Přednáška č. 9. Systematická mineralogie. Princip klasifikace silikátů na základě jejich struktur.

Podobné dokumenty
Mineralogie I Prof. RNDr. Milan Novák, CSc.

Mineralogie II. Prof. RNDr. Milan Novák, CSc. Mineralogický systém silikáty II. Osnova přednášky: 1. Cyklosilikáty 2. Inosilikáty pyroxeny 3.

SOROSILIKÁTY Málo významná skupina, mají nízký stupeň polymerizace, dva spojené tetraedry Si2O7, někdy jsou ve struktuře přítomny SiO4 i Si2O7.

Systematická mineralogie

Fylosilikáty: tetraedry [SiO 4 ] 4- vázány do dvojrozměrných sítí

Silikáty. cca 1050 minerálů, tj. 26 % známých minerálů (údaj k r. 2002)

Optické vlastnosti horninotvorných minerálů II

Mikroskopie minerálů a hornin

Mineralogie I. Prof. RNDr. Milan Novák, CSc. Mineralogický systém - silikáty Osnova přednášky: 1. Strukturní a chemický základ pro klasifikaci

Mineralogie. pro Univerzitu třetího věku VŠB-TUO, HGF. 4. Systematická mineralogie. Silikáty

Geologie-Minerály I.

Základní horninotvorné minerály

Optické vlastnosti horninotvorných minerálů IV

Mineralogie Křemžska. Pro Jihočeský Mineralogický Klub Jirka Zikeš Jihočeský mineralogický klub

Optické vlastnosti horninotvorných minerálů I

Akcesorické minerály

Optické vlastnosti horninotvorných minerálů III

Geologie Horniny vyvřelé a přeměněné

Použití: méně významná ruda mědi, šperkařství.

Metamorfóza, metamorfované horniny

Vliv metody přepočtu chemických analýz amfibolů na jejich klasifikaci

Úvod do praktické geologie I

Přehled hornin vyvřelých

Mikroskopie minerálů a hornin

a) žula a gabro: zastoupení hlavních nerostů v horninách (pozorování pod lupou)

Přírodopis 9. Přehled minerálů KŘEMIČITANY

Mineralogický systém skupina VIII - křemičitany

Mineralogie I. Prof. RNDr. Milan Novák, CSc. Mineralogický systém - silikáty. Osnova přednášky:

Testové otázky ke zkoušce z předmětu Mineralogie

Přednáška č. 8. Systematická mineralogie. Princip klasifikace silikátů na základě jejich struktur.

Metamorfované horniny

NAKLÁDÁNÍ S NEBEZPEČNÝM ODPADEM ZE STAVEB, PROBLEMATIKA AZBESTU V KAMENIVU

Hlavní činitelé přeměny hornin. 1. stupeň za teploty 200 C a tlaku 200 Mpa. 2.stupeň za teploty 400 C a tlaku 450 Mpa

Geologie Horniny vyvřelé

135GEMZ Jan Valenta Katedra geotechniky K135 (5. patro budova B) Místnost B502

MASARYKOVA UNIVERZITA. Středoškolská odborná činnost

NÁZEV NEFRIT JADEIT. houževnatý a pevný vlastnosti Obecné tvary, agregáty. kryptokrystalický, břidlicovitý, jen kusový, celistvý.

Určování hlavních horninotvorných minerálů

METAMORFOVANÉ HORNINY

Struktura a textura hornin. Cvičení 1GEPE + 1GEO1

Mineralogie systematická /soustavná/

Environmentální geomorfologie

Platforma pro spolupráci v oblasti formování krajiny

Cyklus přednášek z mineralogie pro Jihočeský mineralogický klub. Jihočeský Mineralogický Klub

Základy geologie pro geografy František Vacek

Monazit. (Ce,La,Th)PO 4

G3121,G3121k - Poznávání minerálů a hornin

MAGMATICKÉ HORNINY - VYVŘELINY

PETROGRAFICKÝ ROZBOR VZORKU GRANODIORITU Z LOKALITY PROSETÍN I (vzorek č. ÚGN /85/)

OXIDY A HYDROXIDY. Systém oxidů - starší učebnice (např. Slavík a kol. 1974) řadí oxidy podle rostoucího podílu kyslíku ve vzorci

Poznávání minerálů a hornin. Vulkanické horniny

Výuková pomůcka pro cvičení ze geologie pro lesnické a zemědělské obory. Úvod do mineralogie

Poznávání minerálů a hornin. Cvičení 2 Fyzikální vlastnosti minerálů

PETROLOGIE =PETROGRAFIE

Metamorfované horniny

ALLANIT-(Ce) A MINERÁLY PRVKŮ VZÁCNÝCH ZEMIN VZNIKLÉ JEHO ALTERACÍ VE VLASTĚJOVICÍCH

Kolekce 20 hornin Kat. číslo

MINERÁLY. Environmentáln. lní geologie sylabus 2 Ladislav Strnad HORNINOTVORNÉ MINERÁLY

Mineralogie. 2. Vlastnosti minerálů. pro Univerzitu třetího věku VŠB-TUO, HGF. Ing. Jiří Mališ, Ph.D. tel. 4171, kanc.

ZÁKLADY GEOLOGIE. Úvod přednáška 1. RNDr. Aleš Vaněk, Ph.D. č. dveří: 234, FAPPZ

Přednáška č. 7. Systematická mineralogie. Vybrané minerály z třídy: Oxidů, karbonátů, sulfátů a fosfátů

Druhy magmatu. Alkalické ( Na, K, Ca, Al, SiO 2 )

PETROGRAFIE METAMORFITŮ

MINERÁLY II Minerály II

MINERÁLY (NEROSTY) PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

HORNINY. Lucie Coufalová

Úvod do mineralogie pro TM

Přírodopis 9. Přehled minerálů SIRNÍKY

Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/

Přírodopis 9. Přehled minerálů UHLIČITANY, SÍRANY, FOSFOREČNANY. Mgr. Jan Souček Základní škola Meziměstí. 15. hodina

- krystalické nebo sklovité horniny vzniklé ochlazením chladnutím, tuhnutím a krystalizací silikátové taveniny - magmatu

HORNINA: Agregáty (seskupení) různých minerálů, popř. organické hmoty, od minerálů se liší svojí látkovou a strukturní heterogenitou

TYPY HORNIN A JEJICH CHEMISMUS

Přednáška č. 4. Reálné krystaly přirozený vývin krystalových tvarů (habitus minerálů, zákonité a nahodilé krystalové srůsty).

VY_32_INOVACE_ / Vyvřelé, přeměněné horniny Vyvřelé magmatické horniny

Číslo klíčové aktivity: V/2

PRVKY. Kovy skupiny mědi Cu, Ag, Au

Přednáška č. 10. Systematická mineralogie. Princip klasifikace silikátů na základě jejich struktur.

Jak jsme na tom se znalostmi z geologie?

Krystaly v přírodě (vzhled reálných krystalů)

Mendelova univerzita v Brně. Lesnická a dřevařská fakulta GEOLOGIE. Aleš Bajer, Aleš Kučera, Valerie Vranová

Materiál slouží pro práci ve skupinách. Jde o pracovní list, žáci při práci mohou používat atlas hornin a nerostů. Autor

Petrologie G Metamorfóza a metamorfní facie

Malý atlas minerálů. jméno minerálu chemické složení zařazení v systému minerálů. achát

Cyklus přednášek z mineralogie pro Jihočeský mineralogický klub. Jihočeský Mineralogický Klub

Fyzikální krystalografie, makrodiagnostické fyzikální vlastnosti minerálů.

Metamorfované horniny. - žádné bezprostřední poznatky o jejich genezi. - poznání pouze výsledků metamorfních procesů

Minerály jejich fyzikální a chemické vlastnosti. Horniny magmatické, sedimentární, metamorfované

PRVKY. Kovy skupiny mědi Cu, Ag, Au

Fyzikální vlastnosti: štěpnost dle klence, tvrdost 3.5, hustota 3 g/cm 3. Je různě zbarven - bílý, šedý, naţloutlý, má skelný lesk.

Půdotvorné faktory, pedogeneze v přirozených lesích. Pavel Šamonil

Přírodopis 9. Fyzikální vlastnosti nerostů. Mgr. Jan Souček Základní škola Meziměstí. 8. hodina

Meteority, meteory, meteoroidy

horniny jsou seskupením minerálů nebo organických zbytků, příp. přírodními vulkanickými skly, které vznikají rozličnými geologickými procesy

Je to věda, nauka o horninách, zkoumá vznik, složení, vlastnosti a výskyt hornin.

TYPY HORNIN A JEJICH CHEMISMUS. Vliv na utváření primární struktury krajiny (předběžná verse) Sestavili J. Divíšek a M. Culek

SULFÁTY (SÍRANY) - krystaluje v soustavě rombické, na krátce sloupcovitých krystalech vyvinuta prizmata a pinakoidy. Agregáty jsou zrnité.

VZNIK SOPKY, ZÁKLADNÍ POJMY

6. Metamorfóza a metamorfní facie

Přednáška č. 6. Systematická mineralogie. Vybrané minerály z třídy: Sulfidů, halogenidů a karbonátů

Transkript:

Přednáška č. 9 Systematická mineralogie. Princip klasifikace silikátů na základě jejich struktur. Systematický přehled nejdůležitějších minerálů z třídy silikátů. Přehled technického použití vybraných minerálů a jejich výskyt.

Inosilikáty Základem struktury jsou tetraedry SiO 4 spojené přes vrcholové kyslíky do řetězců. Tyto řetězce mohou být jednoduché nebo dvojité a dále jedno-, dvoj- a vícečlánkové (v závislosti na délce základního motivu). Mezi nejběžnější inosilikáty patří pyroxeny (jednoduchý dvojčlánkový řetězec) a amfiboly (dvojitý dvojčlánkový řetězec).

Inosilikáty Tetraedry [SiO 4 ] 4 jsou uspořádány do nekonečných řetězců, nejčastěji jednoduchých nebo dvojitých. Řetězce jsou ve struktuře uloženy navzájem rovnoběžně. Tetraedry jsou kolem osy řetězce různě natočeny, takže ve směru řetězců se opakují různě dlouhé skupiny tetraedrů. Nejčastějšími kationty jsou Fe 2+, Mg 2+, Mn 2+, Al 3+, Ca 2+ a Na +. Některé inosilikáty obsahují i cizí anionty jako (OH) a F. Inosilikáty často vytvářejí sloupcovité, stébelnaté až vláknité krystaly protažené ve směru řetězců, které obvykle tvoří nepravidelně, rovnoběžně nebo paprsčitě uspořádané agregáty. Rovnoběžně s řetězci probíhají velmi často plochy štěpnosti. Mezi inosilikáty patří především: a) pyroxeny Inosilikáty s jednoduchými dvojčlánkovými řetězci (ve směru řetězců se periodicky opakuje skupina dvou tetraedrů [Si 2 O 6 ] 4 ). Jsou monoklinické (2/m) a rombické (2/m2/m2/m).

Inosilikáty Tetraedry [SiO 4 ] 4 jsou uspořádány do nekonečných řetězců, nejčastěji jednoduchých nebo dvojitých. Řetězce jsou ve struktuře uloženy navzájem rovnoběžně. Tetraedry jsou kolem osy řetězce různě natočeny, takže ve směru řetězců se opakují různě dlouhé skupiny tetraedrů. Nejčastějšími kationty jsou Fe 2+, Mg 2+, Mn 2+, Al 3+, Ca 2+ a Na +. Některé inosilikáty obsahují i cizí anionty jako (OH) a F. Inosilikáty často vytvářejí sloupcovité, stébelnaté až vláknité krystaly protažené ve směru řetězců, které obvykle tvoří nepravidelně, rovnoběžně nebo paprsčitě uspořádané agregáty. Rovnoběžně s řetězci probíhají velmi často plochy štěpnosti. Mezi inosilikáty patří především: b) amfiboly Inosilikáty s dvojitými dvojčlánkovými řetězci (skupina [Si 4 O 11 ] 6 ). Jsou monoklnické (2/m) a rombické (2/m2/m2/m). Velmi složitá skupina sestávající z několika izomorfních řad s velkým počtem krajních členů.

Inosilikáty Tetraedry [SiO 4 ] 4 jsou uspořádány do nekonečných řetězců, nejčastěji jednoduchých nebo dvojitých. Řetězce jsou ve struktuře uloženy navzájem rovnoběžně. Tetraedry jsou kolem osy řetězce různě natočeny, takže ve směru řetězců se opakují různě dlouhé skupiny tetraedrů. Nejčastějšími kationty jsou Fe 2+, Mg 2+, Mn 2+, Al 3+, Ca 2+ a Na +. Některé inosilikáty obsahují i cizí anionty jako (OH) a F. Inosilikáty často vytvářejí sloupcovité, stébelnaté až vláknité krystaly protažené ve směru řetězců, které obvykle tvoří nepravidelně, rovnoběžně nebo paprsčitě uspořádané agregáty. Rovnoběžně s řetězci probíhají velmi často plochy štěpnosti. Mezi inosilikáty patří především: c) pyroxenoidy Inosilikáty s jednoduchými vícečlánkovými (troj, pěti, šesti, sedmičlánkovými) řetězci (skupiny [Si 3 O 9 ] 6, [Si 5 O 15 ] 10, [Si 6 O 18 ] 12, [Si 7 O 21 ] 14 ). Většinou jsou triklinické.

Inosilikáty Pyroxeny a amfiboly patří k významným horninotvorným minerálům magmatických a silněji metamorfovaných hornin. V důsledku podobné struktury jsou často vzájemně makroskopicky natolik podobné, že jejich rozlišení může činit obtíže. Hlavní rozpoznávací znaky pyroxenů a amfibolů jsou: pyroxeny amfiboly habitus krystalů většinou krátce sloupcovité většinou dlouze sloupcovité, stébelnaté, jehličkovité příčný průřez krystalů štěpnost většinou osmiúhelníkový nebo čtvercový podle {110} dobrá, štěpné plochy svírají úhel cca 90, bývají stupňovité. většinou šestiúhelníkovitý nebo kosočtverečný podle {110} dokonalá, štěpné plochy svírají úhel cca 120. Často skelný lesk na štěpných plochách. v mikroskopu většinou bezbarvé nebo nahnědlé, bez pleochroizmu nebo jen slabý pleochroizmus, úhel zhášení 30 50. často výrazně zbarvené, hlavně zeleně, výrazný pleochroizmus, úhel zhášení 0 24.

Inosilikáty s jednoduchými řetězci tetraedrů [SiO 3 ] 2- - pyroxeny b Diopsid: CaMg [Si 2 O 6 ] a sinβ Diopsid (001) modrá = Si fialová = M1 (Mg) žlutá = M2 (Ca)

Inosilikáty s jednoduchými řetězci tetraedrů [SiO 3 ] 2- - pyroxeny Minerály této skupiny mohou být izomorfní směsi asi dvaceti koncových členů. Obecný vzorec pyroxenů lze psát ve tvaru: XYZ 2 O 6 X atomy Na +, Li +, Ca +2, Mg +2, Fe +2 nebo Mn +2 a odpovídá strukturní pozici M2. Y atomy Mn +2, Fe +2, Mg +2, Fe +3, Al +3, Cr +3, Ti +3 a odpovídá strukturní pozici M1. Z je tetraedrická pozice v silkátovém řetězci a je obsazována atomy Si +4 a Al +3. Kationty v pozici X (M2) mají zpravidla větší iontový poloměr než kationty v pozici Y. Podle uvedené klasifikace se pyroxeny člení do několika skupin na základě svého chemického složení. Pro potřeby základního přehledu můžeme ve skupině pyroxenů vyčlenit tři podskupiny: (a) Mg Fe-pyroxeny (b) Ca-pyroxeny (c) alkalické pyroxeny.

Inosilikáty s jednoduchými řetězci tetraedrů [SiO 3 ] 2- - pyroxeny Přehled pyroxenů: a) Mg Fe pyroxeny: řada Mg 2 Si 2 O 6 (enstatit) - Fe 2 Si 2 O 6 (ferrosilit) Pyroxen s převahou enstatitové složky se vyskytuje v bazických a ultrabazických horninách (gabra, nority, pyroxenit) a ve vysoce metamorfovaných horninách (granulity). Ferrosilit je vzácný.

Inosilikáty s jednoduchými řetězci tetraedrů [SiO 3 ] 2- - pyroxeny Přehled pyroxenů: a) Mg Fe pyroxeny: řada Mg 2 Si 2 O 6 (enstatit)

Inosilikáty s jednoduchými řetězci tetraedrů [SiO 3 ] 2- - pyroxeny Přehled pyroxenů: b) Ca-pyroxeny: řada CaMgSi 2 O 6 (diopsid) - CaFeSi 2 O 6 (hedenbergit) plus augit (Ca, Na) (Mg, Fe, Al, Ti) (Si,Al) 2 O 6 Diopsidické pyroxeny jsou typické pro kontaktně metamorfované karbonátové horniny a pro metamorfované horninyfacie granátických amfibolitů bohatši na Mg. Pyroxeny s převahou hedenbergitové složky se uplatňují hlavně v kontaktně a regionálně metamorfovaných horninách bohatých Fe (erlány, skarny), méně často gabrech, syenitech a pegmatitech. Augity mívají zpravidla velmi komplikované složení a tvoří nejrůznější přechody mezi koncovými členy (např. eagirinaugit, Ti - augit). Je to minerál bazických a ultrabazických intruzív (gabra) a efuzív (bazalty, pyroklastické horniny), běžný je v alkalických horninách. Při metamorfóze se mění (uralitizace) na amfiboly.

Inosilikáty s jednoduchými řetězci tetraedrů [SiO 3 ] 2- - pyroxeny Přehled pyroxenů: b) Ca-pyroxeny: řada CaMgSi 2 O 6 (diopsid) - CaFeSi 2 O 6 (hedenbergit) plus augit (Ca, Na) (Mg, Fe, Al, Ti) (Si,Al) 2 O 6

Inosilikáty s jednoduchými řetězci tetraedrů [SiO 3 ] 2- - pyroxeny Přehled pyroxenů: b) Ca-pyroxeny: řada CaMgSi 2 O 6 (diopsid) - CaFeSi 2 O 6 (hedenbergit) plus augit (Ca, Na) (Mg, Fe, Al, Ti) (Si,Al) 2 O 6

Inosilikáty s jednoduchými řetězci tetraedrů [SiO 3 ] 2- - pyroxeny Přehled pyroxenů: b) Ca-pyroxeny: řada CaMgSi 2 O 6 (diopsid) - CaFeSi 2 O 6 (hedenbergit) plus augit (Ca, Na) (Mg, Fe, Al, Ti) (Si,Al) 2 O 6

Inosilikáty s jednoduchými řetězci tetraedrů [SiO 3 ] 2- - pyroxeny Přehled pyroxenů: c) alkalické pyroxeny: NaAlSi 2 O 6 (jadeit) Mísitelnost s aegirinem omezená. Patří do skupiny alkalických pyroxenů. Typický minerál vysokotlakých hornin (vzniká reakcí nefelín + albit = 2 jadeit) např. glaukofanity. Použití pro umělecké předměty. NaFe +3 Si 2 O 6 (aegirin) Typický nerost alkalických hornin jako jsou nefelinické syenity a jejich efuzíva, častý je i ve fonolitech, pikritech a těšínitech. LiAlSi 2 O 6 (spodumen)

Inosilikáty s jednoduchými řetězci tetraedrů [SiO 3 ] 2- - pyroxeny Přehled pyroxenů: c) alkalické pyroxeny: NaFe +3 Si 2 O 6 (aegirin)

Inosilikáty s jednoduchými řetězci tetraedrů [SiO 3 ] 2- - pyroxeny Vlastnosti Nejčastěji v zrnitých až krátce stébelnatých agregátech, automorfně omezené sloupcovité nebo tlustě až tence tabulkovité xx vytvářejí hlavně klinopyroxeny. Běžné je (polysyntetické) dvojčatění klinopyroxenů podle (100), méně běžné podle dalších zákonů. Hojné jsou mikroskopické orientované lamelární odmíšeniny ortopyroxenů v krystalech klinopyroxenů a opačně. Pyroxeny jsou (makroskopicky) neprůhlené, nejčastěji černé až hnědé, zelené, šedozelené. Tvrdost 5 7, hustota 3,0 3,7 g.cm 3. Všechny pyroxeny mají dobrou štěpnost podle vertikálního prizmatu [110], štěpné plochy svírají úhel blízký 90º. Štěpné plochy bývají stupňovité.

Inosilikáty s jednoduchými řetězci tetraedrů [SiO 3 ] 2- - pyroxeny Výskyt Významné horninotvorné minerály některých magmatických hornin, zejména intermediárních, bazických a ultrabazických (syenity, andezity, diority, gabra, nority, bazalty, peridotity atd.). Mohou vytvářet až monominerální horniny (pyroxenity). Hojně se vyskytují i v silněji metamorfovaných horninách (mramory, erlany, skarny, eklogity, granulity atd.). Pyroxeny jako vysokoteplotní minerály za nižších pt podmínek snadno podléhají přeměnám na serpentinové minerály ( enstatit), chlority ( augit), amfiboly ( cpx i opx, tzv. uralitizace).

Inosilikáty s jednoduchými řetězci tetraedrů [SiO 3 ] 2- - pyroxeny Význam Praktický význam v technickém smyslu většinou nemají, s výjimkou spodumenu, který je důležitou rudou Li. Enstatit je výjimečně používán na výrobu žáruvzdorné keramiky.

Inosilikáty s dvojiými řetězci tetraedrů [Si 4 O 11 ] 4- - amfiboly b Tremolit: Ca 2 Mg 5 [Si 8 O 22 ] (OH) 2 a sinβ Tremolit (001) modrá = Si fialová = M1 růžová = M2 světle modrá = M3 ( Mg) žlutá = M4 (Ca)

Inosilikáty s dvojiými řetězci tetraedrů [Si 4 O 11 ] 4- - amfiboly Jedná se o rozsáhlou skupinu horninotvorných minerálů, jejichž složení je zpravidla poměrně komplikované a vyjadřuje se pomocí velkého množství koncových členů. Obecný vzorec amfibolů je A 0-1 B 2 C VI 5 TIV 8 O 22 (OH,F,Cl) 2, kde pozici T můžou obsazovat atomy Si, Fe, Al, Cr, pozici C atomy Al, Cr, Ti, Fe +3, Mg, Fe +2 a Mn, pozici B pak Fe +2, Mg, Mn, Ca a Na a pozici A atomy Na, K a Li. Základem struktury amfibolů jsou dvojité řetězce tetraedrů [SiO 4 ] 4, uložené vzájemně rovnoběžně ve směru vertikály. Ve směru protažení se periodicky opakuje skupina čtyř tetraedrů [Si 4 O 11 ] 6 (dvojčlánkový řetězec). Část Si 4+ v tetraedrech může být nahrazena Al 3+. Mezi řetězci jsou určitým způsobem uloženy kationty W, X, Y. Amfiboly jsou monoklinické, výjimečně rombické.

Inosilikáty s dvojiými řetězci tetraedrů [Si 4 O 11 ] 4- - amfiboly V současné mineralogické literatuře je popsáno cca 75 (!!!) koncových členů této skupiny se široce rozvinutým izomorfním zastupováním prvků. Nomenklatura amfibolů je proto neobyčejně komplikovaná. Zjednodušeně můžeme amfiboly rozdělit na tři podskupiny: (a) Mg Fe amfiboly (b) Ca-amfiboly (c) alkalické amfiboly.

Inosilikáty s dvojiými řetězci tetraedrů [Si 4 O 11 ] 4- - amfiboly Přehled amfibolů: antofylit (Mg,Fe) 7 Si 8 O 22 (OH) 2 Vyskytuje se jako sekundární minerál - produkt přeměny minerálů ultrabazických hornin a jako rekční lem na kontaktu s intruzívy. Je také minerálem Mg bohatých hornin facie granátických amfibolitů. tremolit Ca 2 Mg 5 Si 8 O 22 (OH) 2 Je produktem regionální metamorfózy, kdy vzniká z olivínu a pyroxenů. Častý je také v desilikovaných pegmatitech a na žilách alpské parageneze. Zcela běžný je v metamorfovaných mramorech a dolomitech. obecný amfibol složení je zpravidla kombinací pargasitu, tschermakitu, hastingsitu a dalších koncových členů Pojem obecný amfibol se požívá pro běžné horninotvorné amfiboly. Zpravidla se jedná o kombinaci několika krajních členů Ca nebo Na-Ca amfibolů. Variety vulkanických hornin zpravidla podstatněji obsahují Fe +3. Jedná se o běžné horninotvorné amfiboly přítomné ve vyvřelých (syenity, diority, gabra, hornblendity) a metamorfovaných horninách(amfibolity, ruly).

Inosilikáty s dvojiými řetězci tetraedrů [Si 4 O 11 ] 4- - amfiboly Přehled amfibolů: antofylit (Mg,Fe) 7 Si 8 O 22 (OH) 2

Inosilikáty s dvojiými řetězci tetraedrů [Si 4 O 11 ] 4- - amfiboly Vlastnosti Amfiboly vytvářejí nejčastěji sloupcovité, stébelnaté až jehličkovité agregáty, méně často dobře omezené krátce až dlouze sloupcovité xx s kosočtverečným nebo šestiúhelníkovým průřezem. Poměrně hojné jsou plstnaté formy amfibolů, tzv. amfibolové azbesty (hl. riebeckit, antofylit, aktinolit, tremolit). Časté je dvojčatěni monoklinických amfibolů podle (100), jednoduché nebo polysyntetické. Amfiboly jsou neprůhledné, nejčastěji černé, černohnědé, zelené. Jsou dokonale štěpné podle {110}, úhel štěpných ploch je blízký 120. Na štěpných plochách bývají výrazně skelně lesklé. Tvrdost většinou 5 6, hustota 2,9 3,6 g.cm 3.

Inosilikáty s dvojiými řetězci tetraedrů [Si 4 O 11 ] 4- - amfiboly Výskyt Významné horninotvorné minerály. Vyskytují se ve většině magmatických hornin, jsou běžné v kontaktně i regionálně metamorfovaných horninách. Podmínkou pro vznik amfibolů je přítomnost vody v krystalizačním prostředí. Jsou důležitými indikátory pt podmínek vzniku hornin. Rozkladnými produkty amfibolů jsou nejčastěji chlorit, epidot a mastek.

Inosilikáty s dvojiými řetězci tetraedrů [Si 4 O 11 ] 4- - amfiboly Význam Praktické využití mají především amfibolové azbesty. Jsou nehořlavé, chemicky i mechanicky odolné, někdy je lze i spřádat. Mají tepelně, akusticky a elektricky izolační vlastnosti a jsou relativně levné. Používají se na výrobu brzdových destiček, elektrických a tepelných izolací, střešních desek (eternit), protipožárních zábran, nehořlavých a chemicky odolných textilií, filtrů, zvukových izolací atd. V současné době se amfibolové azbesty přestávají používat v obytných a veřejných prostorách pro jejich údajné karcinogenní účinky, přesto je jejich průmyslová spotřeba značná.

Ideální pyroxenové řetězce s pravidelným opakováním dvojic tetraedrů po 5.2 A jsou deformovány pokud pozice M1 okupují jiné kationty Pyroxenoidy 17.4 A 5.2 A 7.1 A 12.5 A Pyroxen Wollastonit (Ca M1) Rhodonit MnSiO 3 Pyroxmangit (Mn, Fe)SiO 3

Inosilikáty s jednoduchými řetězci tetraedrů [SiO 3 ] 2- - wollastonit Chemický vzorec: CaSiO 3 Forma výskytu: Jehlicovité nebo vláknité, často radiálně paprsčité agragáty, někdy též zrnitý nebo celistvý. Fyzikální vlastnosti: T = 5-5,5; H = 2,8-2,9; barva bílá, šedá nebo bezbarvý, lesk skelný, perleťový nebo hedvábný, štěpnost dokonalá podle (100) a (001), dobrá podle (-101) a (-201). Při 1120 C přechází na pseudowollastonit. Složení : Zpravidla bývá velmi čistý, může mít malý podíl Fe nebo Mn. Vznik a výskyt: Typický kontaktní minerál erlánů, skarnů nebo mramorů, často tvoří až monominerální horninu. Vzniká reakcí kalcitu a křemene za současného uvolnění CO 2. Naleziště: Žulová, Vápenná, Bludov, Nedvědice (kontaktní horniny) Použití: ve stavebnictví Diagnostické znaky: agregace, štěpnost

Inosilikáty s jednoduchými řetězci tetraedrů [SiO 3 ] 2- - wollastonit

Fylosilikáty: tetraedry [SiO 4 ] 4- vázány do dvojrozměrných sítí Většina fylosilikátů má destičkovitý nebo lístkovitý habitus s dokonalou štěpností, což je dáno přítomností nekonečných sítí ve struktuře, jejichž součástí jsou i Si tetraedry. Jednotlivé sítě jsou pak mezi sebou vázány do vrstev poměrně slabými silami. Ve fylosilikátech se mohou vrstvy kombinovat různým způsobem. Klad jednotlivých vrstev může být různý, takže vzniká prostor pro vznik různých polytypů. Vazba mezi vrstevnými komplexy sítí může být různá - jedná se buď o slabé elektrostatické síly spojené přítomností (OH) skupin, nebo může být mezi komplexy sítí umístěn tzv. mezivrstevní kation (zpravidla Na, K, Ca). Tím počet možných kombinací uspořádání struktur opět narůstá. Identifikace fylosilikátů na základě běžných fyzikálních vlastností nebo i chemismu je zpravidla velmi obtížná a je proto třeba využít RTG difrakčních technik. Pomocí nich je možno snadno zjistit mezivrstevní vzdálenost - tedy velikost základního motivu ve směru osy c. Tato vzdálenost (bazálních strukturních rovin) se u běžných fylosilikátů pohybuje od 7 do 21. 10-10 m.

Skupina serpentinu Do této skupiny patří několik minerálů, z nichž nejběžnější jsou chrysotil a antigorit. Mezivrstevní vzdálenost bývá 7-7,4. 10-10 m. Chemický vzorec: Mg 6 Si 4 O 10 (OH) 8 Forma výskytu: Antigorit tvoří destičkovité krystaly a šupinkovité agregáty, chrysotil tvoří celistvé nebo vláknité agregáty, často je ve formě azbestu. Fyzikální vlastnosti: T kolem 4, H = 2,5-2,6; barva obou žlutavá, zelenavá, hnědozelená, lesk skelný nebo perleťový, antigorit je dokonale štěpný podle báze. Složení a struktura: Antigorit - vrstvy ve tvaru vlnitého plechu. Chrysotil - vrstvy stočené do válců nebo trubiček (makroskopicky pak vlákna). Vznik a výskyt: Oba minerály jsou produktem přeměny olivínu a tvoří z více jak 90% serpentinity (metamorfovaná ultrabazika). Naleziště: Borek u Golčova Jeníkova, Hrubšice, Věžná (hadce) Použití: chrysotil se využívá jako azbest Diagnostické znaky: lístkovité nebo vláknité agregáty, barva

Skupina serpentinu Do této skupiny patří několik minerálů, z nichž nejběžnější jsou chrysotil a antigorit.

Skupina serpentinu Do této skupiny patří několik minerálů, z nichž nejběžnější jsou chrysotil a antigorit.

Jílové minerály Obecné označení minerálů, které tvoří podstatnou část jílů (významě jsou zastoupeny i v půdách) a jsou i zodpovědné za jejich typické vlastnosti - plasticitu, bobtnavost a sorpční schopnosti. Existuje jich celá řada s různými typy struktur a jednotlivé strukturní typy se navzájem kombinují za vzniku tzv. smíšených struktur. KAOLINIT Al 4 Si 4 O 10 (OH) 8 Forma výskytu: Tvoří tenké pseudohexagonální destičky a šupinky, agregáty jsou zpravidla celistvé nebo zemité. Fyzikální vlastnosti: T = 1-2; H = 2,6; barva bílá, žlutá, hnědavá, ve vlhku je plastický. Složení a struktura: Bývá zpravidla poměrně čistý, mívá hlavně mechanické nečistoty. Vznik a výskyt: Vzniká zvětráváním živců v kyselém prostředí. Je běžný na pegmatitech, v kyselých granitoidech a při intenzivním zvětrávání tvoří rozsáhlá ložiska. Naleziště: Horní Bříza, Lažánky u Veverské Bytíšky, Karlovarsko Použití: surovina keramického průmyslu!!! Diagnostické znaky: plasticita

Jílové minerály Obecné označení minerálů, které tvoří podstatnou část jílů (významě jsou zastoupeny i v půdách) a jsou i zodpovědné za jejich typické vlastnosti - plasticitu, bobtnavost a sorpční schopnosti. Existuje jich celá řada s různými typy struktur a jednotlivé strukturní typy se navzájem kombinují za vzniku tzv. smíšených struktur. KAOLINIT Al 4 Si 4 O 10 (OH) 8

MASTEK Mg 3 Si 4 O 10 (OH) 2 Forma výskytu: Tabulkovité, jemně zrnité až celistvé agregáty. Fyzikální vlastnosti: T = 1; H = 2,7-2,8; barva bílá, světle zelená, lesk mastný nebo perleťový. Dokonalá štěpnost podle (001). Složení a struktura: Může obsahovat malé množství Al, Ti a Fe. Vznik a výskyt: Produkt hydrotermální alterace ultrabazik a serpentinitů, kdy vzniká z olivínu a pyroxenu. Objevuje se v pegmatitech a na některých hydrotermálních žilách. Je podstatnou složkou mastkových břidlic. Naleziště: Smrčina a Zadní Hutisko u Sobotína (krupníky), Drahonín (pegmatit) Použití: Používá se jako přísada např. do papíru nebo keramiky Diagnostické znaky: tvrdost

MASTEK Mg 3 Si 4 O 10 (OH) 2

Skupina slíd Slídy jsou fylosilikáty 2:1 s mezivrstevním kationtem, krystalizující v monoklinické symetrii. Mezi jednotlivými koncovými členy je možná omezená iontová substituce. MUSKOVIT KAl 2 (AlSi 3 O 10 )(OH) 2 Forma výskytu: Krystaly jsou tabulkovité nebo šupinkovité, dvojčata podle (001). Fyzikální vlastnosti: T = 2-2,5; H = 2,76-2,88; bývá bezbarvý, světle šedý nebo nazelenalý, perleťový lesk. Šupinky jsou pružné, štěpnost dokonalá podle báze. Složení a struktura: Zpravidla zastupuje vždy malé množství Fe, Mg a Ti, v pozici mezivrstevního kationtu může částečně zastupovat Na, Li nebo Ca. Mezivrstevní vzdálenost bývá kolem 10.10-10 m. Vznik a výskyt: Je důležitým horninotvorným minerálem v kyselých granitoidech (žula, pegmatit), metamorfitech (fylit, svor) i sedimentech (slepence). Naleziště: Otov, Bory, Maršíkov (pegmatity), Přibyslavice u Čáslavi (žuly), svory v Jeseníkách Použití: v elektrotechnice Diagnostické znaky: barva, štěpnost

Skupina slíd Slídy jsou fylosilikáty 2:1 s mezivrstevním kationtem, krystalizující v monoklinické symetrii. Mezi jednotlivými koncovými členy je možná omezená iontová substituce. MUSKOVIT KAl 2 (AlSi 3 O 10 )(OH) 2

BIOTIT K(Mg,Fe) 3 (AlSi 3 O 10 )(OH) 2 Forma výskytu: Tabulkovité krystaly s pseudohexagonálním průřezem, dvojčatné srůsty podle (001). Agregáty lupenité nebo masívní. Fyzikální vlastnosti: T = 2,5-3; H = 2,8-3,2; barva tmavě hnědá až černá, lesk perleťový, dokonalá bazální štěpnost. Vznik a výskyt: Běžný minerál vyvřelých hornin (granodiorit, diorit, syenit, pegmatity) a běžný i v metamorfovaných horninách (svor, rula). Zvětráváním se mění na chlority nebo smektity (jílové minerály). Naleziště: Bory, Věžná (pegmatity), Blansko (granodiority), Diagnostické znaky: barva, štěpnost

BIOTIT K(Mg,Fe) 3 (AlSi 3 O 10 )(OH) 2

LEPIDOLIT K(Li,Al) 3 (AlSi 3 O 10 )(OH) 2 Forma výskytu: Zpravidla šupinkaté až jemnozrnné agregáty. Fyzikální vlastnosti: T = 2,5-4; H = 2,8-2,9, barva bílá, červená, zelená nebo fialová, lesk perleťový, dokonalá bazální štěpnost. Složení: Komplikované, do struktury vstupují prvky jako Na, Rb, Cs, F, Cl. Vznik a výskyt: Výhradně vázán na speciální typy Li pegmatitů. Naleziště: Rožná (typová lokalita), Dobrá Voda, Nová Ves (pegmatity) Použití: surovina Li Diagnostické znaky: barva, parageneze

LEPIDOLIT K(Li,Al) 3 (AlSi 3 O 10 )(OH) 2

Skupina chloritů Chemický vzorec: (Mg,Fe) 3 (Si,Al) 4 O 10 (OH) 2. (Mg,Fe) 3 (OH) 6 Forma výskytu: Tabulkovité krystaly nebo masivní, lupenité příp. zemité agregáty. Fyzikální vlastnosti: T = 2-2,5; H = 2,6-3,3, barva zpravidla v odstínech zelené, hnědé až černé, lesk matný, štěpnost podle báze dokonalá. Složení: Složení jednotlivých krajních členů je velmi rozmanité, obecně převažují chlority s Mg, Fe a Al, vzácnější jsou chlority s prvky jako Mn, Cr, Ni. Vznik a výskyt: Chlorit je běžný minerál zelených břidlic, běžný v magmatických horninách, kde vzniká přeměnou biotitu, pyroxenů a amfibolů. Je běžný na alpských žilách. Naleziště: Mirošov, Markovice (alpská paragenze), ložiska ve šternbersko - hornobenešovském pruhu Použití: minoritní ruda Fe Diagnostické znaky: barva, agregace

Skupina chloritů

Děkuji za pozornost.