odpuzují, když je zmáčkneme příliš blízko k sobě. V této světě, stačí k tomu jen trocha fantazie a přemýšlení.

Podobné dokumenty
Skupenské stavy látek. Mezimolekulární síly

Náboj a hmotnost elektronu

Náboj a hmotnost elektronu

Jádro se skládá z kladně nabitých protonů a neutrálních neutronů -> nukleony

FYZIKA MIKROSVĚTA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e =

Molekulová fyzika a termika. Přehled základních pojmů

Látkové množství n poznámky 6.A GVN

OBECNÁ CHEMIE. Kurz chemie pro fyziky MFF-UK přednášející: Jaroslav Burda, KChFO.

Látkové množství. 6, atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

FYZIKA 6. ročník 1_Látka a těleso _Vlastnosti látek _Vzájemné působení těles _Gravitační síla... 4 Gravitační pole...

Mol. fyz. a termodynamika

2. Elektrotechnické materiály

Od kvantové mechaniky k chemii

Hamiltonián popisující atom vodíku ve vnějším magnetickém poli:

stechiometrický vzorec, platné číslice 1 / 10

Elektronový obal atomu

Kinetická teorie ideálního plynu

Atomová fyzika - literatura

Fyzika je přírodní věda, která zkoumá a popisuje zákonitosti přírodních jevů.

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění

Skupenské stavy. Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe

Hydrochemie koncentrace látek (výpočty)

Přírodní vědy - Chemie vymezení zájmu

Složení látek a chemická vazba Číslo variace: 1

6.3.2 Periodická soustava prvků, chemické vazby

13 otázek za 1 bod = 13 bodů Jméno a příjmení:

Praktikum III - Optika

Opakování: shrnutí základních poznatků o struktuře atomu

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

2. Atomové jádro a jeho stabilita

Krystalografie a strukturní analýza

Vazby v pevných látkách

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno

Struktura elektronového obalu

Vibrace atomů v mřížce, tepelná kapacita pevných látek

Opakování

6. Stavy hmoty - Plyny

Biochemický ústav LF MU (V.P.) 2010

ČÍSLO PROJEKTU: OPVK 1.4

Atomové jádro Elektronový obal elektron (e) záporně proton (p) kladně neutron (n) elektroneutrální

[KVANTOVÁ FYZIKA] K katoda. A anoda. M mřížka

3.3 Částicová stavba látky

ATOMOVÉ JÁDRO. Nucleus Složení: Proton. Neutron 1 0 n částice bez náboje Proton + neutron = NUKLEON PROTONOVÉ číslo: celkový počet nukleonů v jádře

Inovace studia molekulární a buněčné biologie

Molekulová fyzika a termika:

ATOM. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: Ročník: osmý

ATOMOVÁ SPEKTROMETRIE

Elektronový obal atomu

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky

III. STRUKTURA A VLASTNOSTI PLYNŮ

Úloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu.

Hydrochemie koncentrace látek (výpočty)

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/

1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin.

Fyzika. 7. Motor o příkonu 5 kw pracuje s účinností 80 %. Pracuje-li 1 hodinu, vykoná práci: a) 14, J b) Wh c) 4 kwh d) kj

Kovy - model volných elektronů

Dualismus vln a částic

4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul

Základy molekulové fyziky a termodynamiky

Chemické repetitorium. Václav Pelouch

Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn

Protonové číslo Z - udává počet protonů v jádře atomu, píše se jako index vlevo dole ke značce prvku

1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o.

ATOMOVÉ JÁDRO A JEHO STRUKTURA. Aleš Lacina Přírodovědecká fakulta MU, Brno

VY_32_INOVACE_246. Základní škola Luhačovice, příspěvková organizace Ing. Dagmar Zapletalová. Člověk a příroda Fyzika Opakování učiva fyziky

Relativistická dynamika

Molekulová fyzika a termodynamika

Atom a molekula - maturitní otázka z chemie

ATOMOVÁ FYZIKA JADERNÁ FYZIKA

metoda je základem fenomenologické vědy termodynamiky, statistická metoda je základem kinetické teorie plynů, na níž si princip této metody ukážeme.

ATOM VÝVOJ PŘEDSTAV O SLOŽENÍ A STRUKTUŘE ATOMU

Laserová technika prosince Katedra fyzikální elektroniky.

Fyzika II, FMMI. 1. Elektrostatické pole

Teorie rentgenové difrakce

Fyzika opakovací seminář tematické celky:

Fyzika pro chemiky II

Částicové složení látek atom,molekula, nuklid a izotop

plochy oddělí. Dále určete vzdálenost d mezi místem jeho dopadu na

Fourierovské metody v teorii difrakce a ve strukturní analýze

Fyzika IV Dynamika jader v molekulách

1. Látkové soustavy, složení soustav

DUSÍK NITROGENIUM 14,0067 3,1. Doplňte:

Vybrané podivnosti kvantové mechaniky

ELEKTRONOVÝ OBAL ATOMU. kladně nabitá hmota. elektron

Maturitní témata fyzika

Testové otázky za 2 body

IDEÁLNÍ PLYN. Stavová rovnice

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova

MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA

Inovace výuky prostřednictvím šablon pro SŠ

Příklad 3 (25 bodů) Jakou rychlost musí mít difrakčním úhlu 120? -částice, abychom pozorovali difrakční maximum od rovin d hkl = 0,82 Å na

Chemické veličiny, vztahy mezi nimi a chemické výpočty

Teorie chemické vazby a molekulární geometrie Molekulární geometrie VSEPR

ATOMOVÁ SPEKTROMETRIE

Transkript:

Radiologická fyzika Hmota se skládá z atomů Atomy Zmínka o kvantové teorii 1. října 01

Hmota se skládá z atomů

Úvod podle Richarda Feynmana Kdyby při nějaké katastrofě vzalo za své všechno, co vědy zjistily, a měli bychom generacím tvorů, kteří by přišli po nás předat jednu větu, která by v nejméně slovech obsahovala nejvíc informací, která by to byla? Podle mě by to byla atomová hypotéza (či existence atomů nebo jak tomu chcete říkat): Všechno se skládá z atomů nepatrných částeček, které jsou ve věčném pohybu a které se přitahují, jsou-li dál od sebe, a odpuzují, když je zmáčkneme příliš blízko k sobě. V této jediné větě je obsaženo obrovské množství informací o světě, stačí k tomu jen trocha fantazie a přemýšlení.

Atomy se vážou do molekul proč? Typický průběh potenciální energie atomy se odpuzují atomy se přitahují atomy jsou vázány do molekuly

Voda: H O Pozoruhodná molekula vody Neutrální molekula vody má ve svém plynném Neutrální molekula vody má ve svém plynném stavu elektrický dipólový moment p roven 6,.10-30 C.m.

Daltonova atomová hypotéza I John Dalton (1766-1844): A New System of Chemical Philosophy (1805) Zákony slučovacích poměrů: 1. stálých (Proust 1799): Prvky tvořící sloučeninu jsou vždy ve stejném váhovém poměru, který je pro sloučeninu charakteristický. H O H O 1 g 8 g 5 g 40 g x g 8x g

Daltonova atomová hypotéza II. násobných (Dalton 1803): Jestliže jeden prvek tvoří s druhým více než jednu sloučeninu, jsou slučovací poměry obou prvků v těchto sloučeninách jednoduchými celistvými násobky. N [g] O [g] N O 14 8 1 NO 14 16 N O 3 14 4 3 NO 14 3 4 N O 5 14 40 5 5

Daltonova atomová hypotéza III 3. vzájemných (Richter 179): Jestliže se dva prvky slučují s třetím v určitém poměru, slučují se mezi sebou ve stejném poměru anebo v jeho jednoduchém celistvém násobku. H O Na Cl H H O NaH HCl O H O Na O Cl O Na NaH Na O NaCl Cl HCl Cl O NaCl

Experimentální fakta Od hypotézy k teorii Zákony stálých poměrů slučovacích Hypotéza Atomová hypotéza Ověření v obecnějších souvislostech Struktura látek, chemické reakce, kinetická teorie Teorie Atomová teorie

Skupenství látek: plynné Jednotlivé atomy (nebo molekuly) jsou od sebe většinou, kromě krátké doby vzájemných srážek dosti vzdáleny, jejich pohyb je zcela neuspořádaný. kyslík Vodní pára vodík

Skupenství látek: kapalné Atomy (nebo molekuly) jsou sdruženy do větších celků, jeví se určitá uspořádanost v malých oblastech, ale pohyb atomů (molekul) je ještě značný, neděje se jen v okolí nějaké rovnovážné polohy. Voda

Skupenství látek: pevné Jednotlivé atomy pouze kmitají kolem své rovnovážné polohy, jsou vzájemně vázány, jsou pevně uspořádány v malých oblastech, u krystalických látek dokonce ve velkých oblastech. Led

Rovnováha skupenství Při rovnovážném stavu je počet molekul kondenzujících stejný jako počet molekul, které se vypařují.ubíhající molekuly odnášejí energii, kterou spotřebovaly na překonání přitažlivé síly molekul povrchu kapaliny, naopak molekuly přilétající jsou urychlovány touto silou a energii přinášejí. Teplota je dána střední kinetickou energií neuspořádaného pohybu molekul. Při převažujícím vypařování teplota klesá, při převažující kondenzaci teplota roste. Vzduch plynné skupenství Voda kapalné skupenství

Kolik je atomů v 1 molu? Atomová jednotka hmotnosti u je definována pomocí hmotnosti volného atomu uhlíku 1 v základním stavu 1 1 7 ( ) ( ) 1u 1, 66053878 83 10 kg 1 m C = = Látkové množství udáváme pomocí jednotky mol. Mol je látkové množství soustavy, která obsahuje tolik elementárních entit, kolik je atomů v 0,01 kg uhlíku 1. Při užití molu musí být elementární entity specifikovány. Mohou to být atomy, molekuly, ionty, elektrony, jiné částice nebo skupiny takových částic. Avogadrova konstanta N A = 0, 01kg mol u = 6, 014179(30) 10 mol 1 1 3 1

Difrakce rentgenového záření V roce 191 Max von Laue vytvořil dvě hypotézy: Krystal tvoří pravidelně uspořádaná mřížka atomů. Rentgenové paprsky se chovají jako světelné vlny, pouze jejich vlnová délka je podstatně kratší.

Měření Avogadrovy konstanty Pro difrakční maxima platí Braggova rovnice d sin θ = n λ, n = 1,, 3, K λ d a 0 Potom již můžeme vyjádřit Avogadrovu konstantu jako V M N A = m = m a ρ a 3 3 0 0 V molární objem prvku M molární hmotnost prvku ρ hustota prvku a 0 hrana krychle elementární buňky m počet atomů v elementární buňce

Avogadrovu konstanta Příklad pro hliník N A M = m 3 ρ a0 M -1 Al =0,07 kg.mol molární hmotnost hliníku ρ Al =700 kg.m -3 hustota hliníku a -10 0 =4,05.10 m hrana krychle elementární buňky m=4 počet atomů v elementární buňce N A 3 1 Al 6 6,01 10 mol, mal = 4,48 10 kg N A M

Je počet molekul v jednom molu velký? Feynmanův příklad: V jednom z dávných dnů, řekněme v paleolitu, kapka odpoledního deště dopadla na měkkou rovnou zem a zanechala na ní svou stopu. Čas ubíhal a nedávno na tuto stopu narazil žízní a horkem unavený student geolog. Odpočíval, napil se ze své polní láhve a poněvadž neměl nic na práci, přemýšlel, kolik molekul z oné dávné kapky asi právě vypil. Předpokládejme: 1) Za tak dlouhou dobu se molekuly kapky mohly rozptýlit zcela rovnoměrně do všech vod a ) množství vod na pevnině je malé ve srovnání s množstvím vod v oceánech. Označme objem kapky V k, objem láhve V l, objem oceánů V o. Molární hmotnost vody označme M, přibližnou hodnotu hustoty vody ρ.

Řešení příkladu ρ M Počet molekul v láhvi je V N. Z toho je potřeba vzít jen díl. M=18 g.mol -1 molární hmotnost vody ρ=1 g.cm -3 hustota vody N 3-1 A =6,0.10 mol Avogadrova konstanta V o =1,37.10 4 cm 3 voda v oceánech V l=10 3 cm 3 láhev, V k=(5.10-1 ) 3 cm 3 kapka l A V k V o n V V ρ = k l N A V M Vo 3

Stavová rovnice I N molekul plynu je uzavřeno v krychli objemu V=L 3. Co se děje, když molekula narazí na stěnu? Hmotnost molekuly oproti hmotnosti stěny je zanedbatelná, takže můžeme počítat jen se změnou hybnosti molekuly v r / v r ( ) p = m v m v = m v z z z z Za jednu sekundu dopadne molekula na stěnu k=v z /(L) krát, předá tedy hybnost (jinak řečeno podle druhého Newtonova zákona působí silou) 1 f = k p = m v L z z z

Stavová rovnice II Součet působení všech N molekul je 1 N N z = ( i ) z z L i = 1 L F m v m v Při chaotickém pohybu je přirozeně 1 m v = m v = m v = m v 3 z x y Pro výsledné působení na stěnu tak máme (E je kinetická energie) Z definice tlaku a teploty N N Fz = m v = E 3 L 3 L 1 3 F z = p L = pv, E = kt L

Stavová rovnice III Stavová rovnice ideálního plynu je tak pv = N kt Rovnici van der Waalsovu dostaneme uvážením jednak toho, že molekuly zaujímají nějaký objem b, zaměníme tak ve stavové rovnici V V b a dále zmenšení tlaku u stěny, neboť na molekuly u stěny (jejich hustota je nepřímo úměrná objemu V) působí pouze molekuly nad (jejich hustota je opět nepřímo úměrná objemu V), zaměníme tak ve stavové rovnici p a p + V

Van der Waalsova rovnice Stavová rovnice ideálního plynu je pv = N kt Van der Waalsova rovnice je a p + ( V b) = N kt V Pro odvození byla potřeba pouze představa o molekulách a o chování hybnosti při odrazu. Dále už jen definice tlaku a teploty.

Atomy

Rutherfordův model atomu Bodové kladně nabité jádro, okolo elektronový oblak ten ale málo přispívá k rozptylu nalétávajících α částic

Zákon zachování energie Rutherfordův výpočet 1 1 Zα Z N e 1 1 b m u = m v + m v + m u 4 π ε 0 SA SA Zákon zachování momentu hybnosti pu = SAv Geometrie Výsledek pro úhel vychýlení χ=π-θ 1 SA = SO + OA = p + cotθ sinθ θ χ p Zα Z N e cot =, b = b 4π ε m u 0

Základní charakteristiky atomů Atomy jsou stabilní. V podstatě všechny atomy, které vytvářejí náš hmatatelný svět, existovaly beze změny miliardy let. Atomy se sdružují. Atomy se slučují do stabilních molekul. Mohou se také seskupovat a vytvářet pevné látky. Atomy lze seřadit systematicky. Prvky jsou v periodické tabulce uspořádány do šesti vodorovných period; kromě první začíná každá z period nalevo vysoce reaktivním alkalickým kovem (lithium, sodík, draslík atd.) a končí napravo chemicky inertním vzácným plynem (neon, argon, krypton atd.). Atomy emitují a absorbují světlo. Frekvence světla f je dána tzv. Bohrovou frekvenční podmínkou. Atomy mají moment hybnosti a vlastní magnetismus. Tyto vektorové veličiny jsou spolu svázány.

Ionizační energie prvků

Kvantová čísla Kvantové číslo Symbol Dovolené hodnoty hlavní n 1,,3,. vzdálenost od jádra orbitální l 0,1,,(n-1) magnetické orbitální m l 0,±1,,±l (l.(l+1)) velikost orbitálního momentu hybnosti z-ová složka orbitálního momentu hybnosti magnetické z-ová složka spinového momentu hybnosti spinové m s ±½ momentu hybnosti

Pauliho vylučovací princip Všechny stavy se stejnou hodnotou n tvoří slupku. Ve slupce je n stavů. Všechny stavy se stejnou hodnotouna l tvoří podslupku. Všechny stavy v jedné podslupce mají stejnou energii. V podslupce je.(l+1) stavů. K označení podslupek často nahrazujeme hodnoty l písmeny. Tedy místol=0,1,,3, máme s, p, d, f, Pauliho vylučovací princip říká, že žádné dva elektrony v atomu nemohou mít stejné čtyři hodnoty kvantových číseln,l,m l am s. Jinak řečeno: kvantová čísla každé dvojice elektronů v atomu se musí lišit aspoň v jednom kvantovém čísle. Pokud by to tak nebylo, atom by zkolaboval, a nemohli bychom existovat ani my, ani svět, jak jej známe.

Spin Elektron, ať uvězněný v atomu nebo volný, má svůj vnitřní spinový moment hybnosti S *), často nazývaný jednoduše spin. VelikostSje kvantována a závisí na spinovém kvantovém čísle s, které je pro elektrony rovno ½ (a stejně tak pro protony a neutrony). Navíc i složka spinu měřená podél libovolně zvolené osy je kvantována a závisí na hodnotě kvantového spinového magnetického čísla m s, která může být pouze ±½. Slovo vnitřní zde znamená, že spinové kvantové číslo s je základní charakteristika elektronu, stejně jako jeho hmotnost m a elektrický náboj e. *) Tučně zde značíme vektorovou veličinu.

Orbitální a spinový moment elektronu Velikosti momentů ( 1 ) h, ( 1 ) L = l l + S = s s + Průměty momentů do osy z L = m h, S = m z l z s h h Průměty magnetických momentů do osy z ( orb ) ( spin ) µ = m µ, µ = m µ z l B z s B Bohrův magneton e h µ B = = 97,400915(3) 10 J T m 6 1

Magnetický moment protonu Jaderný magneton µ N e h = = 5,050783 4(13) 10 J T m p Magnetický moment protonu 7 1 µ p = 1,41060666(37) 10 J T 6 1 Poměr momentu protonu k jadernému magnetonu µ p µ = N,79847 356(3)

Periodická soustava prvků

Příklady prvků Ne 6 1s s p Na Cl 6 1 1s s p 3 s 6 5 1s s p 3 s 3 p Fe 1s s p 3 s 3 p 6 3d 4 s 6 6 Cu 9 elektronů

Zmínky o kvantové teorii

Relace neurčitosti Čtverec střední kvadratické odchylky je definován jako u u u u u = i i i j ( ) Uvažujme měření polohy a hybnosti částice, potom ( ) ( ) x x x, p p p = = Relace neurčitosti říkají, že x p h

Částicové a vlnové charakteristiky Hybnost a energie částice Vlnočet a úhlová frekvence vlny p, E 1 π k = D λ De Broglie: existuje korespondence p = h k, E = h ω, ω Částici lokalizované v oblasti lineárních rozměrů L odpovídá superposice vln s vlnovou délkou v okolí D L

Stavy s minimální energií Ve stavu s minimální energií bude p p h L Pro celkovou energii E 0 (je součtem kinetické energie T a potenciální energie U) stavu s minimální energií bude tedy h E 0 m + m L ( ) U L Nutná podmínka minima je pak E 0 = 0 L

Atom vodíku Potenciální energie je dána coulombovskou interakcí elektronu a protonu E E h e m L 4 π ε 0 0 L 4π ε h 0 0 0 L a 0,059nm B L = = = m e = Dosazením L=a B do výrazu pro energii E 0 dostáváme B 0 m e E 13,6eV 0 4ππ ε = 0h Souhlas odhadnutých výrazů pro Bohrův poloměr a energii základního stavu atomu vodíku s přesnými hodnotami je vzácnou náhodou, stačil by nám jen souhlas řádový.

Harmonický oscilátor Potenciální energie je dána předpokladem o lineární závislosti síly působící na oscilátor na výchylce z rovnovážné polohy h 1 E0 + m ω L m L E L 0 = 0 h L = mω Dosazením za L do výrazu pro energii E 0 dostáváme E 0 h ω Přesně počítaná energie základního stavu harmonického oscilátoru je E 0 1 = h ω 1

Vyšší energiové hladiny Jsou-li lineární rozměry oblasti, ve které je lokalizován kvantový systém násobkem vlnové délky, je energie takového stavu vyšší (v klasické fyzice třeba struna kmitající na harmonických frekvencích) L n D Potom dostáváme stejným postupem jako pro energii základního stavu pro hladiny energie elektronu v atomu vodíku a pro hladiny energie harmonického oscilátoru (tam uvádíme i exaktní výraz) E E n n 1 m e = n 4 π ε 0 h 1 = n h ω E n = n ω h Kvantové číslo n=1 odpovídá základnímu stavu, čísla n=,3,, Kvantové číslo n=1 odpovídá základnímu stavu, čísla n=,3,, odpovídají vyšším hladinám energie.