej Ekrt Vymezení

Více

Druhy vláken. Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008

Druhy vláken. Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008 Druhy vláken Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008 Druhy různých vláken Přírodní vlákna Skleněná vlákna Uhlíková a grafitová vlákna Aramidová a silonová

Více