SDÍLENÍ TEPLA PŘI ODLÉVÁNÍ KRUHOVÝCH FORMÁTŮ NA ZPO. Příhoda Miroslav Molínek Jiří Pyszko René Bsumková Darina



Podobné dokumenty
POROVNÁNÍ SOUČINITELE SDÍLENÍ TEPLA PŘI VODOVZDUŠNÉM A VODNÍM CHLAZENÍ. Jiří Molínek Miroslav Příhoda Leoš Václavík:

TEPELNÁ PRÁCE TRUBKOVÉHO KRYSTALIZÁTORU THERMAL WORK OF THE TUBE CC MOULD

VLIV TECHNOLOGICKÝCH PARAMETRŮ ODLÉVÁNÍ NA ROZLOŽENÍ TEPLOT V KRUHOVÉM KRYSTALIZÁTORU ZPO

Vliv tvaru ponorné výlevky na mikročistotu plynule odlévané oceli

tepelná technika Tepelné ztráty hlav ocelárenských ingotů 1. Úvod 2. Výpočet ztrát tepla z hlavy ingotu

VLIV TEPELNĚ-MECHANICKÉHO ZPRACOVÁNÍ NA VLASTNOSTI DRÁTU Z MIKROLEGOVANÉ OCELI. Stanislav Rusz a Miroslav Greger a Otakar Drápal b Radim Lukáš a

DOSAŽENÉ VÝSLEDKY PRI POUŽÍVÁNÍ KUBICKÝCH CU VLOŽEK KRYSTALIZÁTORU NA ZPO 1 V TŽ, A.S. TRINEC

Stanovení profilu tekutého jádra při plynulém odlévání oceli metodou radioaktivních indikátorů Mayer Jiří, Rosypal František VÚHŽ,a.s.

Teplotní profily ve stěně krystalizátoru blokového ZPO

HODNOCENÍ VLASTNOSTÍ VÝKOVKŮ ROTORŮ Z OCELI 26NiCrMoV115

Tepelné jevy při ostřiku okují Thermal phenomena of descalling

SLEDOVÁNÍ AKTIVITY KYSLÍKU PŘI VÝROBĚ LITINY S KULIČKOVÝM GRAFITEM

STŘEDNÍ PŘIROZENÉ DEFORMAČNÍ ODPORY PŘI TVÁŘENÍ OCELÍ ZA TEPLA - VLIV CHEMICKÉHO A STRUKTURNÍHO STAVU

Tváření,tepelné zpracování

2D A 3D SNÍMACÍ SYSTÉMY PRŮMĚRU A DÉLKY KULATINY ROZDÍLY VE VLASTNOSTECH A VÝSLEDCÍCH MĚŘENÍ

CREEP AUSTENITICKÉ LITINY S KULIČKOVÝM GRAFITEM CREEP OF AUSTENITIC DUCTILE CAST IRON

CFD simulace teplotně-hydraulické charakteristiky na modelu palivové tyči v oblasti distanční mřížky

KULOVÝ STEREOTEPLOMĚR NOVÝ přístroj pro měření a hodnocení NEROVNOMĚRNÉ TEPELNÉ ZÁTĚŽE

VLIV STŘÍDAVÉHO MAGNETICKÉHO POLE NA PLASTICKOU DEFORMACI OCELI ZA STUDENA.

BRDSM: Komplexní systém dynamického řízení kvality plynule odlévané oceli

EVALUATION OF SPECIFIC FAILURES OF SYSTEMS THIN FILM SUBSTRATE FROM SCRATCH INDENTATION IN DETAIL

Stacionární vedení tepla bodové tepelné mosty

STANOVENÍ PRŮBĚHU ENTALPIE VYZDÍVKY PRO MODELOVÁNÍ OBĚHU LICÍCH PÁNVÍ V PODMÍNKÁCH OCELÁRNY MITTAL STEEL OSTRAVA

TEMPERAČNÍ SYSTÉM S VYSOCE TEPELNĚ VODIVÝM MATERIÁLEM COOLING SYSTEM WITH HIGHLY HEAT CONDUCTIVE MATERIALS

MODELOVÁNÍ A MĚŘENÍ DEFORMACE V TAHOKOVU

MĚŘENÍ A MODELOVÁNÍ TEPLOTNÍCH POLÍ KOKILY S NÁTĚREM. Technická univerzita v Liberci, Háklova Liberec 1, ČR

TEPELNÉ ZPRACOVÁNÍ KONSTRUKČNÍCH OCELÍ SVOČ Jana Martínková, Západočeská univerzita v Plzni, Univerzitní 8, Plzeň Česká republika

OPTIMALIZACE CHLAZENÍ KALIBROVANÝCH VÁLCŮ OPTIMIZATION OF CALIBRATED SHAPED ROLLS. Pohanka, M., Horský, J., Juriga, A.

VLIVY TECHNOLOGICKÝCH PARAMETRŮ ODLÉVÁNÍ NA TŘENÍ V KRYSTALIZÁTORU ZPO

Bezkontaktní měření vzdálenosti optickými sondami MICRO-EPSILON

VLIV MLETÍ ÚLETOVÉHO POPÍLKU NA PRŮBĚH ALKALICKÉ AKTIVACE

NEKONVENČNÍ VLASTNOSTI OCELI 15NiCuMoNb5 (WB 36) UNCONVENTIONAL PROPERTIES OF 15NiCuMoNb (WB 36) GRADE STEEL. Ladislav Kander Karel Matocha

POŽÁRNÍ ODOLNOST DŘEVOBETONOVÉHO STROPU

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2010, ročník X, řada stavební článek č. 17.

VYBRANÉ POZNATKY Z VÝROBY BRAM DYNAMO OCELÍ SELECTED KNOWLEDGE S FROM PRODUCING SLABS OF GRAIN NON ORIENTED STEELS. Ladislav Válek a Luděk Mokroš b

Ing. Tomáš MAUDER prof. Ing. František KAVIČKA, CSc. doc. Ing. Josef ŠTĚTINA, Ph.D.

SVAŘOVÁNÍ KOVOVÝCH MATERIÁLŮ LASEREM LASER WELDING OF METAL MATERIALS

10 Navrhování na účinky požáru

Návrh výměníku pro využití odpadního tepla z termického čištění plynů

BRDSM core: Komplexní systém dynamického řízení kvality plynule odlévané oceli

DOBA KONDENZACE VODNÍCH PAR V OBLASTI ZASKLÍVACÍ SPÁRY OTVOROVÝCH VÝPLNÍ

Materiály charakteristiky potř ebné pro navrhování

AGRITECH S C I E N C E, 1 1 KOMPOSTOVÁNÍ PAPÍRU A LEPENKY

VYZTUŽOVÁNÍ STRUKTURY BETONU OCELOVÝMI VLÁKNY. ČVUT Fakulta stavební, katedra betonových konstrukcí a mostů, Thákurova 7, Praha 6, ČR

12 Prostup tepla povrchem s žebry

MOŽNOSTI PREDIKCE DOSAŽENÍ POŽADOVANÉ LICÍ TEPLOTY OCELI PRO ZAŘÍZENÍ PLYNULÉHO ODLÉVÁNÍ

CONTRIBUTION TO UNDERSTANDING OF CORRELATIVE ROLE OF COTYLEDON IN PEA (Pisum sativum L.)

LICÍ PÁNVE V OCELÁRNĚ ARCELORMITTAL OSTRAVA POUŽITÍ NOVÉ IZOLAČNÍ VRSTVY

SMĚROVÁ KRYSTALIZACE EUTEKTIK SYSTÉMU Ti-Al-Si DIRECTIONAL CRYSTALLIZATION OF Ti-Al-Si EUTECTICS

Integrovaná střední škola, Sokolnice 496

, Hradec nad Moravicí POLYKOMPONENTNÍ SLITINY HOŘČÍKU MODIFIKOVANÉ SODÍKEM

Náhradní ohybová tuhost nosníku

2. DOPRAVA KAPALIN. h v. h s. Obr. 2.1 Doprava kapalin čerpadlem h S sací výška čerpadla, h V výtlačná výška čerpadla 2.1 HYDROSTATICKÁ ČERPADLA

Zvýšení spolehlivosti závěsného oka servomotoru poklopových vrat plavební komory

3. Komutátorové motory na střídavý proud Rozdělení střídavých komutátorových motorů Konstrukce jednofázových komutátorových

NOVÉ ZKUŠEBNÍ ZAŘÍZENÍ PRO TRIBOLOGICKOU ZKOUŠKU ZALISOVÁNÍ ZA ROTACE

Mikroekonomie. Vyučující kontakt. Doporoučená literatura. Podmínky zápočtu. GRAF (funkce) Téma cvičení č. 1:

Bc. Tomáš Zelený 1 VÝPOČET ÚČINNOSTI KOTLE K3

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

3D SIMULACE PĚCHOVÁNÍ A PRODLUŽOVÁNÍ KOVÁŘSKÉHO INGOTU I 45

BIOLOGICKÉ LOUŽENÍ KAMÍNKU Z VÝROBY OLOVA

Mn max. P max. Mezní úchylky pro rozbor hotového výrobku % hmot. Označení oceli Pevnostní vlastnosti Zkouška rázem v ohybu

Analýza dynamické charakteristiky zkratové spouště jističe nn

KVALITA GELU HYDRATOVANÉHO OXIDU TITANIČITÉHO Z HLEDISKA KALCINAČNÍHO CHOVÁNÍ

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2009, ročník IX, řada stavební článek č.3

Experimentální metody I

POZEMNÍ STAVITELSTVÍ I

PODŘÍZNUTÍ PŘI BROUŠENÍ TVAROVÝCH DRÁŽEK

TECHNOLOGICAL PROCESS IN ISOTHERMAL HEAT TREATMENT OF STEEL TECHNOLOGICKÝ POSTUP PŘI IZOTERMICKÉM TEPELNÉM ZPRACOVÁNÍ OCELI

ACOUSTIC EMISSION SIGNAL USED FOR EVALUATION OF FAILURES FROM SCRATCH INDENTATION

POCÍTACOVÁ SIMULACE ZRYCHLENÉHO OCHLAZOVÁNÍ PLOCHÝCH TYCÍ PO VÁLCOVÁNÍ PC SIMULATION OF FLAT BARS ACCELERATED COOLING AFTER ROLLING

TEPELNÉ ZPRACOVÁNÍ OCELÍ

ZVLÁŠTNOSTI VÝROBY TVÁRNÉ LITINY V ELEKTRICKÝCH PECÍCH SE ZŘETELEM NA CHOVÁNÍ KYSLÍKU PO MODIFIKACI, OČKOVÁNÍ A BĚHEM TUHNUTÍ

Posuzování kouřových plynů v atriích s aplikací kouřového managementu

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2010, ročník X, řada stavební článek č. 12.

PLASTICKÉ VLASTNOSTI VYSOKOPEVNOSTNÍCH MATERIÁLŮ DĚLENÝCH NESTANDARDNÍMI TECHNOLOGIEMI

Aktivní řízení anulárního proudu radiálním syntetizovaným proudem

POSSIBLE GENERALISATION OF DECREASE IN MECHANICAL PROPERTIES OF CARBON STEEL (ČSN ) ON OTHER STEELS

DOPLNĚK 1 - BARVY LETECKÝCH POZEMNÍCH NÁVĚSTIDEL, ZNAČENÍ, ZNAKŮ A PANELŮ. y = 0,980 x y = 0,335. y = 0,382 y = 0,790-0,667x y = x - 0,120

Zvyšování kvality výuky technických oborů

VÝZKUM MOŽNOSTÍ ZVÝŠENÍ ŽIVOTNOSTI LOŽISEK CESTOU POVRCHOVÝCH ÚPRAV

Výrobky válcované za tepla z jemnozrnných svařitelných konstrukčních ocelí termomechanicky válcované. Technické dodací podmínky

Obr. 1. Řezy rovnovážnými fázovými diagramy a) základního materiálu P92, b) přídavného materiálu

MODEL PREDIKCE KVALITY PLYNULE LITÝCH KRUHOVÝCH PŘEDLITKŮ NA ZPO 1 V TŽ, A.S.

Únosnosti stanovené níže jsou uvedeny na samostatné stránce pro každý profil.

Železobetonové patky pro dřevěné sloupy venkovních vedení do 45 kv

Využití cepstrální informace pro diagnostiku technologie plynulého odlévání oceli

Obr. 1 Stavební hřebík. Hřebíky se zarážejí do dřeva ručně nebo přenosnými pneumatickými hřebíkovačkami.

Vliv kapkové závlahy na výnos a kvalitu hroznů Effect of drip irrigation on yield and quality grapes

TEPELNÉ A OBJEMOVÉ POMĚRY PŘI LITÍ A TUHNUTÍ KORUNDO- BADDELEYITOVÉHO MATERIÁLU - EUKOR.

Laboratorní úloha č. 4 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH VLASTNOSTÍ PNEUMATICKÝCH A ODPOROVÝCH TEPLOMĚRŮ

, Ostrava, Czech Republic

VYUŽITÍ DYNAMICKÝCH MODELŮ OCELÍ V SIMULAČNÍM SOFTWARE PRO TVÁŘENÍ

FAKTOROVÉ PLÁNOVÁNÍ A HODNOCENÍ EXPERIMENTŮ PŘI ÚPRAVĚ VODY

ŠROUBOVÉ SPOJE VÝKLAD

CVIČENÍ 1 PRVKY KOVOVÝCH KONSTRUKCÍ

Kantor P., Vaněk P.: Komparace produkčního potenciálu douglasky tisolisté... A KYSELÝCH STANOVIŠTÍCH PAHORKATIN

MODELY TUHNUTÍ A HETEROGENITY PLYNULE LITÉ BRAMY A JEJICH APLIKACE

Projekt č. 3/1999 Snížení rizika vzniku samovznícení uhelné hmoty se zaměřením na indikační a prevenční metody

KOAGULAČNÍ PROCESY PŘI ÚPRAVĚ POVRCHOVÉ VODY

Transkript:

SDÍLENÍ TEPLA PŘI ODLÉVÁNÍ KRUHOVÝCH FORMÁTŮ NA ZPO Příhoda Miroslav Molínek Jiří Pyszko René Bsumková Darina VŠB Technická univerzita Ostrava, 17. listopadu 15, 78 33 Ostrava Poruba, ČR, E mail: miroslav.prihoda@vsb.cz Abstrakt Kvalitu produkce, odlévané na ZPO, významně ovlivňují tepelné procesy v krystalizátoru a v sekundární oblasti chlazení. K bližšímu poznání těchto termokinetických dějů slouží matematické simulace, ale zejména experimenty v laboratorních a provozních podmínkách. Na provozním ZPO byly při odlévání kruhových bloků 32 mm zjišťovány teploty po výšce stěny dvouúkosového krystalizátoru. Bylo proměřeno odlévání celkem 33 taveb oceli s obsahem uhlíku od,159 do,646 hmot.%. U všech taveb se projevil posun tepelné osy primární oblasti chlazení na stranu malého rádiusu po celé délce krystalizátoru. Srovnání teplot v horní části krystalizátoru ukázalo, že teploty stěny jsou u ocelí s cca,17 hm.% C až o 3 C nižší než u ocelí, obsahujících kolem,64 hm.% C přesto, že jejich teplota odlévání je přibližně o 4 C vyšší. Výsledky měření naznačují, že pro dané podmínky odlévání není optimální. Odvod tepla v sekundární oblasti chlazení byl posuzován prostřednictvím laboratorních experimentů. Jsou uvedeny výsledky ze studeného i teplého modelu pro trysku JATO 49 při tlaku vody,6 MPa a teplotě ochlazovaného povrchu 8 C. Bylo zjištěno, že za těchto podmínek neexistuje u trysky závislost mezi rozložením součinitele přestupu tepla v ostřikovém obrazci a ostřikovou charakteristikou. Abstract Production quality of continuous caster is considerably effected by thermal processes in mould and in secondary cooling zone. For closer understanding of the thermo-kinetic processes, mathematical simulations and primarily experiments in both laboratory and working conditions are used. Temperatures along two-taper mould height have been monitored at caster plant during casting round blocks of diameter 32 mm. In total 33 heats of steel with carbon content from,159 to,646 mass % have been measured. During casting of all measured heats, a shift of thermal axis in primary cooling zone towards inner radius has been proved. Comparison of temperatures in upper part of mould proved, that wall temperatures are lower by 3 C during casting steels with approx.,17 mass % C, than in case of steels with about,64 mass % C, although their casting temperatures are higher approximately by 4 C. The results of measuring indicate, that used taper does not appear to be optimal at specified casting conditions. Cooling in secondary zone have been evaluated by laboratory experiments. Results from both cold and hot models for nozzle JATO 49 at water pressure.6 MPa and temperature of cooled surface 8 C have been introduced. No dependence between heat transfer coefficient in admission pattern and admission characteristics has been found at such conditions. - 1 -

1. ÚVOD V posledním období roste v České republice, ale především v zahraničí, poptávka po blocích kruhových formátů, kdy zájem projevují např. kovárny a válcovny trub. Tento trend lze dokumentovat např. sortimentem předlitků, odlévaných na pětiproudém blokovém ZPO č. 1. v TŽ. a. s., Třinec. Licí stroj, uvedený do provozu v roce 1989, byl původně určen k produkci předlitků pravoúhlých formátů o rozměrech 25x32 mm, 3x35 mm a kruhových bloků 41 mm. V roce 1999 byl sortiment doplněn o kulatinu 32 mm a začátkem března 21 proběhlo první pokusné odlévání bloků o průměru 55 mm. Kruhové bloky tak velikého průřezu odlévá pouze několik světových ocelárenských společností. Známá je např. firma Ellwood Steel Belgium se sídlem v Seraingu (Belgie) a dodávající kruhovou ocel nejen v Evropě a Severní Americe, ale i do dalších světadílů. Kromě průměrů 31, 4 a 5 mm, produkuje i rozměr 6 mm, který je největším plynule odlévaným kruhovým formátem na světě. Odlévání předlitků kruhového průřezu patří k nejnáročnějším, zejména v případě ocelí s nízkým obsahem uhlíku. Kruhový profil kůry předlitku je značně odolný vůči změně tvaru v příčném průřezu. Z důvodu nerovnoměrného smrštění kůry je proto vystaven mnohem větším mechanickým namáháním, než pravoúhlý předlitek, což způsobuje náchylnost k tvorbě podélných trhlin. Profil krystalizátoru by proto měl zajistit oporu vznikající licí kůře v nejkritičtějším místě, tj. zejména v oblasti teplot, kde dochází k největšímu smrštění, a zároveň umožnit dostatečný odvod tepla v celé oblasti primární zóny. Oceli s různým chemickým složením mají různý průběh tvorby tuhé fáze a zároveň vykazují různé smrštění. V ideálním případě by pro každý druh oceli měl být použit optimální profil krystalizátoru. Tento přístup však vzhledem k vysokým nákladům na materiál a výrobu krystalizátorů není v provoze možný. Teoretické řešení kontaktu licí kůry s krystalizátorem je u kruhového formátu velmi obtížné. Kvalifikovaně lze intenzitu kontaktu v daném místě posoudit z teploty stěny krystalizátorové vložky. Z tohoto důvodu bylo provedeno experimentální měření teploty krystalizátoru po jeho výšce u blokového ZPO. V praxi může existovat i zpětný vliv sekundárního chlazení na primární oblast, který může vznikat mechanickým působením deformací předlitku v sekundární oblasti při nerovnoměrném chlazení. Proto je v příspěvku zmíněn i výzkum trysek na studeném a teplém laboratorním modelu. 2. KONICITA KRYSTALIZÁTORU K zajištění dobrého kontaktu tuhnoucího a chladnoucího předlitku s krystalizátorem je zapotřebí, aby volný průřez na dolní hraně krystalizátoru byl menší než průřez vstupní, tzn. krystalizátor musí být konický. Souvisí to jak s teplotní objemovou roztažností, tak i se změnami fázových modifikací železa. Pro oblast krystalizátoru je důležitá zejména přeměna železa δ (δ ferit) na železo γ (austenit). Krystalická kubická mřížka se přitom přeskupí ze stereo na planicentrickou a současně vzroste původní parametr mřížky 2,93.1-1 m u Fe δ na 3,64.1-1 m u Fe γ. Problematické je, s ohledem na objemové změny, zejména odlévání oceli s,1 hm.% uhlíku, o které se někdy nepřesně hovoří jako o oceli peritektické. Podle stavového diagramu Fe Fe 3 C má peritektické složení ocel s,16 hm.% C, zatímco peritektická reakce probíhá u široké třídy ocelí s podílem uhlíku mezi,1 až,51 hm. %. V provozní praxi jsou uváděny dva typy konicity, a sice konicita absolutní a relativní. U běžného krystalizátoru pro kruhové předlitky se absolutní konicita k a, udávaná v %, vypočte ze vztahu [1] - 2 -

k a d = h d l d 1 (%) (1) kde d h a d d jsou horní a dolní průměr krystalizátoru (m), l délka krystalizátoru (m). Relativní konicita je navíc vztažena na průměr krystalizátoru a pro její výpočet platí výraz k r d h d = d l h d 1 (% m -1 ) (2) Pokud mají krystalizátory po výšce s dvě či více různých konicit, dosazuje se do výrazů (1) a (2) místo délky krystalizátoru příslušná vzdálenost mezi jednotlivými změnami průměru. Z rovnic (1) a (2) je zřejmé, že 5 2 mezi relativní a absolutní konicitou platí pro určitý průměr 4 3 2 krystalizátoru lineární závislost. 3 Kvantitativně je vyjádřena na 4 obr. 1, kde jednotlivé přímky se 45 5 vztahují k hornímu průměru 55 krystalizátoru od 2 mm do 55 mm. k r (%.m -1 ) 1,2,4,6,8 1 k a (%) Obr. 1 Závislost relativní konicity na konicitě absolutní 3. PROVOZNÍ EXPERIMENT Experimentální měření se uskutečnilo na blokovém zařízení pro plynulé odlévání (ZPO) kruhových bloků o průměru 32 mm. Krystalizátor s dvojím úkosem po výšce byl ve své horní části upraven na n úhelníkový průřez. Do měděné vložky krystalizátoru, dlouhého 7 mm, bylo zabudováno celkem 14 termočlánkových sond. Na straně malého (MR) a velkého (VR) rádiusu byly termočlánky umístěny do měděné vložky ve vzdálenosti 1 mm pod pracovním povrchem a v úrovních 1, 18, 265, 4, 5 a 62 mm od horní hrany krystalizátoru. Dále byly pro měření využity termočlánky protiprůvalového systému, nacházející se ve vzdálenosti 335 mm od horní hrany. Krystalizátor průměru 32 mm měl změnu úkosu ve výšce 3 mm, takže teplotní čidla byla v okolí zlomu ± 35 mm. Schématickou dispozici měřicích míst uvádí obr. 2. K experimentálnímu měření byly použity termoelektrické články NiCr-CuNi typu E, vykazující při nízkých teplotách největší termoelektrické napětí. Studené spoje byly vyvedeny až do svorkovnic na krystalizátoru, kde je měřena teplota studeného spoje za účelem eliminace kolísání okolní teploty. Měřicí zařízení, tvořené průmyslovou verzí PC, je součástí protiprůvalového systému firmy DASFOS. Vstupní analogové karty mají rozlišení 16 bitů, speciální software vzorkoval všechny kanály s periodou,44 s. - 3 -

Obr. 2 Měřicí místa ve stěně krystalizátoru Při provozním experimentu proběhlo v rámci 6 sekvencí odlévání 33 taveb oceli osmi značek s obsahem uhlíku od,152 hm.% do,646 hm.%. S ohledem na skutečnost, že měřený krystalizátor byl dvouúkosový, je následující rozbor výsledků zaměřen na posouzení teplotního profilu po výšce měděné stěny. Z profilů lze usuzovat, zda proces tuhnutí předlitku probíhá v souladu s fyzikálními představami o tvorbě licí kůry ve třech oblastech. Jedná se o horní oblast dokonalého kontaktu předlitku s krystalizátorem, střední přechodovou oblast a dolní oblast stabilní mezery mezi ocelí a kokilou. Datové soubory, obsahující, mimo již zmíněné teploty stěny krystalizátoru, také další veličiny, jako např. výšku hladiny a licí rychlost, byly exportovány do tabulkového kalkulátoru Excel, kde se dále zpracovávaly. Kvůli eliminaci případných nestabilit procesu odlévání byly ze souborů vypuštěny pětiminutové intervaly na začátku a na konci odlévání každé tavby. Teplotní profily na straně MR a VR byly vytvořeny pro každou sledovanou tavbu z průměrných teplot, vypočtených jako medián z množiny všech teplot (řádově 1 3 hodnot), změřených v daném místě během odlévání příslušné tavby. 14 12 1 Na obr. 3 jsou vyznačeny průměrné teplotní profily u souboru všech 33 taveb. Tvar křivek na obou rádiusech je výrazně odlišný a v zásadě 8 MR VR potvrzuje naše dřívější měření 6 krystalizátoru 41 mm na tomto licím stroji viz např. [2]. 4 2 Profil u MR se pod úrovní 18 mm mění lineárně, zatím co na VR 1 2 3 4 5 6 7 je zřetelný vliv změny konicity ve délka krystalizátoru (mm) vzdálenosti 3 mm. Prudký pokles teploty stěny mezi 335 a 4 mm Obr. 3 Teplotní profil na MR a VR (všechny tavby) odpovídá špatnému kontaktu předlitku s měděnou stěnou. Následující nárůst teploty mezi 4 a 5 mm zřejmě souvisí s reohřevem kůry a s jejím přiblížením ke stěně krystalizátoru. teplota stěny ( C) - 4 -

Teploty na straně VR jsou po celé délce krystalizátoru nižší než na straně MR a v úrovni 4 mm rozdíl dosahuje téměř 3 C. Znamená to větší či menší posun tepelné osy primární oblasti chlazení na stranu malého rádiusu po celé délce krystalizátoru. teplota stěny ( C) 16 14 12 1 8 6 4 2 VR-V MR-N MR-V VR-N 1 2 3 4 5 6 7 délka krystalizátoru (mm) Obr. 4 Teplotní profily pro skupiny taveb s různým podílem uhlíku Obdobně jako u bloku 41mm byl analyzován vliv obsahu uhlíku na teplotní profil. Byla vybrána skupina taveb s nižším podílem uhlíku, konkrétně mezi,159 až,171 hm.% (označení N) a druhá skupina, obsahující,629 až,646 hm.% C (označení V). Teplotní profily u obou typů ocelí ukazuje obr. 4. Čárkované čáry se týkají ocelí skupiny N, čáry souvislé pak skupiny T. Srovnání teplotních profilů v horní části krystalizátoru ukazuje, že teploty stěny jsou u ocelí N až o 3 C nižší než u ocelí typu V. Přitom licí teplota nízkouhlíkových ocelí je naopak až o 4 C vyšší než u celí s vyšším podílem uhlíku. Pozoruhodná je i deformace teplotní křivky na velkém rádiusu u ocelí skupiny V, kde uprostřed délky krystalizátoru, tedy v oblasti změny konicity, nejdříve dochází k nárůstu a poté k prudkému poklesu teploty stěny. Teplotní profil ukazuje, že pro dané podmínky odlévání, zvláště u ocelí s vyšším obsahem uhlíku, není zvolená konicita krystalizátoru optimální. 4. SEKUNDÁRNÍ OBLAST CHLAZENÍ Ochlazování předlitku v příčném i podélném směru v sekundární oblasti musí mít odpovídající intenzitu i rovnoměrnost. Pro konkrétní formát předlitku je tedy potřebné vybrat vhodný typ trysky a zvolit správné parametry ostřiku, tj. tlak chladicí vody a vzdálenost trysky od ochlazovaného povrchu. Toto platí jen pro pravoúhlé sochorové předlitky, kde jsou jednotlivé strany osazeny jedinou tryskou. Při odlévání bloků a bram je potřeba počítat se skutečností, že jednotlivé strany jsou ochlazovány minimálně dvojicí trysek, jejichž ostřikové obrazce se navzájem ovlivňují. Výsledný chladicí efekt tudíž závisí i na vzdálenosti sousedních trysek. K výše uvedeným parametrům je proto potřeba přidat u blokových a bramových ZPO i rozteč trysek. Týká se to samozřejmě také sochorových licích strojů odlévajících kruhové formáty. Volbě konkrétních typů trysek a jejich rozmístění v sekundární oblasti se musí věnovat odpovídající pozornost. Intenzitu chlazení lze u již provozovaného licího stroje ovlivnit jediným parametrem, a to tlakem chladicí vody. Rovnoměrnost odvodu tepla z povrchu předlitku je však především dána vzdáleností a roztečemi trysek, vliv tlaku je zpravidla nepodstatný. Špatné rozmístění trysek v chladicí kleci sekundární oblasti chlazení tedy jednoznačně vede k nerovnoměrnému ochlazování obvodu předlitku s následným rizikem vzniku vad, zejména povrchových podélných a příčných čelních trhlin, u odlévaného sortimentu. Na katedře tepelné techniky je k dispozici studený i teplý laboratorní model sekundární oblasti chlazení. Na studeném modelu jsou zjišťovány ostřikové charakteristiky, charakterizující rovnoměrnost a intenzitu ostřiku. Intenzita ostřiku I je představována - 5 -

objemem vody, dopadajícím na jednotkovou plochu za jednotku času a měří se v m 3.m -2.s -1. Takto definovaná intenzita má u mnoha trysek hodnotu řádově mezi 1-5 až 1-3 a proto se často objem neuvádí v m 3 ale v litrech l. Na teplém modelu se měří místní hodnoty součinitele přestupu tepla ostřikem α o (W.m -2.K -1 ) [3]. Stanovování hodnot α o je ve srovnání s měřením intenzity ostřiku časově náročnější, dražší i složitější, a tudíž je snaha nalézt případnou závislost α o =f(i). Přesnou souvislost mezi intenzitou odvodu tepla a intenzitou ostřiku ovšem nelze obecně očekávat, jelikož velikost součinitele přestupu tepla závisí nejen na množství chladicí vody, ale také na velikosti a rychlosti dopadajících vodních kapek. V [3] je uvedeno porovnání výsledků měření na obou laboratorních modelech u jednotlivé trysky JATO 259. Pro teplotu ochlazovaného povrchu 1 C a tlak vody,2 MPa bylo možno pomocí regresní analýzy vyjádřit závislost α o na I ve tvaru polynomu druhého stupně. Korelace obou hodnot byla velmi vysoká, neboť hodnota spolehlivosti regresního modelu činila R 2 =,966. 6 5 4 Na obou modelech se uskutečnila řada měření různých typů trysek, z nichž ale u některých nebyla výše zmíněná souvislost potvrzena. 3 Jako příklad lze uvést měření trysky JATO 49 při tlaku vody,6 MPa a 2 vzdálenosti od ostřikované plochy 1-2 -15-1 -5 x (mm) 5 1 15 2 15 mm. Rozložení intenzity ostřiku po šířce ochlazované plochy, kolmo na směr pohybu předlitku, zjištěné studeným modelem uvádí obr. 3. Osa Obr. 3 Rozložení intenzity ostřiku trysky se při měření nacházela v bodě o souřadnici x=. Ostřiková charakteristika je výrazně posunuta doleva, maximální hodnota veličiny I dosahuje cca 5,7 l.m -2.s -1 v místě o souřadnici 2 mm. V okrajových částech charakteristiky je intenzita ostřiku prakticky nulová. I (l.m -2.s -1 ) Obr. 4 Místní součinitel přestupu tepla ostřikem α oi,j Místní součinitel přestupu tepla ostřikem α o, změřený na teplém modelu při tlaku vody,6 MPa a teplotě chlazeného povrchu 8 C je zakreslen na obr. 4, přičemž souřadnice y je shodná se směrem pohybu předlitku. Maximální velikosti α o se vyskytují v pravé polovině diagramu kde hodnoty dosahují přes 3,5 kw.m -2.K -1. K porovnání součinitele přestupu tepla ostřikem se studenou ostřikovou charakteristikou je potřebné získat - 6 -

průměrný součinitel přestupu tepla α ox v určitém místě o souřadnici x. Za předpokladu konstantní rychlosti pohybu předlitku jsou hodnoty α ox aritmetickými průměry hodnot α oi,j ze svislých sloupců matice, tedy α ox m α o, i j j= 1 2-1 = (W m K ) m (3) kde m je počet diskrétních hodnot součinitele α o naměřených ve směru osy y (1). α ox (W.m -2.K -1 ) 16 12 8 4-2 -15-1 -5 5 1 15 2 x (mm) Obr. 5 Průběh hodnot α ox ve vzdálenostech nad 1 mm od osy trysky. Podle rovnice (3) vypočtené průměrné hodnoty α ox byly vyjádřeny graficky a jejich průběh je vyznačen na obr. 5. Na první pohled je z porovnání obr. 5 s obr. 3 zřejmý odlišný charakter obou křivek. Kromě již zmíněné rozdílné nesymetrie vzhledem k ose trysky, (jedna nalevo, druhá napravo), je patrná i podstatně větší strmost ostřikové charakteristiky. Oblast vyšších hodnot α ox zasahuje podstatně širší pásmo povrchu předlitku a součinitel přestupu tepla není zanedbatelný ani Pokus o vyjádření závislosti α o na I obdobným polynomem jako u trysky JATO 259 skončil neúspěšně. U trysky JATO 49 při tlaku,6 MPa a teplotě ochlazovaného povrchu 8 C součinitel odvodu tepla nevykazuje prakticky žádnou závislost na intenzitě ostřiku, neboť spolehlivosti regresního modelu činila pouze R 2 =,361. 5. ZÁVĚR Odlévání předlitků kruhového průřezu patří k nejnáročnějším, zejména v případě ocelí s nízkým obsahem uhlíku. Jedním z nejdůležitějších parametrů, rozhodujících o růstu licí kůry, je konicita krystalizátoru. V příspěvku byl vysvětlen rozdíl mezi absolutní a relativní konicitou krystalizátoru. Relativní konicita je pro daný průměr předlitku lineárně závislá na konicitě absolutní. Teoretické řešení kontaktu licí kůry s krystalizátorem je u kruhového formátu velmi obtížné. Kvalifikovaně lze intenzitu kontaktu v daném místě posoudit z teploty stěny krystalizátorové vložky. Bylo provedeno experimentální měření teploty krystalizátoru po jeho výšce u blokového ZPO, při němž proběhlo v rámci 6 sekvencí odlévání 33 taveb oceli osmi značek s obsahem uhlíku od,152 hm.% do,646 hm.%. Bylo zjištěno, že profil u MR se pod úrovní 18 mm mění lineárně, zatím co na VR je zřetelný vliv změny konicity ve vzdálenosti 3 mm. Prudký pokles teploty stěny mezi 335 a 4 mm odpovídá špatnému kontaktu předlitku s měděnou stěnou. Následující nárůst teploty mezi 4 a 5 mm zřejmě souvisí s reohřevem kůry a s jejím přiblížením ke stěně krystalizátoru. Teploty na straně VR jsou po celé délce krystalizátoru nižší než na straně MR a v úrovni 4 mm rozdíl dosahuje téměř 3 C. Znamená to posunutí tepelné osy v krystalizátoru na stranu malého rádiusu. - 7 -

Kontakt předlitku se stěnou krystalizátoru může být, mimo jiným, ovlivněn také způsobem chlazení předlitku pod krystalizátorem. Pro oblast sekundárního chlazení proto byla testována jedna z trysek, používaných při odlévání bloku 32 mm, a to typ JATO 49. Na rozdíl od dřívějších měření nebyla nalezena korelace mezi intenzitou ostřiku a součinitelem přestupu tepla ostřikem. Potvrdil se tak předpoklad, že obecně neexistuje jednoznačná závislost mezi výsledky měření na studeném a teplém modelu sekundární oblasti chlazení a tudíž nelze z ostřikové charakteristiky usuzovat na odvod tepla z povrchu předlitku. Pro každý typ trysky a příslušné parametry ostřiku je bezpodmínečně nutné uskutečnit srovnávací měření a teprve poté rozhodnout, zda a v jakých mezích ostřikových parametrů je možné nahradit měření na teplém modelu měřením intenzity ostřiku na studeném modelu. LITERATURA [1] MORÁVKA, J.: Srovnání mechanických a technologických parametrů CU vložek kruhových krystalizátorů 41 a 32 mm. Studie SEMA Ti, Třinec, 2. 16 s. [2] PŘÍHODA, M. MOLÍNEK, J. PYSZKO, R. WECZEREK, M. MUŠÁLEK, J.: Problematika odvodu tepla v krystalizátoru při lití kruhových bloků. In.: Sborník 7. mezinárodního metalurgického symposia METAL 98 2. díl. Ostrava, květen 1998, s. 31 37. ISBN 8 8612214 X. [3] PŘÍHODA, M. MOLÍNEK, J. PYSZKO, R. JEDLIČKA, Z. VÁCLAVÍK, L.: Stanovení součinitele přestupu tepla v sekundární oblasti chlazení při plynulém odlévání oceli. Hutnické listy LIV, 1999, č. 7/8, s. 29 32. ISSN 18 869. Výzkum probíhal v rámci komplexního projektu technologické inovace plynulého odlévání oceli v ČR - evidenční číslo 16/96/K32 za finanční podpory Grantové agentury ČR. - 8 -