MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE Číslo 2 (špeciálne vydanie), ročník 6., vydané vo februári 2018 ISSN 1339-3189 Kontakt: info@mladaveda.sk, tel.: +421 908 546 716, www.mladaveda.sk Fotografia na obálke: Schwebebahn, Wuppertal. Branislav A. Švorc, foto.branisko.at REDAKČNÁ RADA doc. Ing. Peter Adamišin, PhD. (Katedra environmentálneho manažmentu, Prešovská univerzita, Prešov) doc. Dr. Pavel Chromý, PhD. (Katedra sociální geografie a regionálního rozvoje, Univerzita Karlova, Praha) prof. Dr. Paul Robert Magocsi (Chair of Ukrainian Studies, University of Toronto; Royal Society of Canada) Ing. Lucia Mikušová, PhD. (Ústav biochémie, výživy a ochrany zdravia, Slovenská technická univerzita, Bratislava) doc. Ing. Peter Skok, CSc. (Ekomos s. r. o., Prešov) prof. Ing. Róbert Štefko, Ph.D. (Katedra marketingu a medzinárodného obchodu, Prešovská univerzita, Prešov) prof. PhDr. Peter Švorc, CSc.,predseda (Inštitút histórie, Prešovská univerzita, Prešov) doc. Ing. Petr Tománek, CSc. (Katedra veřejné ekonomiky, Vysoká škola báňská - Technická univerzita, Ostrava) REDAKCIA PhDr. Magdaléna Keresztesová, PhD. (Fakulta stredoeurópskych štúdií UKF, Nitra) Mgr. Martin Hajduk (Inštitút histórie, Prešovská univerzita, Prešov) RNDr. Richard Nikischer, Ph.D. (Ministerstvo pro místní rozvoj ČR, Praha) Mgr. Branislav A. Švorc, PhD., šéfredaktor (Vydavateľstvo UNIVERSUM, Prešov) PhDr. Veronika Trstianska, PhD. (Ústav stredoeurópskych jazykov a kultúr FSŠ UKF, Nitra) Mgr. Veronika Zuskáčová (Geografický ústav, Masarykova univerzita, Brno) VYDAVATEĽ Vydavateľstvo UNIVERSUM, spol. s r. o. www.universum-eu.sk Javorinská 26, 080 01 Prešov Slovenská republika Mladá veda / Young Science. Akékoľvek šírenie a rozmnožovanie textu, fotografií, údajov a iných informácií je možné len s písomným povolením redakcie.
ELEMENTÁRNÍ APLIKACE OBYČEJNÝCH DIFERENCIÁLNÍCH ROVNIC V PRAXI ELEMENTARY APPLICATION OF ORDINARY DIFFERENTIAL EQUATIONS IN PRACTICE Lukáš Polanecký 1 Lukáš Polanecký působí jako vedoucí Katedry ekonomiky na Vysoké škole technické a ekonomické v Českých Budějovicích. Jeho hlavním profesním zaměřením jsou finance podniku a podniková ekonomika. Lukáš Polanecký is the head of the Department of Economics at the University of Technology Economics in Czech Budejovice. His focus is on corporate finance business economy. Abstract This study focuses on the application of differential equations using mathematical models in practice. The authors focused their research on deterministic models (Plevný 2005) (models that do not include rom variables) contain a time factor (dinamic models) (Lukáš 2012) as well. Specific model which is solved by authors is The Ebbinghau s Model of Forgetting (Jaber 1997). This Model is solved based on results of studies of students at selected High School. The Authors thus created empirical research of forgetting, which will be used for the public. Research of this Study is not offered for the students only, but it can also be benefical at all employers whose employees returning to work after an extended sick leave or vacation. The final model shows that it is much better to learn as much subject matter that will be slowly forgotten. This fact will be shown in primary, secondary tertiary eduacation as well. We hope the study will encourage pupils students to continuous learning overall learning curriculum. Key words: Education, differential equations, Ebbinghau s model, curriculum Abstrakt Cílem této studie je zaměřit se na aplikaci diferenciálních rovnic pomocí matematických modelů v praxi. Autoři zaměřují svůj výzkum na deterministické modely (modely, které neobsahují náhodné veličiny) a zároveň obsahují faktor času (tedy dynamické modely). 1 Adresa pracoviska: Ing. Lukáš Polanecký, Institute of Technology Business in České Budejovice, Okružní 517/10, 370 01 České Budějovice, ČR E-mail: polanecky@mail.vstecb.cz; 21613@mail.vstecb.cz 128 http://www.mladaveda.sk
Konkrétní model, který autoři řeší je Ebbinghausův model zapomínání. Tento model autoři řeší na základě výsledků studia studentů na vybrané Vysoké škole. Autoři tedy vytvoří pomocí empirického výzkumu model zapomínání, který bude sloužit pro širokou veřejnost. Výzkum této studie není určen pouze na studenty, ale může být také přínosem všem zaměstnavatelům, jejichž zaměstnanci se vrací do práce po delší pracovní neschopnosti nebo dovolené. Kľúčové slová: Vzdělání, diferenciální rovnice, Ebbinghauův model, učební osnovy Title of the section (automatically numbered) One of this study s objectives is to increase the university students motivation to study ordinary differential equations they come across in selected subjects during their studies, also involving the equations necessary use in compulsory courses, such as Economic theory. This study aims to point out that the differential equations included in mathematics courses are meaningful may be used not only for solving economic relations. On the basis of empirical research similar to (Atkinson 2003) using certain mathematical relations, the authors will form a particular mathematical model of forgetting, which is based on (Heuser 1995). According to Samuel (Samuel 2002), most definitions of forgetting state that it is a loss of the ability to remember knowledge or to recall facts, or else, the inability to remember them. When an individual is distracted upon receiving a specific piece of information to an extent that he/she does not manage to sufficiently become conscious of it, he/she tends to forget it quicker than having an opportunity to repeat it think about its content. An important benchmark in this context is indeed the individual s age. Forgetfulness associated with aging is evident, but healthy elderly people generally remember things very well their forgetting is not so noticeable in comparison with younger people (Schacter 2003). Ebbinghaus observed that the majority of forgetting takes place in the nearest time after learning, slowing down afterwards. It is therefore important to repeat certain information as soon as possible after its learning. This phenomenon is shown by the Ebbinghaus forgetting curve which is not linear, but logarithmic. Also, a forgetting rate, which is initially higher, gradually decreases (Baddeley 2009). Furthermore, it is essential to note that a piece of knowledge, having both sense meaning, tends to be forgotten rather slower to a lesser extent than meaningless knowledge or material, with the wordings of rules principles being learnt or memorized the best (Nakonečný 2011). 129 http://www.mladaveda.sk
Figure 1 - Forgetting model The Ebbinghaus model in practice The Ebbinghaus model of forgetting assumes that the rate of forgetting knowledge after the test is directly proportional to the difference between what a student remembers what he never forget. It is assumend, that a good student knows to test 90 percent of the curicculum, a week after the test remembers 80 percent 20 percent of the curicculum never forget. A worse student knows to test 60 percent of the curicculum, a week after the test remembers 30 percent 10 percent of the curicculum never forget. Let create a model that could compare students knowledge over a given time period. The differential equation of the model Let us the function of forgetting as where represents time in weeks. Constant of forgetting denoted as the quantity of the curicculum that will never be forgotten is. The form of the equation is The solution of this equation is easy, we can us the variation of constans. This model which was created by authors is universal we can use a rom. Let solve our cases with the specific constans. 130 http://www.mladaveda.sk
The good student We need to know. The worse student We need to know. The GeoGebra For visualizing the data we can use The GeoGebra. This mathematical software is good for visualizing counting specific values in any time. Everybody can use our material here you can change our constants put your own. 131 http://www.mladaveda.sk
Figure 2- View our material in The GeoGebra Summary We have succeeded in construct general model of forgetting students. In our case with our specific constant we can say that it is much better to study more. Because our forgetting is substantially slowly than we learn 60 percent only. On the basis of empirical research similar to (Atkinson 2003) using certain mathematical relations. In describing economic growth, it is useful to use the lessons learned from the optimal management of theory. It has also been shown that the role of optimal control is relatively widespread for the creation of mathematical models with economic content. Therefore, it is important to pay attention to the conditions for an optimal process of optimal control, which are collectively called Pontrjagin's maxim principle. Here are shown the necessary conditions for the optimal solution of Lagrange tasks the demonstration of the necessary conditions for optimal solution of basic tasks of optimal control. This article was recommended for publication in the scientific journal Young Science by: Ing. Martin Maršík, Ph.D. Literature 1. ATKINSON, R. a kol. 2003. Psychologie. Portál, Praha 2. BADDELEY, A. a kol. Memory. 1. vyd. New York: Psychology Press, 2009. 451 s. ISBN 18-487- 2001-7. 3. HEUSER, H. 1995. Gewohnliche Differentialgleichungen. B.G.Taubner, Stuttgart 4. JABER, Mohamad. Bonney, Maurice. A comparative study of learning curves with forgetting. New York:Published by Elsevier Science, 1997. 8 s 5. LUKÁŠ, L. Pravděpodobnostní modely v managementu - teorie zásob a statistický popis poptávky. Praha: Academia, CMT, 2012. 207s. ISBN 978-80-200-2005-5. 6. NAKONEČNÝ, Milan. Psychologie: přehled základních oborů. 1. vyd. Praha: Triton, 2011. 863 s. ISBN 978-807-3874-438. 7. PLEVNÝ, M., M. Zižka. Modelování a optimalizace v manažerském rozhodování. V Plzni: Západočeská univerzita, 2005. 296s. ISBN 80-7043-435-X. 8. SAMUEL, D. Paměť. 1. vyd. Praha: Grada, 2002. 106 s. ISBN 80-247-0186-3. 9. SCHACTER, D. L. Sedm hříchů paměti: jak si pamatujeme a zapomínáme. 1. vyd. Praha: Paseka, 2003. 270 s. ISBN 80-718-5555-3. 132 http://www.mladaveda.sk